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1 INTRODUCTION

Coquaternions, also known in the literature as split quater-
nions, are elements of a four-dimensional hypercomplex
This alge-
bra was introduced in 1849 by the English mathematician

real algebra generalising complex numbers.

James Cockle [4], only six years after the famous discovery
by Hamilton of the algebra of quaternions [12].

Although coquaternions are not as popular as quater-
nions, in recent years one can observe an emerging inter-
est among mathematicians and physicists on the study of
these hypercomplex numbers. In fact, they have been con-
sidered in several papers by different authors and various
applications have been developed; see e.g. [1,3, 6,7, 8,9,
10, 11, 16, 17, 18, 21].

The dynamics of the quadratic map in the complex
plane has been intensively studied in the last decades and
can now be considered a well-established theory. This map
exhibits a rich dynamical behaviour and has given birth to
extraordinarily beautiful pictures which have passed into
the popular domain.

In this note, we give a first insight into the world of co-
quaternions, reflecting the recent interests of the authors.
In particular, we recall some results on the zeros of co-
quaternionic polynomials [8] and discuss several aspects of
the dynamics of one family of quadratic maps on coquater-
nions [6].

The nature of the algebra under consideration leads to
results which can be considered as even richer and more in-
teresting than the ones obtained in the complex or quater-

nionic cases.

2 THE ALGEBRA OF COQUATERNIONS

2.1 BASIC RESULTS

The algebra of real coquaternions is an associative but non-
commutative algebra over R defined as the set H.,q = {qo +
Qi+ @i+ g3k : o, q1, 92, 93 € R}, with the operations of ad-
dition and scalar multiplication defined component-wise
and where the so-called imaginary units i, j, k satisfy

=-1, P=k*=1, k=1

The expression for the product of two coquaternions fol-
lows easily from the above multiplication rules; in partic-
ular, ij = —ji = k, k = —kj = —i, ki = —ik = j and therefore
for q = qo + qii + 5 + g3k we have

9 =q5—qi + @ + a3 +2q0 (qui + o + gsk).

Given a coquaternion q = qq + q;i + g, + g3k, its conjugate q
isdefined asq := gy —q;i— ) — gsk; the number g is called
the real part of q and denoted by Re q and the vector part of
q, denoted by Vec q, is given by Vecq := q,i + q,j + gsk.

We identify the set of coquaternions with null vector
part with the set R of real numbers. For geometric pur-
poses, we also identify the coquaternion q = g, + q,i + g,j +
qsk with the element (gq, g1, 5, q3) in R*.

It is easy to see that the algebra of coquaternions is iso-
morphic to M,(R), the algebra of real 2 X 2 matrices, with
the map H.,q — M,(R) defined by

do + g3

q + ‘b)
9, —q1

q=qo+ qil + @2 + g3k '—>Q=(
9o — 43
establishing the isomorphism. Keeping this in mind, we
call trace of q, which we denote by trg, to the quan-
tity given by trq :=29, =2Req=q+q and call deter-
minant of q to the quantity, denoted by detq, given by
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detq :=q§ + q? — g3 — g5 = qq. The result contained in
the following lemma can be shown by a simple verification.

LEMMA 1.— For any coquaternion q € Hy,4, we have
q* = (trq)q — detq.

Naturally, some of the results for coquaternions can be
established by invoking the aforementioned isomorphism
and making use of known results for matrices. For exam-
ple, one can use this approach to conclude that, unlike C
and H, Heoq is not a division algebra. In fact, a coquater-
nion q is invertible if and only if det q # 0. In that case, we
have g~ = (det q)~'q.

For our future purposes it is useful to recall now the fol-
lowing concept: we say that a coquaternion q is similar to a
coquaternion p, and write q ~ p, if there exists an invertible
coquaternion h such that p = hgh™!. This is an equivalence
relationin Hq, partitioning H,q in the so-called similarity
classes. As usual, we denote by [q] the similarity class con-
taining q. The following result can be easily proved (see [6]

and [16]).

LEMMA 2.— Letq = gy + Vecqbe a coquaternion and let
r = det(Vecq). If qis real, then [q] = {q,}; if q is non-real,
then [q] = [q,], where

q, = qo +Vri, if r>o, (12)
q, = qo + Vs if r<o, (1b)
4, =qo+i+j if r=o. (1¢)

Since similar coquaternions have the same determinant,
the previous lemma completely characterizes the similar-
ity classes in H,q. This means that two non-real coquater-
nions p and q are similar if and only if

Rep=Req and det(Vecp) =det(Vecq). (2)

The coquaternion g, will be referred to as the standard repre-
sentative of [q]. Lemma 2 says that the standard representa-
tive of [q] is either a complex number, a perplex number (num-
ber of the form a + bj) or a dual number (number of the form
a+b(i+]))). Associated with these numbers we will consider
three important subspaces of dimension two of H4, the so-
called canonical planes or cycle planes: the complex plane C,
the Minkowski plane P of perplex numbers and the Laguerre
plane D of dual numbers.

Two coquaternions p and q (wWhether or not real) satisfy-
ing (2) are called guasi-similar. Naturally, quasi-similarity
is an equivalence relation in H,q; the corresponding equiv-
alence class of q, i.e. the set

{xo + X104+ X,) + X3k : Xo = o and x? — x5 — x3 =1},
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is called the guasi-similarity class of q and denoted by [q].
Here, as before, g, and r denote respectively the real part
and the determinant of the vector part of q. We can identify
[q]] with an hyperboloid in the hyperplane x, = g,, which
will be:

- a hyperboloid of one sheet or a hyperboloid of two
sheets, if r < 0 or r > 0, respectively; in such cases

lall = [ql;

- adegenerate hyperboloid (i.e. a cone), if ¥ = 0; in this
case, [[ql = [go + 1+ jI U {qo}-
2.2

SOME REMARKS ON COQUATERNIONIC
POLYNOMIALS

In contrast to the case of quaternionic polynomials, the
problem of finding the zeros of polynomials defined over
the algebra H.,q only drew the attention of researchers
quite recently; see [5, 8, 13, 14, 15, 19].

A complete characterisation of the zero set of left uni-
lateral polynomials over coquaternions, i.e. of polynomi-
als whose coefficients are coquaternions located on the left-
hand side of the variable, can be found in [8]. In particular,
it is proved that the zeros of monic polynomials of degree n
belong to, at most, n(2n—1) quasi-similarity classes; each of
these classes can either contain a unique zero (isolated zero)
or be totally made up of zeros (hyperboloidal zero) or contain
a straight line of zeros (linear zero). We point out that there
is no analogue of the Fundamental Theorem of Algebra, as
there are coquaternionic polynomials with no zeros.

To offer a glimpse of the diversity of behaviours that the
zero sets of coquaternionic polynomials may have, we now
present some examples. An algorithm to compute and clas-
sify all the zeros of a coquaternionic polynomial is available
in [8] and can be used to check the following statements:

1. P(x) = x* — j has no zeros;

2. P(x) = x*+ (3+i+j+kx+3+i+]j+ 3khasonly one
isolated zero,z = —1 + %i —-j- %k;

3. P(x) = x*—jx —1—ihas six isolated zeros (the maximum
number of zeros a quadratic polynomial can have), namely

z; =k,
z, =j+Kk
1+V2 1. 1. 12
234=i(—\/—+—l)+-J+—\/—k,
’ 2 2 2 2
1-v2 1 1 1+v2
Zsa—"'(—"‘;)"""‘ 2\/—k;

4. P(x) = x? + 1 has two isolated zeros, z;, = #1, and the
hyperboloidal zero, H = [[j]| (which can be identified with
an hyperboloid of one sheet in the hyperplane x, = 0);

5. P(x) = x*> — jx — 1 —j has two isolated zeros, z; = —1 and



z, = 1 +j, and two linear zeros,
1 o1,
L1={—£+O(I—;j+05k : ocelR},
1 o3,
L2={;+a|+gj—ock : ocelR}

(which can be identified with straight lines).

It is worth mentioning that a Mathematica notebook
to classify and determine the nth roots of a coquater-
nion q (the zeros of x" — q) is available at the webpage
http://w3.math.uminho.pt/CoquaternionsRoots,
where one can also obtain a Mathematica add-on applica-
tion implementing the algebra of coquaternions.

3 COQUATERNIONIC QUADRATIC MAP

We now consider the quadratic map

fo: [H]coq - [H]coq
q ~ g +c

where c is a fixed parameter in Hoq-

When the parameter ¢ € C, we will use f_ to denote
the complex map obtained by restricting f_ to the complex
plane, i.e. f, = f|c.

3.1 PRELIMINARY RESULTS

We first recall several basic definitions and present some
results which will play an important role in the remaining
part of the paper.

For k € N, we shall denote by € the k-th iterate of f,,
inductively defined by f = idy_, and f& = f, o f*~1. For
a given initial point q; € Hoq, the orbit of g, under f is

the sequence (f8(qp)), _, . A point q € H,q is said to be

a periodic point of f, wkiizoperiod n € N, if f2(q) = q, with
f’C‘(q) # qfor 0 < k < n; in this case, we say that the set
¢ = {q,f.(q), ..., f*71(q)} is an n-cycle for f., usually written
as € @ q gql - .

points of period one are called fixed points.

fC . i - .
— q,_; with q; = fi(q). Periodic

It follows from the result in Lemma 1 that the orbit
of any coquaternion q lies in the subspace spang(1, q, c) of
Hcog- The following result is also simple to establish.

LEMMA 3.— For any invertible coquaternion h, let ¢, be
the map defined by ¢,(q) = h~'qh. Then, the dynamical
system (Hc,q, f) is dynamically equivalent to the dynamical

system (Heogs fg, (c))-

As a consequence of the two previous lemmas, we
immediately conclude that to study the dynamics of the
quadratic map f.(q) = q* + c there is no loss of generality
in assuming that c is either real or has one of the standard
forms (1).
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3.2 FIXED POINTS OF fe

Letq = qo + q1i + qo + gzkand ¢ = ¢q + ¢;i + ¢5j + csk be
coquaternions. From Lemma 1 we see that q is a fixed point
of f, if and only if it satisfies the equation

(2qp — 1)q — detq = —c. (3)

Next, we consider separately qy # 1/2 and q, = 1/2.

3.2.1 Caseqy # 1/2

We first note that it follows from (3) that, if q, # 1/2, then
q € spang(1,c). In particular, if ¢ is chosen in one of the
cycle planes, then q belongs to the same plane.

(i) Forc = ¢y + c;i, with ¢; > 0, we are simply consider-
ing the case of the complex quadratic map f; hence,
the fixed points of f; are, as is well-known, given by

G2 = %(11\/1—4c>.

Note that, for c = ¢, € R, ¢y > 1/4, the correspond-

ing fixed points do not satisfy the condition we are
considering here, g, # 1/2.

For ¢ = ¢y + c,j, with ¢, > 0, the dynamics is re-
stricted to the cycle plane . Here, it is convenient to
use the so-called dual basis (e, e,) with e; = (1 + j)/2
and e, = (1 —j)/2, which satisfies

el=e, ei=e, and e, =e,e, =0.

Expressing q and c in this basis, we get q = xe; + ye,
and ¢ = ae, + be,, where

X=qop+ds Y=¢qo— Gz A=Co+C3 b=¢y—cy.
Hence,
? +c = (x* + a)e; + (* + b)e,.

This shows that f_ has fixed points if and only if ¢, +
¢, < 1/4and ¢y — ¢, < 1/4, which are

1 1
=-+-(A+B A — B)j),
q1,2 214( +B+( )
1 1 .
G34=-+t-(A-B+(A+B)j,
2 4
where A and B are given by

A=1/1—4(cyg+c)and B =+/1—4(cy — cy).

(iii) Forc = ¢y +i+ j, we have q = gy + a(i + j) and so

9% + ¢ = (g§ + ¢o) + (2goa + 1) + ).

Thus, f_ has fixed points if and only if ¢y < 1/4, which
are given by

1 1 .
G =5 (1-v1—4c,) + ==+,

1 L
%= (1 +1-— 4c0) - —1_1400 Gi+D.
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Figure 1.—Plots, in the hyperplane g3 = 0, of the sets of fixed points corresponding to the case

¢ = ¢p € R; the real and complex fixed points are identified with black points and the fixed points not
in C form the blue lines; the gray lines represent the real and imaginary axes. (a) co = —0.8;

(b) cog = —=0.0; (c) cg = —0.18; (d) ¢ = —0.25; (e) co = —0.3; (f) co = —1.7

3.2.2 Caseq,=1/2
In this case, Eq. (3) reduces to detq = c. Since detqis a
real number, we conclude that f_ has no fixed points, unless
c=cy €R.

The map f, has one real fixed point q = g, = 1/2, for

¢o = 1/4. We now discuss the non-real fixed points of f, .

Since a real number commutes with any coquaternion, we
have, for any invertible h € Heogs
h~*f,(@h = h™'g*h + h~"¢;h
= (h™'gh)* + ¢o = f,,(h™gh).
Hence,
f,,(@=q < h7'f, (h=h""gn
& f, (h'qh) =h""'gh
which shows that to determine the non-real fixed points
of the coquaternionic map f, we only have to identify the
fixed points of this map with any of the three special forms
(1) and to construct the corresponding similarity classes.
As it is well-known, there is only one fixed point
of the form (1a), which occurs for ¢, > 1/4, the point

q, = 1/2 + (1/4cy — 1/2)i. Also, it is simple to verify that
the only fixed point of f. of the form (1b) is given by q, =
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1/2 + (y/1 = 4¢y/2)j, for ¢y < 1/4, whereas q. = 1/2 +i + j
is the only fixed point of the form (ic) and occurs when
¢y = 1/4. In summary, we have the following three sets of

fixed points, depending on the value of c,:

F = §+§\/1—4coj], ifcg < 1/4,
1 . . 1 .

F, = ;+I+J]U{;}, ifcg = 1/4,

Fy= %+§«/4e0—1i], ifcg > 1/4.

Having in mind the relation between similarity and quasi-
similarity classes referred to in Sec. 2.1, it is clear that any
of the above sets can be identified with an hyperboloid in
the hyperplane g, = 1/2.

In Fig. 1 we present plots obtained by fixing g; = 0,
and considering several values of the parameter c,. The
known fixed points of the dynamics in C are identified with
black points and the fixed points not in C are given by blue
lines (hyperbolas resulting from the intersection of the hy-
perboloids #; with the hyperplane H; = {(qy,q;,95,93) €
R* : g3 = 0}); the real and imaginary axis are identified

with gray lines.



Figure 2.—Plots, in different planes parallel to the complex plane, of the basin of attraction of the 2-cycle
C; (red) and the (1,2)-set cycle Ci2 (blue). (a) g2 = 0; (b) g2 = 0.2 ; (c) g2 = 0.4; (d) g2 = 0.8; (€) g2 = 1.25;

(f) g = 1.55

3.3 CYCLES OF SETS

The results of the previous section show that we now have
a situation not present in the classical case of the real/com-
plex quadratic maps: the existence of fixed points forming
sets of non-isolated points. The same may be true for peri-
odic points of other periods; see, e.g. [6]. This motivates us

to introduce a definition of cycles of sets.

DEFINITION 4.— We say that the sets 8, ..., 8,,_; form an

(m, n)-set cycle Cp, , for the map f_, and write
fe fe ¢
em,n . SO - 81 > e ‘Sm—l’
if:
(i) each of the sets 8;;i = 0,...,m — 1, is formed by peri-
odic points of period n of f;

(i) 8 =f(8i_1),i=1,....,m—1,and f(S,,_1) = Sy;

(iii) the sets 8, ...
neighborhoods.

,8;_1 are pairwise separated by e-

Note thatif ¢, , is an (m, n)-set cycle, then n must be a mul-
tiple of m. When m = n, we simply call the cycle an n-set
cycle and denote it by €,,.
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As shown in [6], for ¢ = ¢y + ¢;i, with ¢; > 0 and ¢), ¢;
satisfying ¢} > 4cy + 3, the set

(4)

2_ —_
?={—§+%i+qzj+q3k|q§+q§= w}
is made up of periodic points of period two of the map f
and, if q € P, then q = f.(p) where p = —1/2 + (¢;/2)i — q,j —
gk € P. Hence,

Cip t POf, (5)

is a (1, 2)-set cycle.

Other examples of set cycles for the quadratic coquater-
nionic map can be found in [6].

We would like to remark that some results for the
quadratic map on the algebra M,(R)—which can naturally,
be translated to the coquaternionic formalism—were ob-
tained in [2] and [20].

3.4 BASINS OF ATTRACTION

Due to the appearance of set cycles, we now have to adapt
the usual notion of basin of attraction. We propose to use
the following definition.
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f

fe fe c
DEFINITION 5.— Let G, , : Sy = S; = -+ = S, be
an (m, n)-set cycle for f_. The basin of attraction of €, ,,, de-

noted by B(¢,, ,,), is given by

m—1

B(Cpmn) = | B,

€=0

where
B(8,) :=1{q € Heogq : Iilgn d(ff™(q), 8,) = 0}
and d is a distance function.

Naturally, when a set cycle reduces to a cycle of isolated
points, we recover the usual definition of basin of attrac-
tion of that cycle.

As an illustrative example, we consider now two differ-
ent cycles for the map f.: the 2-cycle of isolated complex

points
fC
G 1 a1 >0y,

where

1
Q12 = 5(1 + V-3 —4c),

and the (1,2)-set cycle €, , defined by (5) with P the set given
by (4), for a particular choice of the parameter c, the com-
plex number ¢ = —0.95 + 0.2i.

In Fig. 2 we present plots of the basins of attraction of
these two cycles. The representations are two-dimensional
plots obtained by assuming g; = 0 and considering differ-
ent values for g,, i.e., all the pictures correspond to plots
in planes parallel to the complex plane. In the plots, the
points in the basin of attraction of the cycle €, are colored
in red and the points in the basin of attraction of the cycle
C;; are colored in blue.

The plot on the top-left of Fig. 2 corresponds to g, = 0,
i.e., is a plot in the complex plane, and we immediately
recognize the picture associated with the dynamics of the
quadratic complex map f. As the value of g, increases, the
two coquaternionic basins of attraction appear, showing an
interesting intertwined structure.

4 CONCLUSIONS

As it is well-known, to study the dynamics of complex
quadratic maps we only have to consider the particular fam-
ily of maps of the form f.(x) = x* + ¢, since any quadratic
map may be converted, by conjugacy, to a member of this
family. In the coquaternionic case, the situation is totally
different.

Due to the non-commutativity of the product of co-
quaternions, the sum of two mth degree monomials
apXa;X -++ a,,_1Xa,, and agxa}x -+ a,,_1Xay, can not be writ-
ten simply in the form AjxA,x --- A,,_;xA,, and hence, the
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general expression of a quadratic coquaternionic polyno-

mial is

n k
Z a{;xa{xag + Z béx b{ +c, nkeN,

j=1 j=1
with a{ , b{ and c coquaternions. Not surprisingly, contrary
to what happens in the commutative case, no conjugacy
equivalence of a quadratic coquaternionic polynomial to a
simple form is available.

The important differences from the complex setting
already observed for the simple coquaternionic quadratic
family f.(q) = g*+c and the interesting results obtained for
the zeros of unilateral coquaternionic polynomials lead us
to believe that coquaternions — in particular the study of
more general coquaternionic quadratic maps and of more
general polynomials — are an area worth exploring.
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