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Spidrons.

This spidroball, a rhombic triacontahedron assembled from 30

spidron pairs, appeared on the cover of the October 21 Science

News. Image courtesy Marc Pelletier, Walt van Ballegooijen,

Dániel Erdély and Amina Buhler Allen.

The easiest way to draw spidrons is to start with a
hexagon, inscribe a six-pointed star, and repeat with
the star’s interior hexagon ad infinitum. Then attach-
ing to each flat isosceles triangle the equilateral triangle
to its right, and to each equilateral triangle the isosce-
les triangle below it, you get six spiralling polygonal
chains: each one is half a spidron. (Alternatively, al-
ways attach to the left; this construction makes it clear
that the area of a spidron is one third of the area of the
hexagon you started with).

Two semi-spidrons assemble into one full spidron.

Spidrons were recently featured in Science News Online
(October 21, 2006), where Ivars Peterson tells us that
they were invented and named in the early 1970s by
Dániel Erdély, a Hungarian industrial designer and a
student of Rubik, and that Erdély soon discovered that

when creased properly a spidron array takes on interest-
ing 3-dimensional behavior, with potential practical ap-
plications. Erdély has recently been collaborating with
other graphic designers and with sculptors; some of
their work was presented at last summer’s Bridges con-
ference (www.lkl.ac.uk/bridges). One sample: the
spidroball shown above. Additional images are avail-
able on Erdély’s Spidron website (www.spidron.hu).

Next year in Marienbad: chaos. Chomp is a
2-dimensional version of Nim (www.csm.astate.edu/
Nim.html), the game popularized in L’année dernière
à Marienbad.

The first 3 moves in a 5 x 6 game of Chomp. A: the initial

configuration; the object is not to be forced to select the green

cookie. B: after Player 1’s first bite. C: after Player 2’s first

bite. D: after Player 1’s second bite. Each bite takes a cookie

and all the cookies north and east of it.

But while a simple strategy exists for Nim, Chomp
is much harder. It is known that there is al-
ways a winning strategy for Player 1 but the strat-
egy itself is unknown in general, except for a few
special cases like n × n, 2 × n, and n × 2. In
“Chaotic Chomp” (Science News Online, July 22,
2006, www.sciencenews.org/articles/20060722/
bob10.asp) Ivars Peterson reports on developments
in the analysis of the 3 × n case. Chomp dates back
to 1974 (in fact, it is equivalent to a game discovered
in 1950) but was taken up a few years ago by Doron
Zeilberger, a mathematician at Rutgers, who decided
it would be “an ideal problem for illustrating the role
that computers can play in mathematical research.”

15

http://www.ams.org/mathmedia
http://www.lkl.ac.uk/bridges/
http://www.spidron.hu/
http://www.csm.astate.edu/Nim.html
http://www.csm.astate.edu/Nim.html
http://www.sciencenews.org/articles/20060722/bob10.asp
http://www.sciencenews.org/articles/20060722/bob10.asp


Zeilberger introduced the notation (x, y, z) to describe
the position in 3 × n Chomp which has x columns of
3 cookies, y columns of 2, and z columns of 1, and
published in 2000 an algorithm generating for each x
an algorithm for playing the game with an arbitrary
y and z. He returned to the problem in 2003 with
faster algorithms and on the basis of the results spec-
ulated “It seems that we have ‘chaotic’ behavior, but
in a vague, yet-to-be-made-precise sense.” Peterson fo-
cuses on the recent work of Eric Friedman (Computer
Science, Cornell) and Adam Landsberg (Physics, Clare-
mont colleges), who have fleshed out this intuition: “By
using mathematical tools originally developed for cal-
culating properties of physical systems, Friedman and
Landsberg show that the exact location of winning
and losing cookies in Chomp varies unpredictably with
small changes in the size of the initial array.” The
figure below uses Zeilberger’s notation and shows in
yellow/red, for x = 300, the “instant winner” positions
(positions from which you can leave your opponent in
a losing position with smaller x). The chaotic region is
clearly visible.

Winning positions (yellow/red) for a 3-row Chomp game with

300 height-3 columns. The y and z coordinates refer to the

number of height-2 and height-1 columns, respectively. Image

courtesy Adam Landsberg.

Furthermore, they made the remarkable discovery
that Chomp is renormalizable. As Peterson ex-
plains it, “the geometry of winning positions for
small values of x and winning positions for large
values of x is roughly the same, after a suitable
change in scale.” Specifically, the W600 figure,
scaled down by a factor of 2 in each direction, is
essentially indistinguishable from the W300 shown
here. Zeilberger’s papers (excellent reading) are avail-
able at www.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/chomp.html and www.math.rutgers.edu
/~zeilberg/mamarim/mamarimhtml/byrnes.html.
Friedman and Landsberg’s paper is also available on-
line, as a PDF file (people.cornell.edu/pages/ejf27
/pfiles/chomptr.pdf). For a history of the prob-
lem, see Andries Brouwer’s page (www.win.tue.nl/
~aeb/games/chomp.html) on the game.

Epithelial topology. Epithelial tissue is typically a
2-dimensional array of cells. Topologically the average
cell shape must be a hexagon. Remarkably, an identi-
cal, asymmetric distribution of polygonal shapes shows
up over an enormous range of organisms. Drosophila is
a fly, Xenopus is a frog and Hydra is a tiny fresh-water
relative of jellyfish.

“Drosophila wing disc (pink), Xenopus tail epidermis (green)

and Hydra epidermis (blue) all exhibit a similar non-gaussian

distribution of epithelial polygons with less than 50% hexagonal

cells and high (and asymmetric) percentages of pentagonal and

heptagonal cells. The inset indicates relative phylogenetic

positions for Drosophila, Xenopus and Hydra.” Yellow bars

represent the theoretical distribution derived in this article (see

below). Image from Nature 442 1038-1041, used with

permission.

A theoretical explanation for this phenomenon is given
in “The emergence of geometric order in proliferat-
ing metazoan epithelia,” by Matthew Gibson (Har-
vard) and collaborators, in Nature for August 31, 2006.
It relies on the observation that when a cell in a 2-
dimensional array divides, each of its daughters typi-
cally has one fewer neighbor, while two of its neighbors
pick up an extra side.

Typically the daughters of a hexagonal cell are pentagons, while

two hexagonal neighbors become heptagons. Image from Nature

442 1038-1041, used with permission.

To study the way the distribution of polygonal types
changes under repeated subdivisions, Gibson and his
colleagues axiomatize the situation (each of these state-
ments is given an experimental justification):
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• cells are polygons with a minimum of four sides.

• cells do not re-sort.

• mitotic siblings retain a common junctional inter-
face.

• cells have asynchronous but roughly uniform cell
cycle times.

• cleavage planes always cut a side rather than a
vertex of the mother polygon.

• mitotic cleavage orientation randomly distributes
existing tricellular junctions to both daughter
cells.

They use these axioms to construct a Markov-chain
model for the distribution of polygonal types. This
model predicts the yellow bars in our first image, and
also predicts a rapid evolution to this distribution re-
gardless of the initial set of polygonal types.

Markov-chain model for the change in polygonal type from one

generation to the next. Image from Nature 442 1038-1041, used

with permission.

The Geometry of Musical Chords. This is the
title of a report (music.princeton.edu/~Edmitri/
voiceleading.pdf) in the July 7 2006 Science, writ-
ten by Dmitri Tymoczko, Professor of Music at Prince-
ton. The abstract begins: “A musical chord can be
represented as a point in a geometrical space called an
orbifold. Line segments represent mappings from the
notes of one chord to those of another.” The simplest
example of this representation is for the case of inter-
vals, or two-note chords. As Tymoczko says, “Human
pitch perception is both logarithmic and periodic.” We
judge the distance between tones in terms of the ra-
tio of their pitches, and identify tones when that ra-
tio is 2. So the psychological space of tones is a cir-
cle, where we can mark off 12 equidistant points corre-
sponding to the pitch classes C, C#, D, . . . , A#, B. It
is convenient to identify this circle with T 1 = R/12Z
and to place the equal-tempered pitches at the inte-
gral points 0(C), . . . , 11(B). Then the space of pairs of
tones is the torus T 1 × T 1 and the space of intervals
(unordered pairs) is the quotient of this torus by the

relation (x, y) ∼ (y, x). The result is a Möbius strip, a
manifold with boundary and thus an orbifold.

The identification (x, y) ∼ (y, x) makes the torus into a Möbius

strip, a manifold with boundary.

Here is how the intervals appear on the Möbius strip:

The 2-note chords, or intervals, as they appear on the Möbius

strip of unordered tone pairs. “t” is 10 and “e” is 11. 70 = 07

corresponds to the fifth chord C −G. Transposition corresponds

to sideways motion. “Voice leading,” i.e. motion through

chords, is represented by paths on the surface: e.g.

C −G → D − F# is represented by the arrow 70 → 16. Note

that the voice leading C − C# → C#− C reflects off the upper

boundary. Image courtesy Dmitri Tymoczko.

For three or four-note chords the topology becomes
more complicated. For example three-note chords live
on the 3-dimensional orbifold constructed by taking a
3-dimensional prism with base a triangle, twisting the
base so as to cyclically permute the vertices, and iden-
tifying it with the opposite face. But it makes musical
sense: “Chords that divide the octave evenly lie at the
center of the orbifold and are surrounded by the famil-
iar sonorities of Western tonality.”

The 3-dimensional orbifold representing the space of 3-note

chords. “Chords that divide the octave evenly lie at the center

of the orbifold and are surrounded by the familiar sonorities of

Western tonality.” Image courtesy Dmitri Tymoczko.
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It is clearly Tymoczko’s intent for these representations
to serve not only as a tool in musical analysis, but also
as a stimulus for new directions in composition. More
information, including free ChordGeometries software,
on his website (music.princeton.edu/~dmitri).

Mathematical error control. Barry Mazur has a
“News and Views” piece in the September 7 2006 Na-
ture about recent steps towards the proof of the Sato-
Tate conjecture, which predicts the distribution of the
error terms in good approximations for solutions of
combinatorial number-theoretic problems. These are
not the errors that plague natural scientists measuring
things out in the field, but the report is a work of art.
Mazur illustrates the conjecture with a nice, and ele-
mentary, example. The problem here is to count the
number N(p) of ways a prime number p can be writ-
ten as a sum of 24 squares of integers. Note that zero
and negative numbers are allowed to participate, and
that all permutations of the terms in a sum must be
counted as different “ways”. So N(2) is already 1,104.
Now there exists a good approximation A(p) for N(p):

A(p) =
16
691

(p11 + 1),

good in the sense that the error scales like the square
root of N ; in fact there is an explicit least upper bound
for the error as a function of p:

| N(p)−A(p) |≤ 66304
691

√
p11.

For problems like this, the Sato-Tate conjecture pre-
dicts that the distribution of the scaled error

N(p)−A(p)
66304
691

√
p11

should be governed by the distribution 2
π

√
1− x2,

whose graph is a semi-circle normalized to have area
1.

The scaled error distribution for N(p) predicted by the

Sato-Tate conjecture (red curve) and the actual distribution for

primes less than one million. Image from Nature, 443 38-40,

used with permission.

For this case of the conjecture the evidence is excellent
but there is as yet no proof. Mazur mentions a class of
problems, related to elliptic curves, where the conjec-
ture has in fact been proved (through the efforts of his
Harvard colleague Richard Taylor and Taylor’s collabo-
rators). As Mazur explains it, “The proof came by com-
bining some wonderful pieces of mathematics, and the
key to it all is the so-called representation theory. This
branch of mathematics, in its various guises, studies ab-
stract groups by representing them as groups of linear
transformations of vector spaces. By understanding the
profound number-theoretic structure behind enough of
the symmetric tensor powers of a certain representation
of a certain group, one can compute the probability dis-
tribution of the corresponding scaled error terms, and
so confirm the Sato-Tate conjecture.” Mazur concludes:
“This is a magnificent achievement for at least two rea-
sons. First, the method brings synthetic unity to deep
results in quite distinct mathematical fields. ...Second,
the work answers a question of delicate nature. Num-
ber theorists have long held the opinion that the ‘error
terms’, despite the pejorative name, have a mesmeriz-
ingly rich structure ... and that the keys to some of
the deepest issues in their subject lie hidden in that
structure.”

Math at the World Cup. According to a news
report in the June 15, 2006 Nature, it has been es-
tablished mathematically that soccer goals are con-
tagious, statistically speaking: scoring one goal in-
creases the probability that your team will score
more. Michael Hopkin, who write the piece, calls
this “one of soccer’s classic clichés,” and attributes
the result to Martin Weigel (Herriot-Watt Univer-
sity, Edinburgh) and his colleagues Elmar Bittner,
Andreas Nussbaumer and Wolfhard Janke, all at
Leipzig University. The four have posted a preprint
on arXiv.org (arxiv.org/abs/physics/0606016) with
the title “Football fever: goal distributions and non-
Gaussian statistics.” As they put it: “modifying the
Bernoulli random process underlying the Poissonian
model to include a simple component of self-affirmation
seems to describe the data surprisingly well and allows
to understand the observed deviation from Gaussian
statistics.” They analyzed “historical football score
data from many leagues in Europe as well as from in-
ternational tournaments, including data from all past
tournaments of the ‘FIFA World Cup’ series” and con-
cluded: “The best fits are found for models where each
extra goal encourages a team even more than the previ-
ous one: a true sign of football fever.” The group paid
special attention to three German soccer leagues: the
East German Oberliga, the West German Bundesliga
and the women’s league, the Frauen-Bundesliga. They
found that their self-affirmation factor κ was higher
for the East German league and highest of all for the
women.
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Math: Whale Songs → Kaleidoscopic Images.
“Subtle Math Turns Songs of Whales Into Kaleido-
scopic Images” was the headline for a piece in the Au-
gust 1 2006 New York Times, accompanied by four im-
ages like this one.

A periodic segment of the song of the Minke Whale Balenoptera

acutorostrata; graphic generated using wavelet analysis; plotted

in polar coordinates with time =θ. Aguasonic image

(www.neoimages.net/artistportfolio.aspx?pid=1421) by

Mark Fischer, used with permission.

Gretchen Cuda tells how Mark Fischer, a California-
based former engineer, has been using “wavelets
— a technique for processing digital signals — to
transform the haunting calls of ocean mammals into
movies that visually represent the songs and still
images that look like electronic mandalas.” Cuda
checked with Gil Strang of the MIT Math Depart-
ment, and reports that wavelets, once relatively ob-
scure, “are being used in applications as diverse as
JPEG image compression, high definition television
and earthquake research.” The song and the video,
where the pattern shown above can easily be recog-
nized, are available at Minke-Boing on Google.uk
(video.google.co.uk/videoplay?docid=-502240211
4614151095&q=minke+boing). More from Mark Fis-
cher on his website (www.aguasonic.com).

Nanoscale Minimal Surface? “Mesostructured ger-
manium with cubic pore symmetry,” by the MSU
chemists Gerasimos Armatas and Mercouri Kanatzidis,
appeared in the June 29, 2006 Nature. The ar-
ticle describes a preparation of germanium result-
ing in “two three-dimensional labyrinthine tunnels
obeying Ia3d space group symmetry and separated
by a continuous germanium minimal surface.” The
thickness of the walls of this germanium structure
is given as one nanometer. The “minimal sur-
face” separating the labyrinths is identified as the gy-
roid (www.msri.org/about/sgp/jim/geom/minimal/

library/G), a triply periodic surface first described by
Alan Schoen in an NASA Technical Note dated May
1970. Schoen gives the (x, y, z) coordinates of a point
on the surface in terms of complex integrals:

x = R

∫
eiθG(1− τ2)√
1− 14τ4 + τ8

dτ

y = R

∫
i

eiθG(1 + τ2)√
1− 14τ4 + τ8

dτ

z = R

∫
2

eiθGτ√
1− 14τ4 + τ8

dτ

where θG = 38.0147740o approximately is calculated
using elliptic integrals. (The 3-integral format goes
back to Weierstrass; the specific

√
1− 14τ4 + τ8 was

used, with 0o and 90o instead of θG, in H. A. Schwarz’s
1865 construction of the first known triply periodic min-
imal surfaces). Armatas and Kanatzidis, on the other
hand, use the much more simply defined level surface
cosx sin y + cos y sin z + cos z sinx = 0. What is go-
ing on? As David Hoffman explained to me, these two
surfaces, although extremely close, are not the same.
The coincidence is mysterious. As I understand it,
chemists start with the symmetry group, which they
determine by Fourier analysis of transmission electron
micrographs of their sample. From the symmetry group
they calculate the equation of a periodic nodal surface
as a Fourier series. Our level surface equation comes
from setting the sum of the lowest order terms to zero.

The Gyroid (red) and the surface

cos x sin y + cos y sin z + cos z sin x = 0 (green) plotted together.

Image: James T. Hoffman and David Hoffman, Scientific

Graphics Project (www.msri.org/about/sgp/jim/

geom/level/minimal), used with permission.

Taking more terms gives better approximations to the
gyroid, but why this procedure leads to a minimal sur-
face is, as far as I can tell, unknown.
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