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Abstract

We present a brief introduction to the study of homological categories, which en-
compass many algebraically-like categories, namely the category of groups, and also
categories of topological algebras.

1. Introduction

Category Theory started more than 60 years ago, when
Eilenberg and Mac Lane wrote a paper on natural
transformations [11], having as role model a well-known
example of natural equivalence:

For any vector space V over a field K, consider its dual
V ∗ (i.e. the vector space of linear functionals from V
to K). If V is finite-dimensional, then V ∗ has the same
dimension as V , and so we can conclude that they are
isomorphic, although there is no natural way of defining
such isomorphism. This contrasts with the case of V ∗∗,
the dual of V ∗. There is a (injective) linear transfor-
mation φV : V → V ∗∗, which assigns to each x ∈ V the
linear transformation x̂ : V ∗ → K, f 7→ x̂(f) := f(x).
Moreover, if V is finite-dimensional, φV turns out to be
an isomorphism, defining this way a natural equivalence.
That is, φV is not a mere equivalence between V and
V ∗∗ but it is part of a collection φ = (φV )V of equiva-
lences. To make this idea precise, in [11] Eilenberg and
Mac Lane defined categories, functors (between cate-
gories) and then natural transformations (between func-
tors).

Shortly after, the use of Category Theory proved to
be useful in several areas of Mathematics. The notion
of abelian category – encompassing abelian groups and,
more generally, modules – became prominent. Quoting
Mac Lane [20, Notes on Abelian Categories, page 209]:

“Shortly after the discovery of categories, Eilenberg and
Steenrod [12] showed how the language of categories and
functors could be used to give an axiomatic description

of the homology and cohomology of a topological space.
This, in turn, suggested the problem of describing those
categories in which the values of such a homology the-
ory could lie. After discussions with Eilenberg, this was
done by Mac Lane [18, 19]. His notion of an “abelian
bicategory” was clumsy, and the subject languished until
Buchsbaum’s axiomatic study [10] and the discovery by
Grothendieck [15] that categories of sheaves (of abelian
groups) over a topological space were abelian categories
but not categories of modules, and that homological alge-
bra in these categories was needed for a complete treat-
ment of sheaf cohomology (Godement [14]). With this
impetus, abelian categories joined the establishment.”

Moreover, quoting now Borceux [2]:

An elementary introduction to the theory of abelian cat-
egories culminates generally with the proof of the basic
diagram lemmas of homological algebra: the five lemma,
the nine lemma, the snake lemma, and so on. This gives
evidence of the power of the theory, but leaves the reader
with the misleading impression that abelian categories
constitute the most natural and general context where
these results hold. This is indeed misleading, since all
those lemmas are valid as well – for example – in the
category of all groups, which is highly non-abelian.

However, in contrast with the smooth genesis of abelian
categories, besides several attempts to identify relevant
categorical features of the category of groups (cf. [16]
for an account on the subject), it took a few decades
until the right ingredient was identified. This was due
to Bourn [6], who defined protomodular category and
showed that a simple categorical condition (see condi-
tion (2) of Theorem 1) could become a key tool to han-
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dle with short exact sequences. In 1990, he presented
his notion at the International Category Theory Meet-
ing, CT90, but it took almost a decade until the math-
ematical community understood the potential of proto-
modularity. Indeed, the proposal, at CT99 (in Coim-
bra), of studying semi-abelian categories – which are in
particular protomodular categories –, due to Janelidze,
Márki and Tholen [16], was the main step for the recog-
nition of the role of protomodularity in Categorical Al-
gebra. The XXI century began with an explosion of
results on protomodular and semi-abelian categories,
being Bourn the main contributor. The monograph by
Borceux and Bourn [3] contains the main achievements
on the subject. While writing this monograph, the work
of Borceux (together with the author of this article) on
topological semi-abelian algebras [4, 5] led him to a new
proposal for capturing the essential properties of group-
like categories, which became known under the name
homological category, basically because it turned out to
be the right setting to develop Homological Algebra.

Throughout we will present a brief survey on these con-
tributions.

2. Protomodularity

One of the key tools for Homological Algebra is the
Short Five Lemma, which holds in abelian categories:

Short Five Lemma. Given a commutative diagram

0 // K
u //

a

��

X
p //

b

��

Y //

c

��

0

0 // K ′ v // X ′ q // Y ′ // 0

with exact rows (i.e. p, q are regular epimorphisms and
u = ker p, v = ker q), if a and c are isomorphisms, b is
an isomorphism as well.

This result is still valid in the category G rp of groups
and homomorphisms, hence it is not exclusive of abelian
categories. The notion of protomodular category is
based on a weaker form of this result, the Split Short
Five Lemma, stated below. This statement makes sense
only in pointed categories, that is categories with a zero
object.

Definition. In a pointed category C , the Split Short
Five Lemma holds if, for any given commutative dia-
gram

0 // K
u //

a

��

X
p
//

b

��

Y //soo

c

��

0

0 // K ′ v // X ′
q
// Y ′ //too 0

in the sense that b ·u = v · a, c · p = q · b and b · s = t · c,
with p, q split epimorphisms, p · s = 1Y and q · t = 1Y ′ ,

and u = ker p, v = ker q, if a and c are isomorphisms, b
is an isomorphism as well.

Bourn observed that the Split Short Five Lemma holds
in a pointed category C with pullbacks of split epimor-
phisms if and only if the kernel functor

K : PtC −→ C /0× C

( X
f //

Y
s
oo ) 7−→ (Ker f → 0, X)

is conservative, i.e. reflects isomorphisms. Here PtC is
the category of split epimorphisms – or pointed objects
– of C , i.e. pairs (f, s) with f · s = 1; a morphism
(f, s) → (f ′, s′) in PtC is a pair of morphisms of C
(h, k) making the following diagram

X
h //

f

��

X ′

f ′

��
Y

s

OO

k
// Y ′

s′

OO

commute (that is k · f = f ′ · h and s′ · k = h · s).

To avoid the assumption of C being pointed, one can
focus on the second component of this functor, that is,
on the functor which assigns to each object (f, s) of
PtC the codomain of f (=domain of s):

p : PtC −→ C
(f, s) 7−→ cod f,

which is a fibration, the so-called fibration of pointed
objects of C .

If C has split pullbacks, every morphism v : X → Y in
C induces, via pullback, the change-of-base functor

v∗ : PtY C −→ PtXC .

Proposition 1. [6] Let C be a category with split pull-
backs. If C has split pushouts (i.e. admits pushouts
of split monomorphisms), then the change-of-base func-
tors of the fibration p have left adjoints (i.e. p is also
a cofibration). Conversely, if p is a cofibration and C
admits finite products, then C has split pushouts.

The remarkable novelty of Bourn’s protomodularity is
the recognition of the role played by these functors:

Definition. [6] A category C with split pullbacks is
protomodular if the change-of-base functors of the fi-
bration p : PtC → C are conservative.

Protomodularity can be stated alternatively as a very
simple condition on pullbacks.

Theorem 1. [6] A category C is protomodular if and
only if:

(1) C has split pullbacks;
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(2) If in the commutative diagram

//

��
1

//

p

��
2
��// //

the down-arrows are split epimorphisms and 1
and 1 2 are pullbacks, then 2 is also a pullback.

Moreover, in (2) one can assume only that p is a split
epimorphism, provided that C has pullbacks.

Theorem 2. Let C be a pointed category with split
pullbacks. The following conditions are equivalent:

(i) C is protomodular;

(ii) The Split Short Five Lemma holds in C .

Examples. ([3])

1. Every additive category with finite limits is pro-
tomodular, hence every abelian category is proto-
modular.

2. G rp is protomodular.

3. The dual category of an elementary topos is pro-
tomodular; in particular, S etop is protomodular.

4. If C is protomodular and X ∈ C , then the slice
category C /X and the coslice category X\C are
protomodular.

5. If C is protomodular, all the fibres PtY (C ) =
p−1(Y ) of the fibration of points of C are proto-
modular.

6. If C is protomodular and finitely complete, then
its category G rd(C ) of internal groupoids is pro-
tomodular as well.

In Section 4 we will present a characterization of the
protomodular varieties, i.e. of the varieties of universal
algebras which are protomodular, as categories.

As for G rp, monomorphisms in pointed protomodular
categories do not need to be kernels. They behave how-
ever quite nicely. We select here some of the properties
of monomorphisms and regular epimorphisms in proto-
modular categories.

Proposition 2. Let C be a finitely complete protomod-
ular category.

(1) Pulling back reflects monomorphisms, i.e. given
a pullback

g′
//

f ′

��
f

��g //

f is a monomorphism provided that f ′ is.

(2) If C is pointed, then:

(a) f is a monomorphism ⇔ Ker f = 0;

(b) f is a regular epi ⇔ f = coker(ker f).

There is an interesting approach to normal subobjects
in general protomodular categories that we will not de-
scribe here (cf. [3, 7]).

3. Semi-abelian categories

An abelian category is an additive category, with ker-
nels and cokernels, and such that every monomorphism
is a kernel and every epimorphism is a cokernel. We re-
call that an additive category is a pointed category with
biproducts (i.e. finite products are biproducts, hence
also coproducts) and with an additive abelian group
structure in each hom-set so that composition of arrows
is bilinear with respect to this addition (cf. [20, 13]).

Alternatively, an abelian category can be defined by the
following two axioms:

(1) C has finite products, and a zero object,

(2) C has (normal epi, normal mono)-factorizations,
i.e. every morphism factors into a cokernel fol-
lowed by a kernel.

Observing that these two conditions imply that C is
finitely complete and finitely cocomplete, so that con-
dition (1) could be stated self-dually, and that condition
(2) is obviously self-dual, it is clear that the notion of
abelian category is self-dual, that is:

C is abelian ⇔ C op is abelian.

Roughly speaking, to define semi-abelianess Janelidze,
Márki and Tholen replaced additivity by protomodu-
larity, in a convenient way. The bridge they used was
Barr-exactness.

We recall that a category C is Barr-exact [1] if

(1) C has finite products,

(2) C has pullback-stable (regular epi, mono)-
factorizations,

(3) Every equivalence relation is effective (i.e. the
kernel pair of some morphism).
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If C satisfies (1) and (2) it is called regular.

A category is abelian if, and only if, it is additive
and Barr-exact. Barr-exactness by itself is not restric-
tive enough to capture essential properties of group-like
categories. It includes, for instance, pointed sets and
monoids.

The authors of [16] observed that categories which are
both Barr-exact and protomodular – including of course
G rp – are very well-behaved. Namely, for a Barr-exact
category with split pushouts, protomodularity is equiv-
alent to the existence of semi-direct products (cf. [8]).
They proposed the following:

Definition. A category C is semi-abelian if it is
pointed, protomodular and Barr-exact.

It is interesting to notice that, although to be semi-
abelian is not self-dual,

C is abelian ⇔ C and C op are semi-abelian.

This result follows essentially from the following

Proposition 3. If C is pointed and both C and C op

are protomodular, then C has biproducts.

In semi-abelian categories many algebraic results are
valid, specially results involving the behaviour of exact
sequences (see Section 5). We refer to [16] for a very
interesting incursion into this subject, and to [3, 2] for
a thorough study of the properties of semi-abelian cat-
egories.

4. Semi-abelian varieties and
topological algebras

The varieties of groups, of loops (or more generally
semi-loops), of cartesian closed (distributive) lattices,
of locally boolean distributive lattices, are varieties of
universal algebras which are semi-abelian categories. In
fact, for a variety, to be pointed protomodular is equiv-
alent to be semi-abelian, since it fulfils always the ex-
actness condition.

In 2003 Bourn and Janelidze [9] characterized semi-
abelian (in fact protomodular) varieties as those having
a finite family of generalized “subtractions” and a gen-
eralized “addition”, as stated below.

Theorem 3. A variety V of universal algebras is pro-
tomodular if and only if, for a given n ∈ N, it has:

(1) n 0-ary terms e1, · · · , en;

(2) n binary terms α1, · · · , αn with αi(x, x) = ei for
all i = 1, · · · , n;

(3) one (n + 1)-ary term θ satisfying

θ(α1(x, y), · · · , αn(x, y), y) = x.

A variety V is semi-abelian if, and only if, it fulfils
conditions (1)-(3) with e1 = · · · = en = 0.

In case V is the variety of groups, in the Theorem we
put n = 1, α(x, y) = x − y and θ(x, y) = x + y. It
is clear that any variety which contains a unique con-
stant and a group operation is semi-abelian. This is in
particular the case of groups, abelian groups, Ω-groups,
modules on a ring, rings or algebras without units, Lie
algebras, Jordan algebras. Any semi-abelian variety has
a Mal’cev operation p, defined as

p(x, y, z) = θ(x, α1(y, z), · · · , αn(y, z)).

(For more examples, see [4].) It is particularly interest-
ing to study the corresponding topological algebras.

Let C be the category of topological algebras for a
given semi-abelian variety V . That is, objects of C
are elements of V equipped with a topology making
the operations continuous, and morphisms of C are
continuous homomorphisms. Our basic example is of
course the category T opG rp of topological groups and
continuous group homomorphisms. The main ingredi-
ent in the study of classical properties of topological
groups is the existence of the homeomorphisms

G
(−)+x // G

(x ∈ G) which, although not living in T opG rp (they
are not homomorphisms), show that – topologically – G
is homogeneous, i.e. its local properties do not depend
on the point x considered. For topological semi-abelian
algebras one replaces this set of homeomorphisms by a
set of sections and retractions, as follows.

Let A ∈ C . Condition (3) of the Theorem asserts that,
for each a ∈ A, the continuous maps

ιa : A −→ An

x 7−→ (α1(x, a), · · · , αn(x, a))

and
θA : An −→ A

(x1, · · · , xn) 7−→ θ(x1, · · · , xn, a)

satisfy θa · ιa = 1A, hence present A as a topological re-
tract of An. Condition (2) says that ιa(a) = (0, · · · , 0),
which allows the comparison between local properties
at a and at 0. Indeed, from these properties one may
conclude that, for any a ∈ A, each of the sets

{ι−1
a (U × · · · × U) | U open neighbourhood of 0}

and

{θa(U × · · · × U) | U neighbourhood of 0}

is a fundamental system of neighbourhoods of a, the for-
mer one consisting of open neighbourhoods.
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A convenient use of these properties guides us straight-
forward to the establishment of most of the classical
topological properties known for topological groups.
(For details see [4, 5].) Here we would like to mention
one important property, which in fact follows directly
from the existence of a Mal’cev operation:

In C a morphism is a regular epimorphism if and only
if it is an open surjection.

We remark that a well-known important property of
topological groups, namely that the profinite topologi-
cal groups – i.e. projective limits of finite discrete topo-
logical groups – are exactly the compact and totally
disconnected groups, in general is not true for semi-
abelian topological varieties. For instance, the result
fails for topological Ω-groups. It remains an open prob-
lem to characterize those varieties for which this equal-
ity holds. (Cf. Johnstone [17, Chapter 6] for more
results on the subject.)

Analyzing now the categorical behaviour of such cat-
egories of topological semi-abelian algebras it is easy
to check that protomodularity is inherited from proto-
modularity of V , but not exactness, hence they are not
semi-abelian. Indeed, the kernel pair of a continuous
homomorphism f : G → H between, say, topological
groups, is constructed like in G rp and it inherits the
subspace topology of the product topology on G × G.
Hence, any equivalence relation on G provided with a
topology which is strictly finer than the subspace topol-
ogy of G × G is not a kernel pair, hence equivalence
relations are not effective.

However, regularity is guaranteed, since the (regular
epi, mono)-factorization of a morphism f : A → B is
obtained via the (regular epi, mono)-factorization in V

A
f //

e   B
BB

B B

M
m

==||||

equipping M with the quotient topology, which makes e
necessarily an open map. Since open maps are pullback-
stable, the factorization is pullback-stable as claimed.

At this stage one can raise the question: Are pointed
regular protomodular categories interesting? The an-
swer is definitely yes. These are the homological cate-
gories we will consider in the next section.

5. Homological categories

A category C is said to be homological if it is pointed,
regular and protomodular.

Every semi-abelian category is homological, but there
are interesting homological categories which are not
semi-abelian, like T opG rp, and, more generally, any
category of topological semi-abelian algebras.

As in any pointed category, in a homological category
a sequence of morphisms

0 // K
k // X

f // Y // 0

is a short exact sequence if k = ker f and f = coker k.
Since in a pointed protomodular category every regular
epimorphism is the cokernel of its kernel, in a homolog-

ical category 0 // K
k // X

f // Y // 0 is a
short exact sequence if, and only if, k = ker f and f is
a regular epimorphism.

Furthermore, in a homological category the (regular epi,
mono)-factorization of a morphism is obtained like in
abelian categories, i.e. if f = m · e is the (regular epi,
mono)-factorization of f , then e = coker(ker f). Hence
every kernel has a cokernel and, moreover, every kernel
is the kernel of its cokernel.

Using (regular epi, mono)-factorizations, one can define
exact sequences as follows.

Definitions. (1) In a homological category a sequence
of morphisms

X
f // Y

g // Z

is exact if, in the (regular epi, mono)-factorizations of
f and g, m = ker e′:

X
f //

e !!B
BB

B Y
g //

e′ !!C
CC

C Z

M
m

>>||||
M ′ m′

=={{{{

(2) A long exact sequence of composable morphisms is
exact if each pair of consecutive morphisms forms an
exact sequence.

In a homological category a morphism f : X → Y can

be part of an exact sequence X
f // Y

g // Z only
if, in its (regular epi, mono)-factorization f = m · e,
m is a kernel. (Such morphisms are called proper.)
Still, in a homological category exact sequences identify
monomorphisms and regular epimorphisms as follows.

Proposition 4. [3] If C is a homological category and
f : X → Y is a morphism in C , then:

(1) f is monic if and only if the sequence

0 // X
f // Y is exact;

(2) k = ker f if and only if the sequence

0 // K
k // X

f // Y is exact;

(3) f is a regular epimorphism if and only if the se-

quence X
f // Y // 0 is exact;

(4) for a proper morphism f , q = coker f if and only

if X
f // Y

q // Q // 0 is exact.
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Finally we would like to stress that the key results on
short exact sequences are valid in this setting (cf. [3]):

Theorem 4. (Short Five Lemma) For a pointed reg-
ular category C , the following conditions are equivalent:

(i) C is homological.

(ii) The Short Five Lemma holds, that is, given a
commutative diagram

0 // K
u //

a

��

X
p //

b

��

Y //

c

��

0

0 // K ′ v // X ′ q // Y ′ // 0

with exact rows, if a and c are isomorphisms, b is
also an isomorphism.

Theorem 5. (3× 3 Lemma) Let C be a homological
category. Consider the commutative diagram

0 // K ′′ k′′
//

u′

��

X ′′ f ′′
//

v′

��

Y ′′ //

w′

��

0

0 // K ′ k′
//

u

��

X ′ f ′
//

v

��

Y ′ //

w

��

0

0 // K
k // X

f // Y // 0

where the horizontal lines are short exact sequences and
v · v′ = 0. Then, if two of the columns are short exact
sequences, the third one is also a short exact sequence.

The Noether Isomorphisms Theorems are still valid
in homological categories, as well as the Snake Lemma
(for exact formulations of these results see [3]). Further-
more, one can associate to each short exact sequence
of chain complexes the long exact homology sequence,
provided that the chain complexes are proper.
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