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I

Co uaternions, also known in the literature as split uater-
nions, are elements of a four-dimensional hypercomplex
real algebra generalising complex numbers. This alge-
bra was introduced in 1849 by the English mathematician
James Cockle [4], only six years after the famous discovery
by amilton of the algebra of uaternions [12].

Although co uaternions are not as popular as uater-
nions, in recent years one can observe an emerging inter-
est among mathematicians and physicists on the study of
these hypercomplex numbers. In fact, they have been con-
sidered in several papers by di erent authors and various
applications have been developed see e.g. [1, 3, 6, 7, 8, 9,
10, 11, 16, 17, 18, 21].

The dynamics of the uadratic map in the complex
plane has been intensively studied in the last decades and
can now be considered a well-established theory. This map
exhibits a rich dynamical behaviour and has given birth to
extraordinarily beauti l pictures which have passed into
the popular domain.

In this note, we give a rst insight into the world of co-
uaternions, re ecting the recent interests of the authors.

In particular, we recall some results on the zeros of co-
uaternionic polynomials [8] and discuss several aspects of

the dynamics of one family of uadratic maps on co uater-
nions [6].

The nature of the algebra under consideration leads to
results which can be considered as even richer and more in-
teresting than the ones obtained in the complex or uater-
nionic cases.

T

. B

The algebra of real co uaternions is an associative but non-
commutative algebra over de ned as the set

, with the operations of ad-
dition and scalar multiplication de ned component-wise
and where the so-called imaginary units satis

1 1 1

The expression for the product of o co uaternions fol-
lows easily from the above multiplication rules in partic-
ular, , , and therefore
for we have

Given a co uaternion , its conjugate
is de ned as the number is called
the real part of and denoted by Re and the vector part of
, denoted by Vec , is given by Vec .

We identi the set of co uaternions with null vector
part with the set of real numbers. For geometric pur-
poses, we also identi the co uaternion

with the element in .
It is easy to see that the algebra of co uaternions is iso-

morphic to , the algebra of real matrices, with
the map de ned by

establishing the isomorphism. Keeping this in mind, we
call trace of , which we denote by tr , to the uan-
tity given by tr Re and call deter-
minant of to the uantity, denoted by det , given by
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det . The result contained in
the following lemma can be shown by a simple veri cation.

L . For any co uaternion , we have

tr det

Naturally, some of the results for co uaternions can be
established by invoking the aforementioned isomorphism
and making use of known results for matrices. For exam-
ple, one can use this approach to conclude that, unlike
and , is not a division algebra. In fact, a co uater-
nion is invertible if and only if det . In that case, we
have det .

For our ture purposes it is use l to recall now the fol-
lowing concept: we say that a co uaternion is similar to a
co uaternion , and write , if there exists an invertible
co uaternion such that . This is an e uivalence
relation in , partitioning in the so-called similarity
classes. As usual, we denote by the similarity class con-
taining . The following result can be easily proved (see [6]
and [16]).

L . Let Vec be a co uaternion and let
det Vec . If is real, then if is non-real,

then , where

S
if (1a)

S
if (1b)

S
if (1c)

Since similar co uaternions have the same determinant,
the previous lemma completely characterizes the similar-
ity classes in . This means that o non-real co uater-
nions and are similar if and only if

Re Re and det Vec det Vec (2)

The co uaternion
S

will be referred to as the standard repre-
sentative of . Lemma 2 says that the standard representa-
tive of is either a complex number, a perplex number (num-
ber of the form ) or a dual number (number of the form

). Associated with these numbers we will consider
three important subspaces of dimension o of , the so-
called canonical planes or cycle planes: the complex plane ,
the Minkowski plane of perplex numbers and the aguerre
plane of dual numbers.

Two co uaternions and (whether or not real) satis -
ing (2) are called quasi-similar. Naturally, uasi-similarity
is an e uivalence relation in the corresponding e uiv-
alence class of , i.e. the set

and

is called the quasi-similarity class of and denoted by .
ere, as before, and denote respectively the real part

and the determinant of the vector part of . We can identi
with an hyperboloid in the hyperplane , which

will be:

- a hyperboloid of one sheet or a hyperboloid of o
sheets, if or , respectively in such cases

- a degenerate hyperboloid (i.e. a cone), if in this
case, .

. S

In contrast to the case of uaternionic polynomials, the
problem of nding the zeros of polynomials de ned over
the algebra only drew the attention of researchers

uite recently see [5, 8, 13, 14, 15, 19].
A complete characterisation of the zero set of left uni-

lateral polynomials over co uaternions, i.e. of polynomi-
als whose coe cients are co uaternions located on the left-
hand side of the variable, can be found in [8]. In particular,
it is proved that the zeros of monic polynomials of degree
belong to, at most, 1 uasi-similarity classes each of
these classes can either contain a uni ue zero (isolated zero)
or be totally made up of zeros (hyperboloidal zero) or contain
a straight line of zeros (linear zero). We point out that there
is no analogue of the Fundamental Theorem of Algebra, as
there are co uaternionic polynomials with no zeros.

To o er a glimpse of the diversity of behaviours that the
zero sets of co uaternionic polynomials may have, we now
present some examples. An algorithm to compute and clas-
si all the zeros of a co uaternionic polynomial is available
in [8] and can be used to check the following statements:
1. has no zeros
2. has only one
isolated zero, 1

3. 1 has six isolated zeros (the maximum
number of zeros a uadratic polynomial can have), namely

4. 1 has o isolated zeros, 1, and the
hyperboloidal zero, (which can be identi ed with
an hyperboloid of one sheet in the hyperplane )
5. 1 has o isolated zeros, 1 and
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1 , and o linear zeros,

(which can be identi ed with straight lines).
It is worth mentioning that a Mathematica notebook

to classi and determine the th roots of a co uater-
nion (the zeros of ) is available at the webpage
http://w3.math.uminho.pt/CoquaternionsRoots,
where one can also obtain a Mathematica add-on applica-
tion implementing the algebra of co uaternions.

C M

We now consider the uadratic map

where is a xed parameter in .
When the parameter , we will use to denote

the complex map obtained by restricting to the complex
plane, i.e. .

. P

We rst recall several basic de nitions and present some
results which will play an important role in the remaining
part of the paper.

For , we shall denote by the -th iterate of ,
inductively de ned by and . For
a given initial point , the orbit of under is
the se uence . A point is said to be
a periodic point of with period , if , with

for in this case, we say that the set
is an -cycle for , usually written

as with . Periodic
points of period one are called fixed points.

It follows from the result in Lemma 1 that the orbit
of any co uaternion lies in the subspace span 1 of

. The following result is also simple to establish.

L . For any invertible co uaternion , let be
the map de ned by . Then, the dynamical
system is dynamically e uivalent to the dynamical
system .

As a conse uence of the o previous lemmas, we
immediately conclude that to study the dynamics of the

uadratic map there is no loss of generality
in assuming that is either real or has one of the standard
forms (1).

. F

Let and be
co uaternions. From Lemma 1 we see that is a xed point
of if and only if it satis es the e uation

1 det (3)

Next, we consider separately 1 and 1 .

3.2.1 Case 1

We rst note that it follows from (3) that, if 1 , then
span 1 . In particular, if is chosen in one of the

cycle planes, then belongs to the same plane.

(i) For , with , we are simply consider-
ing the case of the complex uadratic map hence,
the xed points of are, as is well-known, given by

1
1 1

Note that, for , 1 , the correspond-
ing xed points do not satis the condition we are
considering here, 1 .

(ii) For , with , the dynamics is re-
stricted to the cycle plane . ere, it is convenient to
use the so-called dual basis with 1
and 1 , which satis es

and

Expressing and in this basis, we get
and , where

ence,

This shows that has xed points if and only if
1 and 1 , which are

1 1

1 1

where and are given by

1 and 1

(iii) For , we have and so

1

Thus, has xed points if and only if 1 , which
are given by

1
1 1

1
1 1
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3.2.2 Case 1

In this case, E . (3) reduces to det Since det is a
real number, we conclude that has no xed points, unless

.
The map has one real xed point 1 , for
1 We now discuss the non-real xed points of .

Since a real number commutes with any co uaternion, we
have, for any invertible ,

ence,

which shows that to determine the non-real xed points
of the co uaternionic map we only have to identi the

xed points of this map with any of the three special forms
(1) and to construct the corresponding similarity classes.

As it is well-known, there is only one xed point
of the form (1a), which occurs for 1 , the point

S
1 1 . Also, it is simple to veri that

the only xed point of of the form (1b) is given by
S

1 1 , for 1 , whereas
S

1
is the only xed point of the form (1c) and occurs when

1 . In summary, we have the following three sets of
xed points, depending on the value of :

1 if 1

if 1

1 if 1

aving in mind the relation be een similarity and uasi-
similarity classes referred to in Sec. 2.1, it is clear that any
of the above sets can be identi ed with an hyperboloid in
the hyperplane 1 .

In Fig. 1 we present plots obtained by xing ,
and considering several values of the parameter . The
known xed points of the dynamics in are identi ed with
black points and the xed points not in are given by blue
lines (hyperbolas resulting from the intersection of the hy-
perboloids with the hyperplane

) the real and imaginary axis are identi ed
with gray lines.
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Figure 1: Plots, in the hyperplane q3 = 0, of the sets of fixed points corresponding to the case c = c0 ∈ R; the real and
complex fixed points are identified with black points and the fixed points not in C form the blue lines; the gray lines represent
the real and imaginary axes. (a) c0 = −0.8; (b) c0 = 0.0; (c) c0 = 0.18; (d) c0 = 0.25; (e) c0 = 0.3 and (f) c0 = 1.7.
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Figure 1.—Plots, in the hyperplane q3 = 0, of the sets of fixed points corresponding to the case 
c = c0 ∈ �; the real and complex fixed points are identified with black points and the fixed points not 
in � form the blue lines; the gray lines represent the real and imaginary axes. (a) c0 = −0.8; 
(b) c0 = −0.0; (c) c0 = −0.18; (d) c0 = −0.25; (e) c0 = −0.3; (f ) c0 = −1.7
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. C

The results of the previous section show that we now have
a situation not present in the classical case of the real com-
plex uadratic maps: the existence of xed points forming
sets of non-isolated points. The same may be true for peri-
odic points of other periods see, e.g. [6]. This motivates us
to introduce a de nition of cycles of sets.

D . We say that the sets form an
-set cycle for the map , and write

if:

(i) each of the sets 1 is formed by peri-
odic points of period of

(ii) , 1 1, and

(iii) the sets are pairwise separated by -
neighborhoods.

Note that if is an -set cycle, then must be a mul-
tiple of . When , we simply call the cycle an -set
cycle and denote it by .

As shown in [6], for , with and
satis ing , the set

(4)

is made up of periodic points of period o of the map
and, if , then where 1

. ence,

(5)

is a 1 -set cycle.
Other examples of set cycles for the uadratic co uater-

nionic map can be found in [6].
We would like to remark that some results for the

uadratic map on the algebra which can naturally,
be translated to the co uaternionic formalism were ob-
tained in [2] and [20].

. B

Due to the appearance of set cycles, we now have to adapt
the usual notion of basin of attraction. We propose to use
the following de nition.

5

(a) (b) (c)

(d) (e) (f)

Figure 2: Plots, in different planes parallel to the complex plane, of the basins of attraction of the 2-cycle C2 (red) and of the
(1,2)-set cycle C1,2 (blue). (a) q2 = 0; (b) q2 = 0.2; (c) q2 = 0.4; (d) q2 = 0.8; (e) q2 = 1.25 and (f) q2 = 1.55.
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Figure 2.—Plots, in different planes parallel to the complex plane, of the basin of attraction of the 2-cycle 
C2 (red) and the (1,2)-set cycle C1,2 (blue). (a) q2 = 0; (b) q2 = 0.2 ; (c) q2 = 0.4; (d) q2 = 0.8; (e) q2 = 1.25;
(f ) q2 = 1.55
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D . Let be
an -set cycle for . The basin of attraction of , de-
noted by , is given by

where

lim

and is a distance nction.

Naturally, when a set cycle reduces to a cycle of isolated
points, we recover the usual de nition of basin of attrac-
tion of that cycle.

As an illustrative example, we consider now o di er-
ent cycles for the map : the 2-cycle of isolated complex
points

where
1
1

and the (1,2)-set cycle de ned by (5) with the set given
by (4), for a particular choice of the parameter , the com-
plex number .

In Fig. 2 we present plots of the basins of attraction of
these o cycles. The representations are o-dimensional
plots obtained by assuming and considering di er-
ent values for , i.e., all the pictures correspond to plots
in planes parallel to the complex plane. In the plots, the
points in the basin of attraction of the cycle are colored
in red and the points in the basin of attraction of the cycle

are colored in blue.
The plot on the top-left of Fig. 2 corresponds to ,

i.e., is a plot in the complex plane, and we immediately
recognize the picture associated with the dynamics of the

uadratic complex map . As the value of increases, the
o co uaternionic basins of attraction appear, showing an

interesting inter ined structure.

C

As it is well-known, to study the dynamics of complex
uadratic maps we only have to consider the particular fam-

ily of maps of the form , since any uadratic
map may be converted, by con ugacy, to a member of this
family. In the co uaternionic case, the situation is totally
di erent.

Due to the non-commutativity of the product of co-
uaternions, the sum of o th degree monomials

a a a a and a a a a can not be writ-
ten simply in the form and hence, the

general expression of a uadratic co uaternionic polyno-
mial is

a a a

with a and co uaternions. Not surprisingly, contrary
to what happens in the commutative case, no con ugacy
e uivalence of a uadratic co uaternionic polynomial to a
simple form is available.

The important di erences from the complex setting
already observed for the simple co uaternionic uadratic
family and the interesting results obtained for
the zeros of unilateral co uaternionic polynomials lead us
to believe that co uaternions in particular the study of
more general co uaternionic uadratic maps and of more
general polynomials are an area worth exploring.
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