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Selection acting on unobserved heterogeneity is a nda-
mental issue in the mathematics of populations. As recog-
nised in disciplines as diverse as demography [11, 23, 24],
ecology [10, 9], evolution [21] and epidemiology [1, 4, 5],
in any population, individuals di er in many characteris-
tics and it is essential that researchers understand which of
these are under selection and how selection processes oper-
ate. ere I describe conceptual and methodological devel-
opments in demography and ecology, and discuss the im-
portance of adopting similar approaches in evolution and
epidemiology.

D

Unobserved heterogeneity can result from many interact-
ing genetic and environmental factors. When operating on
individual survival, it modi es the composition of cohorts
as they age [11, 23]. Frail individuals die younger, leaving
the cohort progressively composed of those who are more
robust and have a propensity to live longer. This form of
selection acting on longevity operates within cohorts and
distorts patterns of age-speci c survival [24]. It may also af-
fect other life-history traits via correlations with longevity.
For example, if those individuals who live longer have lower
fecundity, then selection operating on individual longevity
will reduce fecundity at the population level.

E

Demographic heterogeneity has been contrasted with de-
mographic stochasticity in ecology [10, 9]. Demographic
heterogeneity, de ned as variation among individuals in
life-history characteristics, has been addressed in ecology
by structured population models [3, 19]. The approach con-
sists of incorporating the most important di erences into

the individual state of a matrix model. A ma or challenge is
to reconcile those individual di erences that matter (given
the uestion under study) with those that can actually be
measured. A natural tendency is to account for character-
istics that can be measured most easily, such as age, size, or
ma or developmental states, and collapse other important
sources such as genetic variation, spatial heterogeneity in
the environment, maternal e ects, and di erential expo-
sure to stressors, under some form of unmeasured stochas-
ticity. Recent research has elucidated, however, that demo-
graphic heterogeneity and demographic stochasticity have
opposing e ects in population dynamics and cannot be
modelled interchangeably [3, 19].

E

Recent research has begun to emphasise the importance
of considering individual variation in non-heritable tness
components when interpreting the results of evolutionary
studies [21]. By accommodating explicitly for individual
variation in non-heritable tness components, we have
shown how common proxies for genotype tness may be
a ected by a form of selection that is invisible to evolution
and how this may explain observed trends when tness is
measured across stress gradients [6]. We then propose that
unaccounted phenotypic variation within genotypes is ca-
pable of stabilising coexistence of multiple lineages and un-
expectedly a ect patterns of genetic variation, especially
when levels of stress uctuate.

Understanding the selective forces that shape variation
is at the heart of evolutionary theory. Selection acting on
non-heritable characteristics has not been given ll atten-
tion, either because it is not directly measurable or because
it was believed to be inconse uential for evolution. In [6]
we oppose these commodities and argue that selection on
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non-heritable tness components is essential both as a nat-
ural step in theory development and as a necessity for accu-
rate interpretation of population and uantitative genetic
data. More practically, we propose concrete experimen-
tal designs across stress gradients for informing models of
variation and selection.

E

Variation in individual characteristics has a generally
recognised impact on patterns of occurrences in popula-
tions, and occurrence of disease is no exception. In in-
fectious diseases, the focus has been on heterogeneities
in transmission through their nonlinear e ects on the ba-
sic reproduction number, , in ways which are uni ue to
these systems [15, 25]. The need to account for heterogene-
ity in disease risk, however, is not unfamiliar in epidemi-
ology at large, where frailty terms are more generally in-
cluded in linear models to improve data interpretation [1].

The premise is that variation in the risk of disease
(whether infectious or not) goes beyond what is captured by
measured factors, and a distribution of unobserved hetero-
geneity can be inferred from incidence patterns in a holistic
manner. Such distributions are needed for eliminating bi-
ases in interpretation and prediction, and can be utilised in
con unction with more common reductionist approaches,
which are re uired when there is desire to target interven-
tions at individuals with speci c characteristics.

To contrast di erent forms of heterogeneity, we con-
sider four versions of a Susceptible- nfected ( ) model in a
population of constant size.

:

(1)

(2)

where and are the proportions of susceptible (unin-
fected) and infected (and infectious) individuals, respec-
tively, is a transmission coe cient (e ective contact rate)
and accounts for birth and death. The force of infection
upon uninfected individuals is and the basic repro-
duction number is:

(3)

:

(4)

(5)

where is an individual susceptibility factor taking values
on a continuum, is a probability density nction,
and represent the densities of susceptible and infected
individuals, respectively, and and are parameters gov-
erning transmission and demographic processes as before.
The force of infection upon the average uninfected individ-
ual is , which is then a ected by a factor

to conform with individual susceptibilities. The basic re-
production number for this system is:

(6)

where is the rst moment of the susceptibility distribu-
tion (or mean susceptibility, i.e. ). All
model solutions presented here assume 1, in which
case the expression of the heterogeneous susceptibility
model coincides with the homogeneous.

Figure 1 shows the prevalence of infection over time as
governed by models (1)-(2) and (4)-(5), as well as density
plots (fre uency in the homogeneous case) for the suscepti-
ble and infected compartments at three time points: before
the start of the epidemic at the endemic e uilibrium cor-
responding to 20 prevalence after 100 years of control.
The control measure simulated in Figure 1B is the 90-90-90
treatment as prevention cascade advocated by UNAIDS for

IV, which stipulates that 90 of infected individuals are
detected, 90 of those detected enter antiretroviral ther-
apy, and 90 of those entering treatment achieve viral sup-
pression, becoming e ectively non-infectious. As a result
of this cascade, transmission is reduced by approximately
73 .

In comparison with the homogeneous model, a higher
is re uired to reach the same endemic level, and the

same control measure has lower impact under heterogene-
ity (this is irrespective of the expressions (3) and (6)
being the same). This is evidenced by comparison of the
solid (homogeneous) and dashed (heterogeneous) tra ecto-
ries, and explained by the density plots. As the infection
spreads in the population, more susceptible individuals are
likely to be infected earlier (red distributions, with higher
mean - red dotted lines) and, conse uently, those who re-
main uninfected are being selected for lower susceptibility
(blue distributions, with lower mean - white dotted lines).
This process slows down the epidemic since the mean sus-
ceptibility among those at risk e ectively decreases as the
epidemic progresses. As a result, the heterogeneous model
re uires higher values of to attain the same endemic
level as its homogeneous counterpart, and becomes more
resilient to interventions designed to reduce transmission.

Figure 1 was generated assuming a gamma distri-
bution with mean 1 and variance 10 for the heteroge-
neous susceptibility model, but the e ects described above
are generally manifested with a strength that increases
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with the variance (or coe cient of variation).

:

(7)

(8)

where is an individual infectiousness factor taking val-
ues on a continuum, and , , , and represent
densities and parameters as before. The force of infection
upon uninfected individuals is , and
the basic reproduction number is the same as in the homo-
geneous implementation.

:

(9)

(10)

where is again a factor taking values on a continuum but
now a ecting both dispositions for ac uiring infection and
for infecting others, due to variable connectedess. Every-
thing else is de ned as before, and the basic reproduction
number is:

(11)

where is the second moment of the connectedess dis-
tribution (i.e. ). The expression for
arising from this model is typically di erent from the other
implementations, even when 1.

3

Figure 1.—Prevalence trajectories under models (1)–(2) and (4)–(5). Two susceptibility distributions 
are simulated: homogeneous (solid black trajectories); gamma distributed susceptibility to infection 
(dashed black trajectories). Insets depict the gamma distribution with mean 1 and variance 10 utilised 
in the heterogeneous implementation side-by-side with its variance 0 counterpart implicit in the 
homogeneous model. The vertical white and red dotted lines added to the gamma distribution plots 
mark mean values for the susceptible (blue) and infected (red) subpopulations, respectivelly.
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Figure 2 shows the prevalence of infection over time
as governed by models (7)-(8) and (9)-(10), accompanied
by density plots for the susceptible and infected compart-
ments before the start of the epidemic, at the 20 preva-
lence e uilibrium, and after 100 years of control as above.

The model with heterogeneity in infectiousness pro-
duces identical outputs to the homogeneous model for the
same parameter values because infectiousness is not under
selection by the force of infection. eterogeneity in con-
nectedness implies a positive correlation be een the dis-
positions to ac uire infection and transmit to others. Ef-
fectively, this results in infectiousness being selected indi-
rectly via ac uisition of infection, enhancing the e ects ob-
served under heterogeneous susceptibility alone.

It is evident from this exercise that knowing the ex-
tent of variation in susceptibility present in a population
is essential if models are to be predictive. Variation in in-
fectiousness does not a ect predictability unless it is cor-

related with susceptibility, such as in the case of hetero-
geneity in connectedness. Susceptibility involves a prob-
ability of response to a stimulus (i.e. become infected
given a pathogen challenge) and therefore cannot be mea-
sured directly. This obstacle, which may be part of the
reason behind the widespread adoption of homogeneous
models, is starting to be overcome by speci c study designs
that recognise the need for unpacking exposure gradients
[7, 20, 12, 5, 17, 13, 8] as explicit experimental or observa-
tional dimensions.

C - :

Many pathogens appear structured into multiple genetic
lineages which are simultaneously maintained within host
populations.

Mathematical models, typically tied to lineages being
homogeneous static entities [14], have invoked interactions
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Figure 2.—Prevalence trajectories under models (7)–(8) and (9)–(10). Two distribution 
implementations are simulated: gamma distributed infectiousness (solid black trajectories); 
gamma distributed connectedess (dashed black trajectories). Insets depict the gamma 
distribution with mean 1 and variance 10 utilised in the distributed connectedess 
implementation side-by-side with the distributed infectiousness implementation. The 
vertical white and red dotted lines added to the gamma distribution plots mark mean 
values for the susceptible (blue) and infected (red) subpopulations, respectivelly.
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be een strains for stabilising coexistence. ere I argue
that unobserved host heterogeneity in susceptibility within
lineages alone can stabilise coexistence of multiple lin-
eages.

Consider a discretised version of the heterogeneous sus-
ceptibility model:

(12)

(13)

where , for 1 , are the susceptibility factors of
hosts that enter the system as a fraction of all births,
purporting a distribution with mean 1,
variance 1 1 , and coe cient of vari-
ation 1 , which will be treated as a varying
parameter. The basic reproduction number is .

The extension of the model to pathogen lineages,
each characterised by an independent susceptibility distri-
bution, is straightforward although the notation becomes
cumbersome:

(14)

(15)
where , for 1 , is the e ective contact rate be-

een hosts infected by species and susceptible hosts, ,
for 1 , are the susceptibility factors of hosts ,

who enter the system as fractions of all births, purport-
ing distributions with mean 1, vari-
ance 1 1 , and coe cients of

variation 1 treated as varying parame-
ters. The lineage-speci c basic reproduction numbers are

. This system accommodates an -lineage coex-
istence region with all 1. This region has a simple
geometry in the space. In the special case where the
host population is homogeneously susceptible to lineage 1,
it is bounded by the hyperplanes , for ,
and by a hypersurface that can be obtained by setting to
zero the abundance of 1 (shown in Figure 3 for 2 and 3 lin-
eages). This coexistence region persists when we allow for
heterogeneous susceptibility to lineage 1 as well.

O

Selection within cohorts is ubi uitous in living systems,
with manifold manifestations in any study that involves
counting the individuals that constitute a population over
time, across environments or experimental conditions.
Whether we refer to populations of animals, microbes, or
cells, the idea that in every observational or experimental
study there is always a degree of unobserved heterogeneity
that can reverse the direction of our conclusions is unset-
tling, but the issue can be tackled by general mathematical
formalisms that account for it [1, 4, 10, 11, 16, 17, 22, 23]
combined with study designs that enable its estimation
[7, 8, 9, 12, 13, 20]. Collectively, the phenomenon appears
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Figure 3.—Stable coexistence of microbial lineages colonising a host population. Model (14)–(15) 
was solved analytically with two (A, B) and three (C) lineages. Yellow regions represent conditions 
for 2-lineage stable coexistence as indicated, while 3-lineage coexistence is found in the grey zone 
(C). Other parameters: (A,B,C) CV1=0; (B,C) CV2=1; (C) CV3=2 and R01=2.

Figure 2 shows the prevalence of infection over time
as governed by models (7)-(8) and (9)-(10), accompanied
by density plots for the susceptible and infected compart-
ments before the start of the epidemic, at the 20 preva-
lence e uilibrium, and after 100 years of control as above.

The model with heterogeneity in infectiousness pro-
duces identical outputs to the homogeneous model for the
same parameter values because infectiousness is not under
selection by the force of infection. eterogeneity in con-
nectedness implies a positive correlation be een the dis-
positions to ac uire infection and transmit to others. Ef-
fectively, this results in infectiousness being selected indi-
rectly via ac uisition of infection, enhancing the e ects ob-
served under heterogeneous susceptibility alone.

It is evident from this exercise that knowing the ex-
tent of variation in susceptibility present in a population
is essential if models are to be predictive. Variation in in-
fectiousness does not a ect predictability unless it is cor-

related with susceptibility, such as in the case of hetero-
geneity in connectedness. Susceptibility involves a prob-
ability of response to a stimulus (i.e. become infected
given a pathogen challenge) and therefore cannot be mea-
sured directly. This obstacle, which may be part of the
reason behind the widespread adoption of homogeneous
models, is starting to be overcome by speci c study designs
that recognise the need for unpacking exposure gradients
[7, 20, 12, 5, 17, 13, 8] as explicit experimental or observa-
tional dimensions.

C - :

Many pathogens appear structured into multiple genetic
lineages which are simultaneously maintained within host
populations.

Mathematical models, typically tied to lineages being
homogeneous static entities [14], have invoked interactions
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to explain a wide range of reported discrepancies be een
studies and contribute to resolve decade-long debates, such
as why vaccines appear less e cacious where disease bur-
dens are high [5] and whether niche mechanisms need to
be invoked to explain the levels of biodiversity observed in
nature [6].

In addition to its omnipresence in studies that deal with
populations explicitly, selection within cohorts may also
play a central part in much debated issues surrounding ac-
curacy and reproducibility of biological results more gener-
ally. Among aspects of research reproducibility discussed
in the literature, those that pertain to methodology have
focussed on how sample sizes must be su ciently large to
ensure a satisfactory level of certainty on the conclusions
[2] and how shu ing is necessary to randomise conditions
[18]. Additional problems, however, may result from over-
looking forms of selection that may be occurring through-
out the experiment. Any count of responses to a stimulus
is a ected by selection bias (unless all individuals, or cells,
or other units, in the experiment were perfectly identical,
which they are not). This is particularly problematic when
di erent treatments are setup with the intent of compar-
ing how di erently individuals respond in one experimen-
tal condition vs another. Since the levels of selection bias
will generally di er be een treatments, comparisons of
direct counts are not accurate representations of how dif-
ferently individuals respond. Similar arguments apply to
comparisons be een di erent runs of entire experiments
and compromise reproducibility. This is a problem of ac-
curacy which cannot be resolved by increasing sample size
or randomisation, but rather by adding dimensions to the
experimental design [7]. This methodological issue can in-
duce not only uantitative deviations in experimental re-
sults, but also invert the conclusions altogether [12].

This paper conveys how a wide variety of phenomena
can be alternatively described by population thinking (in-
dividuals are di erent and selection operates) or individ-
ual thinking (all individuals are average and additional pro-
cesses must be invoked) reaching contrasting conclusions.
It is thus imperative to understand which frame is most
appropriate is each case, and this implies understanding
which individual characteristics may be sub ect to selection
and how to obtain realistic descriptions of their variability
in a population. The concerns presented here are pervasive
across life and social sciences and can only be tackled in
tight alliance with the mathematical sciences.
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