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Curvature and the growth of cells.

A mathematics article was published, April 26, 2007, in
the general science journal Nature. This unusual occur-
rence is due to the prominence and wide applicability
of the result. Robert MacPherson and David Srolovitz
solved the 50-year old problem of generalizing to three
dimensions John von Neumann’s work on the growth
of cells in planar tesselations. The hypotheses in both
cases are that cell walls move with a velocity propor-
tional to their mean curvature, and that domain walls
meet at 120◦, hypotheses which are realized in many
physical and biological contexts.

Von Neumann showed that the rate of change dA/dt of
the area A of such a cell can be expressed in terms of γ
the surface tension of a domain wall, M a kinetic coef-
ficient describing the walls’ mobility and n the number
of vertices where distinct walls intersect, by

dA/dt = –2πMγ(1–n/6).

So for example in the tessellation portion shown in Fig.
1, the 8-vertex regions A and B will grow at the expense
of the 2-vertex region C.

Fig. 1. With the common factor 2πMγ set to 1, von Neumann’s

formula tells us that dA/dt = dB/dt = 1/3, while dC/dt = –2/3.

MacPherson and Srolovitz’s formula for the rate of
change of the volume of a domain D in a 3-dimensional
tessellation is formally analogous but requires the new
and ingeniously defined mean width L (D), which they
describe as “a natural measure of the linear size” of D.
In terms of L (D), their formula reads

dV

dt
= −2πMγ
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where ei is the length of the i-th 1-dimensional edge
of D, and the sum is taken over all the edges. Note
that following our initial requirement, faces meet 3 by
3 along an edge with dihedral angles 120◦.

The mean width L (D) is computed in two steps. First,
for each line ` through the origin, the Euler width
ω(D, `) of D along ` is the integral along ` of the Euler
characteristic χ(`⊥p ∩ D) of the intersection of D with
the plane perpendicular to ` (see Fig. 2):

ω(D, `) =
∫

`

χ(`⊥p ∩D) dp.

So if D is convex (χ always = 1), ω(D, `) is exactly the
length of the projection of D on `.

Fig. 2. For D a 3-dimensional domain, and ` a line through the

origin, the Euler width ω(D, `) of D along ` is calculated by

measuring, for each point p on `, the Euler characteristic

χ(`⊥p ∩D) of the intersection of D with the plane through p

perpendicular to `, and integrating along `. Image reprinted by

permission from Macmillan Publishers Ltd: Nature (Vol. 446,

26 April 2007, p. 1054), copyright (2007).

Then L (D) is computed as twice ω(D, `), averaged over
the space RP 2 of lines through the origin:

L (D) = 2
∫

RP 2
ω(D, `) d`,

where d` is normalized to have total integral 1.

The authors state that their formula and
von Neumann’s are both special cases of
a general n-dimensional formula, which they
give. The Supplementary Information (see
www.nature.com/nature/journal/v446/n7139/supp
info/nature05745.html) for their article (entitled
“The von Neumann relation generalized to coarsening
of three-dimensional microstructures”) gives the proof
of their 3-dimensional formula and rules for computing
L (D); for example the cube of side length a has mean
width 3a.
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Computing with locomotives. “Trains of
thought” is a piece by Brian Hayes in the March-
April 2007 American Scientist (available online —
www.americanscientist.org/AssetDetail/assetid/
54774). He takes us to a “hump yard,” where boxcars
are sorted into trains by rolling through a series of
switches: “... I can’t shake the impression that the
hump yard itself is a kind of computer–that the rail-
road cars are executing some secret algorithm.” In fact
any algorithm can be so executed. In 1994 Adam
Chalcraft and Michael Greene, then Cambridge under-
graduates, showed how to use a track layout to imple-
ment a given Turing machine (paper available online —
www.monochrom.at/turingtrainterminal/Chalcraft
.pdf). As Hayes explains it: “The machine is pro-
grammed by setting switch points in a specific initial
pattern; then a locomotive running over the tracks re-
sets some of the switches as it passes; the result of the
computation is read from the final configuration of the
switches.” One of the trickier parts is what they call
a distributor: it routes trains alternatively onto track
0 and onto track 1. They prove that this cannot be
accomplished with a finite configuration, and exhibit
the following open-ended layout to do the distribution.

Chalcraft and Greene’s Distributor has two kinds of switches:

spring switches which always direct an incoming car to the

green track, and lazy switches which are reset by the last train

through. The red arrow shows the current setting of each lazy

switch. The first train through resets the leftmost lazy switch to

“up” on its second pass and exits on track 1.

Train-track layouts turn out to have fascinated puzzle
makers and computer scientists for quite some time.
Hayes’ illustrations include one of Sam Loyd’s puz-
zles and Donald Knuth’s “railroading interpretations of
three important data structures: the stack, the queue
and the double-ended queue, or deque.” Hayes even
gives us a puzzle of his own:

“The task is simply to deliver cars 1, 2 and 3 to destinations A ,

B and C. The cars are already in delivery order.” The solution

is given at

www.ams.org/mathmedia/archive/05-2007-media.html#four.

Chalcraft and Greene’s work was picked up by Ian
Stewart for his Mathematical Recreations column in

the September 1994 Scientific American. That col-
umn (“A Subway Named Turing”) is available online
(www.fortunecity.com/emachines/e11/86/subway.
html).

E8 in the New York Times.

The Times printed a black and white version of this image,

giving a glimpse of the size and complexity of the Lie group E8.

The configuration (projected here into 2 dimensions) shows part

of the arrangement of closest packed balls in 8-dimensional

space; the vertices represent a ball’s 240 nearest neighbors in

8-space, with bonds drawn between nearest neighbors among

the neighbors. E8 contains a discrete subgroup mapping

256-to-one onto the 696,729,000-element symmetry group of this

configuration. The image given here was made by John

Stembridge, who explains it in

www.math.lsa.umich.edu/~jrs/coxplane.html.

The most straightforward Lie groups are groups of n by
n matrices characterized by some linear algebraic con-
dition preserved in products, e.g. determinant nonzero,
determinant = 1. The product of two matrices is a ma-
trix whose entries are analytic functions (actually sums
of products) of the entries in the factors. That’s all it
takes to make a Lie group. The building blocks of Lie
theory, the simple Lie groups, fall into four infinite fam-
ilies of larger and larger matrices, plus five exceptional
groups F4, G2, E6, E7, E8. The last, largest (248-
dimensional) and gnarliest of the exceptionals, E8, has
been in the news recently. Kenneth Chang reported, in
the March 20 2007 New York Times, the culmination of
a four-year effort by a team of 18 mathematicians, led
by Jeffrey Adams (Maryland), to work out the details of
its algebraic structure. His description of exactly what
they were calculating is very vague, perhaps inevitably,
but he clearly conveys the message that the task was
enormous. “To understand using E8 in all its possibili-
ties requires calculation of 200 billion numbers,” Chang
tells us. “Possibilities” presumably refers to the set of
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unitary representations of E8: the main way a group
can be analyzed is through representations (projections
which preserve multiplication) onto finite or infinite-
dimensional matrix groups. The many episodes of the
huge computation are laid out in David Vogan’s narra-
tive (atlas.math.umd.edu/kle8.narrative.html), a
good story well told.

“Jeffrey D. Adams and a Lie group,” as seen in the Times.

Photo by Mark Tilmes, used with permission.

Intel silver and bronze for math projects. Sec-
ond and third place in this year’s Intel Science Tal-
ent Search went to mathematics projects, as re-
ported by Aimee Cunningham in Science Online
(www.sciencenews.org/articles/20070317/fob7.
asp) for March 17, 2007. “Second place and a $75,000
scholarship went to John Vincent Pardon, a 17-year-
old from Durham Academy in Chapel Hill, N.C. In
his mathematical project, Pardon proved that a closed
curve can be made convex without permitting any two
points on the curve to get closer to one another.

Mathematics research also won the third-place prize,
which comes with a $50,000 scholarship. Eighteen-year-
old Dmitry Vaintrob of South Eugene High School in
Eugene, Ore., found a connection between different de-
scriptions of certain mathematical shapes.”

Vaintrob’s project was reported on the Intel site in more
detail: the award was “for his sophisticated investiga-
tion of ways to associate algebraic structures to topo-
logical spaces. Dmitry proved that loop homology and
Hochschild cohomology coincide for an important class
of spaces.” Pardon’s Intel citation also mentioned that
his project had “solved a classical open problem in dif-
ferential geometry.”]

Pardon and Vaintrob’s scholarship awards were also re-
ported in the March 14 2007 New York Times.

“Journeys to the Distant Fields of Prime”.
Kenneth Chang’s article took up the top of the first
page in the New York Times Science section for
March 13, 2007. It is a “Scientist at Work” pro-
file of Terence Tao (UCLA), one of this year’s Fields
Medal winners. Don’t be put off by the absurd ti-
tle; Chang gives us a balanced and sympathetic look

at this mathematical star. He takes us to Tao’s
public lecture on prime numbers (slides available in
www.math.ucla.edu/~tao/preprints/Slides/primes
.pdf, video in http://164.67.141.39:8080/ramgen/
specialevents/math/tao/tao-20070117.smil), but
then focuses on a “real-world” area of Tao’s research,
his work on compressed sensing. In a digital camera
millions of sensors record an image which then gets
compressed. Tao: “Compressed sensing is a different
strategy. You also compress the data, but you try to do
it in a very dumb way, one that doesn’t require much
computer power at the sensor end.” In fact, Chang
tells us, Tao and Caltech professor Emmanuel Candès
have shown that “even if most of the information were
immediately discarded, the use of powerful algorithms
could still reconstruct the original image.”

Cooking Gaussian curvature.

Gaussian cuisine. Low-concentration solution (A) and

high-concentration solution (B) of N-isopropylacrylamide

(NIPA) are mixed (C) in continuously varying proportion and

extruded centrally between parallel plates (D) to form a

gelatinous disc (E) with radially varying NIPA concentration,

which is placed (F) in a hot bath; the heat makes the

low-concentration areas shrink faster than the high, resulting in

a non-Euclidean metric. Adapted from Science 315 1117.

Anyone who has considered a potato chip mathemat-
ically has seen how Gaussian curvature can be pro-
duced by cooking. A team at the Hebrew University
have found a way to control this process so as to pro-
duce (within a certain range) discs whose Gaussian cur-
vature is a prescribed function of the radial coordi-
nate. Their report, in the February 23 2007 Science,
is entitled: “Shaping of Elastic Sheets by Prescription
of Non-Euclidean Metrics.” The authors (Yael Klein,
Efi Efrati and Eran Sharon) present their project as a
“novel shaping mechanism” for 2-dimensional objects.
“Rather than aiming at a specific embedding, one pre-
scribes on the sheet only a 2D metric, the ‘target metric’
gtar ... . The free sheet will settle to a 3D configuration
that minimizes its elastic energy. In this mechanism,
the selected configuration is set by the competition be-
tween bending and stretching energies, and its metric
will be close to (but different from) gtar.” Bending en-
ergy comes into the picture because the gel is not a 2-
dimensional object: it has a finite thickness and resists
bending. Nevertheless, “We show that the construction
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of elastic sheets with various target metrics is possible
and results in spontaneous formation of 3D structures.”
The authors spend some time discussing the difference
between the positive curvature case (“The surfaces of
Ktar > 0 preserve the radial symmetry of gtar, gen-
erating surfaces of revolution”) and the negative (“The
surfaces of Ktar < 0 break this symmetry, forming wavy
structures”). They report: “A more surprising obser-
vation is the asymmetric distribution of the Gaussian
curvature. Instead of the negative, rotationally sym-
metric Ktar, K(ρ, θ) varies periodically in θ, attaining
positive and negative values.” [It looks to me like they
are measuring normal curvature here. -TP]

Medieval Islamic quasi-periodic tilings.

A quasi-periodic tiling from the Darb-i Imam shrine in Isfahan.

Image courtesy K. Dudley and M. Elliff.

“... by the 15th century, the tessellation approach was
combined with self-similar transformations to construct
nearly perfect quasi-crystalline Penrose patterns, five
centuries before their discovery in the West.” This text
appears in the abstract for “Decagonal and Quasi-
Crystalline Tilings in Medieval Islamic Architecture,”
by Peter J. Lu and Paul J. Steinhardt, in the February
23 2007 Science. It is known that 5-fold rotational
symmetry is incompatible with translational periodic-
ity, but Peter Lu seems to have been the first one to
notice that medieval Islamic artists went ahead, used
motifs with 5-fold symmetry, and produced “quasi-
periodic” patterns long before that concept was born.
As he told NPR (All Things Considered, February
22 2007; transcript and images available online —
www.npr.org/templates/story/story.php?storyId
=7544360), he made this observation during a trip to
Uzbekistan. When he got back to Harvard, where he is
a graduate student in Physics, he did some investiga-
tion and discovered that Islamic geometers had devised

a set of five polygonal building-blocks, each one deco-
rated with polygonal lines; when the blocks were used
to tile an area the lines fit together to give the intri-
cate knot-like patterns called girih. One of these “girih
blocks” is in fact identical to the “fat rhombus” we use
in Penrose tilings.

Part of a girih-pattern tiling from a Turkish mosque, with its

analysis in terms of three of the decorated blocks (bowtie,

decagon and flat hexagon) used by Islamic geometers. The

other two are a pentagon and our “fat rhombus.” Photographic

image courtesy W. B. Denny, geometric analysis image courtesy

Peter J. Lu.

Self-similarity is the one of the hallmarks of Penrose-
type quasi-periodic tilings; this fact also seems not to
have escaped the Islamic geometers: “Perhaps the most
striking innovation arising from the application of girih
tiles was the use of self-similarity transformation (the
subdivision of large girih tiles into smaller ones) to cre-
ate overlapping patterns at two different length scales,
in which each pattern is generated by the same girih tile
shapes.” An example: the tiling from the Darb-i Imam
shrine shown above.

Mathematical tools needed. “Bringing cartoons to
life” is an essay by John J. Tyson under the “Connec-
tions” rubric in the February 22 2007 Nature. Abstract:
“To understand cells as dynamic systems, mathematical
tools are needed to fill the gap between molecular in-
teractions and physiological consequences.” Tyson, uni-
versity distinguished professor of biological sciences at
Virginia Tech, makes the point that “a network of in-
teracting genes and proteins is a dynamic system evolv-
ing in space and time according to fundamental laws of
reaction, diffusion and transport.” He focuses on pro-
grammed cell death as an example of a a nonlinear sys-
tem: “its molecular regulatory network is bistable (ei-
ther off or on) at zero signal strength and monostable
(on) for signals above the threshold.” He posits a chem-
ical feedback loop which “might generate” this kind of
dynamic responses, and asks “But can we be sure our
intuition is correct? ... How might the regulatory sys-
tem fail? What are the most effective ways to intervene
pharmaceutically to repair the cell-death pathway?”
The answers, he proposes, will come from computer
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modeling. “The network of reactions ... can be cast into
a set of kinetic [differential] equations. ... By follow-
ing the arrows, a computer can simulate the temporal
evolution of the control system under any specified ex-
perimental conditions.” Tyson points to the existence of
“a well-developed mathematical theory” with qualita-
tive concepts such as bifurcation points, which “accord
well with our intuitive notions,” a theory which “forges
a rigorous chain of deductions from molecular interac-
tions to kinetic equations to vector fields to physiologi-
cal consequences.” He ends by predicting that in partic-
ular the uncertainties about “the molecular correlates
of programmed cell death” will “be resolved largely by
experiments driven by theoretical issues such as the im-
portance of bistability, the roles of feedback and feed
forward, and robustness in the face of noise.”

“Proof at a roll of the dice.” That’s the title of a
News and Views piece contributed by Bernard Chazelle
(Computer Science, Princeton) to the December 28
2006 Nature. His subject is probabilistically checkable
proof, or PCP: “the curious phenomenon that the mere
ability to toss coins makes it possible to check the most
complex of mathematical proofs at no more than a pass-
ing glance.” The underlying theorem is about ten years
old, and has recently been given an “elementary” proof
(“the latest chapter in one of the most engrossing chron-
icles of computer science”) by Irit Dinur (Hebrew Uni-
versity).

Here is Chazelle’s statement of the PCP Theorem: “any
statement S whose validity can be ascertained by a
proof P written over n bits also admits an alternative
proof, Q. This proof Q has two appealing features: it
can be derived from P in a number of steps propor-
tional to nc, where c is some constant; and P can be
verified by examining only three bits of Q picked at
random. If S is true, a correct P will satisfy the ver-
ifier with a probability of 99%. If it is not true, any
alleged proof P will trigger a rejection from Q with a
probability higher than 50%.” To suggest how P and
Q are related, Chazelle has us imagine figure a below
as P : a proof of the (false) statement that a map of
South America can be colored with 3 colors so that no
adjacent countries are colored the same. To check the
validity of this proof one has to check all the boundaries
of all the countries; eventually one finds that Brazil
and Paraguay are colored the same. Q corresponds to
the coloring b of the “smeared out” map on the right.
Dinur’s construction guarantees that if the first map
is not 3-colorable, then b “will leave at least a fixed
fraction of its edges monochromatic.” And so a random
probe has a good chance of detecting an error. Chazelle
reminds us towards the end to “Keep in mind that this
is all about verifying proofs, not about understanding
them — with only three bits! — let alone discovering
them. That must still be done the hard way.”

a b

The putative proof a that South America is 3-colorable (false)

has just one error. In the proof b, “smeared” in analogy to

Dinur’s PCP transformation, the error appears in many places.

“Establishing the validity –or not– of the original map with

high statistical certainty thus requires the checking of only a

small, randomly chosen subregion of the smeared map.” Image

reprinted by permission from Macmillan Publishers Ltd: Nature

(Vol. 444, 21/28 December 2006, p. 1018), copyright (2007).

xe−x in a tropical rainforest. “Dynamical evolution
of ecosystems” ran in the December 14 2006 Nature.
The authors, a team led by Jayanth Banavar (Penn
State) and Amos Maritan (Padua), start their report
with the sentence: “We present an analytical model
that allows one to probe the characteristic timescales
of evolving tropical forests and to evaluate the con-
sequences of anthropogenic processes.” In this and in
a previous paper with a different team, Banavar and
Maritan explore how density dependence (an effect that
“disfavours the population growth of locally abundant
species relative to uncommon species”) impacts species
diversity and relative species abundance (RSA). Here
they show how a factor (b) representing density depen-
dence fits into an analytic expression

PRSA(x) =
(Dτ)−b/D

Γ(b/D)
xb/D−1e−x/Dτ

for the probability distribution function giving relative
species abundance, and match their calculation with a
measured RSA distribution: that of trees in the stand
of tropical rain-forest maintained by the Smithsonian
Institution on Barro Colorado Island, Panama. The an-
alytic expression is calculated using a symmetric model
in which the species are interchangeable; they have
birth and death rates b(x) = b1x + p0, d(x) = d1x− p0,
where b1 and d1 are the per-capita rates and p0 in-
corporates the density dependence. In the equation,
τ = 1/(b1 − d1) is the characteristic timescale of the
system (reflecting how fast the system returns to equi-
librium after a perturbation); D = (b1+d1)/2 “accounts
for demographic stochasticity” and b = 2p0. The hairy
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coefficient is there to guarantee a total integral equal to
1.

Relative species abundance for trees in the Barro Colorado

Island forest from the 1990 census, compared with predictions

(dots) from the expression given above. Individuals of more

than 1 cm in diameter were counted. Image reprinted by

permission from Macmillan Publishers Ltd: Nature (Vol. 444,

14 December 2006, p. 926), copyright (2007).

Mathematician becomes “Genome Sleuth”. On
December 12, 2006, the New York Times “Scientist at
Work” series featured Nick Patterson, a mathematician.
His PhD, from Cambridge, was in finite group theory.
Patterson told the Times’ Ingfei Chen: “I’m a data guy.
What I know about is how to analyze big, complicated
data sets.” He honed this skill on code-breaking, first
for the British, then for the U.S. Department of De-
fense. After some 20 years as a cryptographer, applying
the Hidden Markov Model to “predict the next letter
in a sequence of ... text” he turned this skill to pre-
dicting the next data point is a series of stock prices,
working for the hedge fund managed by mathemati-
cian/financier Jim Simons. When he started, according
to Chen, the fund was worth $200 million; seven years
later, it was up to $4 billion. “Their methods appar-
ently worked.” But now the data guy is on to a third
career: “Genome Sleuth Nick Patterson” was the cap-
tion for his photograph in the Times. And apparently
the methods are still working. An article by him and
four of his colleagues at the Broad Institute (Cambridge
MA) ran in the June 29 2006 Nature. The title: “Ge-
netic evidence for complex speciation of humans and
chimpanzees.” The team ran a comparison of the hu-
man, chimpanzee and related genomes on a much larger
scale (by a factor of 800) than had ever been attempted.
Chen: “Two strange patterns emerged. Some human
DNA regions trace back to a much older common ances-
tor of humans and chimps than other regions do, with

the ages varying by up to four million years. But on the
X chromosome, people and chimps share a far younger
common ancestor than on other chromosomes. ... the
data appeared best explained if the human and chimp
lineages split but later began mating again, producing
a hybrid that could be a forebear of humans.”

The math of swarms.

School of “silversides,” Bonaire, N.A., March 2000. Image

courtesy Kent Wenger.

“Math explains how group behavior is more than
the sum of its parts” is the subtitle to Er-
ica Klarreich’s report “The Mind of the Swarm”
(www.sciencenews.org/articles/20061125/bob10.
asp) in the November 25 2006 Science News. Ex-
amples of the behavior in question: “a flock of birds
swooping through the evening sky, ... a school of fish
making a hairpin turn, an ant colony building giant
highways, or locusts marching across the plains.” One
of Klarreich’s sources is Iain Couzin (Oxford, Prince-
ton) whose 2002 article (with several co-authors) “Col-
lective Memory and Spatial Sorting in Animal Groups”
(J. theor. Biol. 218, 1-11) gave a simple mathematical
Ising-type model (the “alignment zone” model) which
duplicates some of the exotic behavior of schools of fish.
Specifically, for a certain range of parameter values the
simulated school would look like a torus, with all the
fish swimming around a common axis. Klarreich quotes
Couzin: “When we first saw [the doughnut] pattern in
the simulations, I thought ‘That’s really weird!’ But
then we found in the literature that it really does ap-
pear in nature. ... There’s nothing in the individual
rules that says, ‘Go in a circle,’ but it happens sponta-
neously.” The key to a general understanding of these
collective phenomena, Klarreich tells us, seems to be “a
trio of physics and engineering principles– nonlinearity,
positive feedback, and phase transitions.”
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