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ʬ IȟȽȲȥǵɂǯȽȋȥȟ

CoRuaternions, also known in the literature as split Ruater-
nions, are elements of a four-dimensional hypercomplex
real algebra generalising complex numbers. This alge-
bra was introduced in 1849 by the English mathematician
James Cockle [4], only six years after the famous discovery
by )amilton of the algebra of Ruaternions [12].

Although coRuaternions are not as popular as Ruater-
nions, in recent years one can observe an emerging inter-
est among mathematicians and physicists on the study of
these hypercomplex numbers. In fact, they have been con-
sidered in several papers by diǃerent authors and various
applications have been developed� see e.g. [1, 3, 6, 7, 8, 9,
10, 11, 16, 17, 18, 21].

The dynamics of the Ruadratic map in the complex
plane has been intensively studied in the last decades and
can now be considered a well-established theory. This map
exhibits a rich dynamical behaviour and has given birth to
extraordinarily beautiǘl pictures which have passed into
the popular domain.

In this note, we give a ƫrst insight into the world of co-
Ruaternions, reƬecting the recent interests of the authors.
In particular, we recall some results on the zeros of co-
Ruaternionic polynomials [8] and discuss several aspects of
the dynamics of one family of Ruadratic maps on coRuater-
nions [6].

The nature of the algebra under consideration leads to
results which can be considered as even richer and more in-
teresting than the ones obtained in the complex or Ruater-
nionic cases.

ʭ TȈǹ ǡȘȃǹǬȲǡ ȥȂ ǯȥȱɂǡȽǹȲȟȋȥȟȶ

ʭ.ʬ Bǡȶȋǯ ȲǹȶɂȘȽȶ

The algebra of real coRuaternions is an associative but non-
commutative algebra overӔ deƫned as the setӇპხჰ Ҳ ЬഐႱ Ҭ
ഐႲ๭ҬഐႳ๯ҬഐႴ๱ ۚ ഐႱИ ഐႲИ ഐႳИ ഐႴ ٝ ӔЭ, with the operations of ad-
dition and scalar multiplication deƫned component-wise
and where the so-called imaginary units ๭И ๯И ๱ satisǛ

๭Ⴓ Ҳ ҭ1И ๯Ⴓ Ҳ ๱Ⴓ Ҳ 1И ๭๯๱ Ҳ 1М

The expression for the product of Ǟo coRuaternions fol-
lows easily from the above multiplication rules� in partic-
ular, ๭๯ Ҳ ҭ๯๭ Ҳ ๱, ๯๱ Ҳ ҭ๱๯ Ҳ ҭ๭, ๱๭ Ҳ ҭ๭๱ Ҳ ๯ and therefore
for ๷ Ҳ ഐႱ Ҭ ഐႲ๭ Ҭ ഐႳ๯ Ҭ ഐႴ๱ we have

๷Ⴓ Ҳ ഐႳႱ ҭ ഐႳႲ Ҭ ഐႳႳ Ҭ ഐႳႴ Ҭ ѳഐႱ ԕഐႲ๭ Ҭ ഐႳ๯ Ҭ ഐႴ๱ԡ М

Given a coRuaternion ๷ Ҳ ഐႱ ҬഐႲ๭ Ҭ ഐႳ๯ Ҭ ഐႴ๱, its conjugate ๷
is deƫned as ๷ ۚҲ ഐႱҭഐႲ๭ҭഐႳ๯ҭഐႴ๱� the number ഐႱ is called
the real part of ๷ and denoted by Re ๷ and the vector part of
๷, denoted by Vec ๷, is given by Vec ๷ ۚҲ ഐႲ๭ Ҭ ഐႳ๯ Ҭ ഐႴ๱.

We identiǛ the set of coRuaternions with null vector
part with the set Ӕ of real numbers. For geometric pur-
poses, we also identiǛ the coRuaternion ๷ Ҳ ഐႱ Ҭ ഐႲ๭ Ҭ ഐႳ๯ Ҭ
ഐႴ๱ with the element ШഐႱИ ഐႲИ ഐႳИ ഐႴЩ in ӔႵ.

It is easy to see that the algebra of coRuaternions is iso-
morphic to ӢႳШӔЩ, the algebra of real ѳ Ұ ѳ matrices, with
the map Ӈპხჰ צ ӢႳШӔЩ deƫned by

๷ Ҳ ഐႱ Ҭ ഐႲ๭ Ҭ ഐႳ๯ Ҭ ഐႴ๱ ׼ ೴ Ҳ Ԝ
ഐႱ Ҭ ഐႴ ഐႲ Ҭ ഐႳ
ഐႳ ҭ ഐႲ ഐႱ ҭ ഐႴ

Ԩ

establishing the isomorphism. Keeping this in mind, we
call trace of ๷, which we denote by tr ๷, to the Ruan-
tity given by tr ๷ ۚҲ ѳഐႱ Ҳ ѳRe ๷ Ҳ ๷ Ҭ ๷ and call deter-
minant of ๷ to the Ruantity, denoted by det ๷, given by
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det ๷ ۚҲ ഐႳႱ Ҭ ഐႳႲ ҭ ഐႳႳ ҭ ഐႳႴ Ҳ ๷๷. The result contained in
the following lemma can be shown by a simple veriƫcation.

LǹȞȞǡ ʬ.Ť For any coRuaternion ๷ ٝ Ӈპხჰ, we have

๷Ⴓ Ҳ Шtr ๷Щ๷ ҭ det ๷М

Naturally, some of the results for coRuaternions can be
established by invoking the aforementioned isomorphism
and making use of known results for matrices. For exam-
ple, one can use this approach to conclude that, unlike Ӂ
and Ӈ, Ӈპხჰ is not a division algebra. In fact, a coRuater-
nion ๷ is invertible if and only if det ๷ ܍ ѱ. In that case, we
have ๷ႼႲ Ҳ Шdet ๷ЩႼႲ๷.

For our ǘture purposes it is useǘl to recall now the fol-
lowing concept: we say that a coRuaternion ๷ is similar to a
coRuaternion ๶, and write ๷ ۠ ๶, if there exists an invertible
coRuaternion ๬ such that ๶ Ҳ ๬๷๬ႼႲ. This is an eRuivalence
relation inӇპხჰ, partitioningӇპხჰ in the so-called similarity
classes. As usual, we denote by Ъ๷Ы the similarity class con-
taining ๷. The following result can be easily proved (see [6]
and [16]).

LǹȞȞǡ ʭ.Ť Let ๷ Ҳ ഐႱ ҬVec ๷ be a coRuaternion and let
഑ Ҳ detШVec ๷Щ. If ๷ is real, then Ъ๷Ы Ҳ ЬഐႱЭ� if ๷ is non-real,
then Ъ๷Ы Ҳ Ъ๷ᅚЫ, where

๷
S
Ҳ ഐႱ Ҭ ഑๭Иٹ if ഑ Ҵ ѱИ (1a)

๷
S
Ҳ ഐႱ Ҭ ҭ഑๯Иٹ if ഑ ҳ ѱИ (1b)

๷
S
Ҳ ഐႱ Ҭ ๭ Ҭ ๯И if ഑ Ҳ ѱМ (1c)

Since similar coRuaternions have the same determinant,
the previous lemma completely characterizes the similar-
ity classes in Ӈპხჰ. This means that Ǟo non-real coRuater-
nions ๶ and ๷ are similar if and only if

Re ๶ Ҳ Re ๷ and detШVec ๶Щ Ҳ detШVec ๷ЩМ (2)

The coRuaternion ๷
S

will be referred to as the standard repre-
sentative of Ъ๷Ы. Lemma 2 says that the standard representa-
tive of Ъ๷Ы is either a complex number, a perplex number (num-
ber of the form ೾Ҭ೿๯) or a dual number (number of the form
೾Ҭ೿Ш๭Ҭ๯Щ). Associated with these numbers we will consider
three important subspaces of dimension Ǟo ofӇპხჰ, the so-
called canonical planes or cycle planes: the complex plane Ӂ,
the Minkowski planeӐ of perplex numbers and the -aguerre
plane พ of dual numbers.

Two coRuaternions ๶ and ๷ (whether or not real) satisǛ-
ing (2) are called quasi-similar. Naturally, Ruasi-similarity
is an eRuivalence relation inӇპხჰ� the corresponding eRuiv-
alence class of ๷, i.e. the set

ЬചႱ Ҭ ചႲ๭ Ҭ ചႳ๯ Ҭ ചႴ๱ ۚ ചႱ Ҳ ഐႱ and ചႳႲ ҭ ചႳႳ ҭ ചႳႴ Ҳ ഑ЭИ

is called the quasi-similarity class of ๷ and denoted by ল๷ষ.
)ere, as before, ഐႱ and ഑ denote respectively the real part
and the determinant of the vector part of ๷. We can identiǛ
ল๷ষ with an hyperboloid in the hyperplane ചႱ Ҳ ഐႱ, which
will be:

- a hyperboloid of one sheet or a hyperboloid of Ǟo
sheets, if ഑ ҳ ѱ or ഑ Ҵ ѱ, respectively� in such cases
ল๷ষ Ҳ Ъ๷Ы�

- a degenerate hyperboloid (i.e. a cone), if ഑ Ҳ ѱ� in this
case, ল๷ষ Ҳ ЪഐႱ Ҭ ๭ Ҭ ๯Ы ڠ ЬഐႱЭ.

ʭ.ʭ SȥȞǹ ȲǹȞǡȲȖȶ ȥȟ ǯȥȱɂǡȽǹȲȟȋȥȟȋǯ
ȯȥȘɓȟȥȞȋǡȘȶ

In contrast to the case of Ruaternionic polynomials, the
problem of ƫnding the zeros of polynomials deƫned over
the algebra Ӈპხჰ only drew the attention of researchers
Ruite recently� see [5, 8, 13, 14, 15, 19].

A complete characterisation of the zero set of left uni-
lateral polynomials over coRuaternions, i.e. of polynomi-
als whose coeǆcients are coRuaternions located on the left-
hand side of the variable, can be found in [8]. In particular,
it is proved that the zeros of monic polynomials of degree ഍
belong to, at most, ഍Шѳ഍ҭ1Щ Ruasi-similarity classes� each of
these classes can either contain a uniRue zero (isolated zero)
or be totally made up of zeros (hyperboloidal zero) or contain
a straight line of zeros (linear zero). We point out that there
is no analogue of the Fundamental Theorem of Algebra, as
there are coRuaternionic polynomials with no zeros.

To oǃer a glimpse of the diversity of behaviours that the
zero sets of coRuaternionic polynomials may have, we now
present some examples. An algorithm to compute and clas-
siǛ all the zeros of a coRuaternionic polynomial is available
in [8] and can be used to check the following statements:
1. ೳШചЩ Ҳ ചႳ ҭ ๯ has no zeros�
2. ೳШചЩ Ҳ ചႳ Ҭ ШѴ Ҭ ๭ Ҭ ๯ Ҭ ๱Щച Ҭ Ѵ Ҭ ๭ Ҭ ๯ Ҭ Ѵ๱ has only one
isolated zero, ຀ Ҳ ҭ1 Ҭ Ⴒ

Ⴓ
๭ ҭ ๯ ҭ Ⴒ

Ⴓ
๱�

3. ೳШചЩ Ҳ ചႳҭ ๯ചҭ1ҭ ๭ has six isolated zeros (the maximum
number of zeros a Ruadratic polynomial can have), namely

຀Ⴒ Ҳ ๱И

຀Ⴓ Ҳ ๯ Ҭ ๱И

຀ႴᆠႵ Ҳ ү ԙႲႻ
Ⴓٹ

Ⴓ
Ҭ Ⴒ

Ⴓ
๭ԥ Ҭ Ⴒ

Ⴓ
๯ Ҭ ႲႼٹႳ

Ⴓ
๱И

຀ႶᆠႷ Ҳ ү ԙႲႼ
Ⴓٹ

Ⴓ
Ҭ Ⴒ

Ⴓ
๭ԥ Ҭ Ⴒ

Ⴓ
๯ Ҭ ႲႻٹႳ

Ⴓ
๱Й

4. ೳШചЩ Ҳ ചႳ Ҭ 1 has Ǟo isolated zeros, ຀ႲᆠႳ Ҳ ү1, and the
hyperboloidal zero, ೫ Ҳ ল๯ষ (which can be identiƫed with
an hyperboloid of one sheet in the hyperplane ചႱ Ҳ ѱ)�
5. ೳШചЩ Ҳ ചႳ ҭ ๯ച ҭ 1 ҭ ๯ has Ǟo isolated zeros, ຀Ⴒ Ҳ ҭ1 and
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຀Ⴓ Ҳ 1 Ҭ ๯, and Ǟo linear zeros,

೯Ⴒ Ҳ ՈҭႲ

Ⴓ
Ҭ ྯ๭ ҭ Ⴒ

Ⴓ
๯ Ҭ ྯ๱ ۚ ྯ ٝ ӔՔ И

೯Ⴓ Ҳ Ո Ⴒ
Ⴓ
Ҭ ྯ๭ Ҭ Ⴔ

Ⴓ
๯ ҭ ྯ๱ ۚ ྯ ٝ ӔՔ

(which can be identiƫed with straight lines).
It is worth mentioning that a Mathematica notebook

to classiǛ and determine the ഍th roots of a coRuater-
nion ๷ (the zeros of ചᅕ ҭ ๷) is available at the webpage
http://w3.math.uminho.pt/CoquaternionsRoots,
where one can also obtain a Mathematica add-on applica-
tion implementing the algebra of coRuaternions.

ʮ CȥȱɂǡȽǹȲȟȋȥȟȋǯ 2ɂǡǵȲǡȽȋǯ Mǡȯ

We now consider the Ruadratic map

๪๧ ۚ Ӈპხჰ צ Ӈპხჰ

๷ ׼ ๷Ⴓ Ҭ ๧

where ๧ is a ƫxed parameter in Ӈპხჰ.
When the parameter ๧ ٝ Ӂ, we will use ഃ๧ to denote

the complex map obtained by restricting ๪๧ to the complex
plane, i.e. ഃ๧ ܁ ๪๧ЦӁ.

ʮ.ʬ PȲǹȘȋȞȋȟǡȲɓ ȲǹȶɂȘȽȶ

We ƫrst recall several basic deƫnitions and present some
results which will play an important role in the remaining
part of the paper.

For ഊ ٝ ӎ, we shall denote by ๪ᅒ๧ the ഊ-th iterate of ๪๧,
inductively deƫned by ๪Ⴑ๧ Ҳ ćĂӇᇗᇧᇩ

and ๪ᅒ๧ Ҳ ๪๧ ٷ ๪ᅒႼႲ๧ . For
a given initial point ๷Ⴑ ٝ Ӈპხჰ, the orbit of ๷Ⴑ under ๪๧ is
the seRuence ԕ๪ᅒ๧ Ш๷ႱЩԡᅒٝӎᆪ

. A point ๷ ٝ Ӈპხჰ is said to be
a periodic point of ๪๧ with period ഍ ٝ ӎ, if ๪ᅕ๧ Ш๷Щ Ҳ ๷, with
๪ᅒ๧ Ш๷Щ ܍ ๷ for ѱ ҳ ഊ ҳ ഍� in this case, we say that the set
ൕ Ҳ Ь๷И ๪๧Ш๷ЩИ Н И ๪ᅕႼႲ๧ Ш๷ЩЭ is an ഍-cycle for ๪๧, usually written

as ൕ ۚ ๷Ⴑ
๪๧צ ๷Ⴒ

๪๧צ ߂
๪๧צ ๷ᅕႼႲ with ๷ᅎ Ҳ ๪ᅎ๧Ш๷Щ. Periodic

points of period one are called fixed points.
It follows from the result in Lemma 1 that the orbit

of any coRuaternion ๷ lies in the subspace spanӔШ1И ๷И ๧Щ of
Ӈპხჰ. The following result is also simple to establish.

LǹȞȞǡ ʮ.Ť For any invertible coRuaternion ๬, let ࿌๬ be
the map deƫned by ࿌๬Ш๷Щ Ҳ ๬ႼႲ๷๬. Then, the dynamical
system ШӇპხჰИ ๪๧Щ is dynamically eRuivalent to the dynamical
system ШӇპხჰИ ๪ᆝ๬Ⴞ๧ႿЩ.

As a conseRuence of the Ǟo previous lemmas, we
immediately conclude that to study the dynamics of the
Ruadratic map ๪๧Ш๷Щ Ҳ ๷Ⴓ Ҭ ๧ there is no loss of generality
in assuming that ๧ is either real or has one of the standard
forms (1).

ʮ.ʭ Fȋɒǹǵ ȯȥȋȟȽȶ ȥȂ ๪๧

Let ๷ Ҳ ഐႱ Ҭ ഐႲ๭ Ҭ ഐႳ๯ Ҭ ഐႴ๱ and ๧ Ҳ ഀႱ Ҭ ഀႲ๭ Ҭ ഀႳ๯ Ҭ ഀႴ๱ be
coRuaternions. From Lemma 1 we see that ๷ is a ƫxed point
of ๪๧ if and only if it satisƫes the eRuation

ШѳഐႱ ҭ 1Щ๷ ҭ det ๷ Ҳ ҭ๧М (3)

Next, we consider separately ๷Ⴑ ܍ 1Фѳ and ๷Ⴑ Ҳ 1Фѳ.

3.2.1 Case ഐႱ ܍ 1Фѳ

We ƫrst note that it follows from (3) that, if ഐႱ ܍ 1Фѳ, then
๷ ٝ spanӔШ1И ๧Щ. In particular, if ๧ is chosen in one of the
cycle planes, then ๷ belongs to the same plane.

(i) For ๧ Ҳ ഀႱ Ҭ ഀႲ๭, with ഀႲ ܔ ѱ, we are simply consider-
ing the case of the complex Ruadratic map ഃ๧� hence,
the ƫxed points of ๪๧ are, as is well-known, given by

๷ႲᆠႳ Ҳ
1
ѳ
ԗ1 ү 1ٹ ҭ ѵ๧ԣ М

Note that, for ๧ Ҳ ഀႱ ٝ Ӕ, ഀႱ ܔ 1Фѵ, the correspond-
ing ƫxed points do not satisǛ the condition we are
considering here, ഐႱ ܍ 1Фѳ.

(ii) For ๧ Ҳ ഀႱ Ҭ ഀႳ๯, with ഀႳ Ҵ ѱ, the dynamics is re-
stricted to the cycle planeӐ. )ere, it is convenient to
use the so-called dual basis Ш๩ႲИ ๩ႳЩ with ๩Ⴒ Ҳ Ш1 Ҭ ๯ЩФѳ
and ๩Ⴓ Ҳ Ш1 ҭ ๯ЩФѳ, which satisƫes

๩ႳႲ Ҳ ๩ႲИ ๩ႳႳ Ҳ ๩Ⴓ and ๩Ⴒ๩Ⴓ Ҳ ๩Ⴓ๩Ⴒ Ҳ ѱМ

Expressing ๷ and ๧ in this basis, we get ๷ Ҳ ച๩Ⴒ Ҭ ഛ๩Ⴓ
and ๧ Ҳ ೾๩Ⴒ Ҭ ೿๩Ⴓ, where

ച Ҳ ഐႱ Ҭ ഐႳИ ഛ Ҳ ഐႱ ҭ ഐႳИ ೾ Ҳ ഀႱ Ҭ ഀႳИ ೿ Ҳ ഀႱ ҭ ഀႳМ

)ence,

๷Ⴓ Ҭ ๧ Ҳ ШചႳ Ҭ ೾Щ๩Ⴒ Ҭ ШഛႳ Ҭ ೿Щ๩ႳМ

This shows that ๪๧ has ƫxed points if and only if ഀႱ Ҭ
ഀႳ ҳ 1Фѵ and ഀႱ ҭ ഀႳ ҳ 1Фѵ, which are

๷ႲᆠႳ Ҳ
1
ѳ
ү
1
ѵ
Ш೤ Ҭ ೥ Ҭ Ш೤ ҭ ೥Щ๯Щ И

๷ႴᆠႵ Ҳ
1
ѳ
ү
1
ѵ
Ш೤ ҭ ೥ Ҭ Ш೤ Ҭ ೥Щ๯Щ И

where ೤ and ೥ are given by

೤ Ҳ 1ٺ ҭ ѵШഀႱ Ҭ ഀႳЩ and ೥ Ҳ 1ٺ ҭ ѵШഀႱ ҭ ഀႳЩМ

(iii) For ๧ Ҳ ഀႱ Ҭ ๭ Ҭ ๯, we have ๷ Ҳ ഐႱ Ҭ ೾Ш๭ Ҭ ๯Щ and so

๷Ⴓ Ҭ ๧ Ҳ ШഐႳႱ Ҭ ഀႱЩ Ҭ ШѳഐႱ೾ Ҭ 1ЩШ๭ Ҭ ๯ЩМ

Thus, ๪๧ has ƫxed points if and only if ഀႱ ҳ 1Фѵ, which
are given by

๷Ⴒ Ҳ
1
ѳ
Ԗ1 ҭ 1ٹ ҭ ѵഀႱԢ Ҭ

Ⴒ

ႲႼႵᅇᆪٹ
Ш๭ Ҭ ๯ЩИ

๷Ⴓ Ҳ
1
ѳ
Ԗ1 Ҭ 1ٹ ҭ ѵഀႱԢ ҭ

Ⴒ

ႲႼႵᅇᆪٹ
Ш๭ Ҭ ๯ЩМ
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3.2.2 Case ഐႱ Ҳ 1Фѳ

In this case, ER. (3) reduces to det ๷ Ҳ ๧М Since det ๷ is a
real number, we conclude that ๪๧ has no ƫxed points, unless
๧ Ҳ ഀႱ ٝ Ӕ.

The map ๪ᅇᆪ has one real ƫxed point ๷ Ҳ ഐႱ Ҳ 1Фѳ, for
ഀႱ Ҳ 1ФѵМ We now discuss the non-real ƫxed points of ๪ᅇᆪ.
Since a real number commutes with any coRuaternion, we
have, for any invertible ๬ ٝ Ӈპხჰ,

๬ႼႲ๪ᅇᆪШ๷Щ๬ Ҳ ๬ႼႲ๷Ⴓ๬ Ҭ ๬ႼႲഀႱ๬

Ҳ Ш๬ႼႲ๷๬ЩႳ Ҭ ഀႱ Ҳ ๪ᅇᆪШ๬
ႼႲ๷๬ЩМ

)ence,

๪ᅇᆪШ๷Щ Ҳ ๷ য় ๬ႼႲ๪ᅇᆪШ๷Щ๬ Ҳ ๬ႼႲ๷๬

য় ๪ᅇᆪШ๬
ႼႲ๷๬Щ Ҳ ๬ႼႲ๷๬

which shows that to determine the non-real ƫxed points
of the coRuaternionic map ๪ᅇᆪ we only have to identiǛ the
ƫxed points of this map with any of the three special forms
(1) and to construct the corresponding similarity classes.

As it is well-known, there is only one ƫxed point
of the form (1a), which occurs for ഀႱ Ҵ 1Фѵ, the point
๷

S
Ҳ 1Фѳ Ҭ ШٹѵഀႱ ҭ 1ФѳЩ๭. Also, it is simple to veriǛ that

the only ƫxed point of ๪ᅇᆪ of the form (1b) is given by ๷
S
Ҳ

1Фѳ Ҭ Ш1ٹ ҭ ѵഀႱФѳЩ๯, for ഀႱ ҳ 1Фѵ, whereas ๷
S
Ҳ 1Фѳ Ҭ ๭ Ҭ ๯

is the only ƫxed point of the form (1c) and occurs when
ഀႱ Ҳ 1Фѵ. In summary, we have the following three sets of
ƫxed points, depending on the value of ഀႱ:

ӡႲ Ҳ ԰ Ⴒ
Ⴓ
Ҭ Ⴒ

Ⴓ
1ٹ ҭ ѵഀႱ ๯Լ И if ഀႱ ҳ 1ФѵИ

ӡႳ Ҳ ԰ Ⴒ
Ⴓ
Ҭ ๭ Ҭ ๯Լ ڠ Ո Ⴒ

Ⴓ
Ք И if ഀႱ Ҳ 1ФѵИ

ӡႴ Ҳ ԰ Ⴒ
Ⴓ
Ҭ Ⴒ

Ⴓ
ѵഀႱٹ ҭ 1๭Լ И if ഀႱ Ҵ 1ФѵМ

)aving in mind the relation beǞeen similarity and Ruasi-
similarity classes referred to in Sec. 2.1, it is clear that any
of the above sets can be identiƫed with an hyperboloid in
the hyperplane ഐႱ Ҳ 1Фѳ.

In Fig. 1 we present plots obtained by ƫxing ഐႴ Ҳ ѱ,
and considering several values of the parameter ഀႱ. The
known ƫxed points of the dynamics inӁ are identiƫed with
black points and the ƫxed points not in Ӂ are given by blue
lines (hyperbolas resulting from the intersection of the hy-
perboloids ӡᅎ with the hyperplane ೫Ⴔ Ҳ ЬШഐႱИ ഐႲИ ഐႳИ ഐႴЩ ٝ
ӔႵ ۚ ഐႴ Ҳ ѱЭ)� the real and imaginary axis are identiƫed
with gray lines.
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Figure 1: Plots, in the hyperplane q3 = 0, of the sets of fixed points corresponding to the case c = c0 ∈ R; the real and
complex fixed points are identified with black points and the fixed points not in C form the blue lines; the gray lines represent
the real and imaginary axes. (a) c0 = −0.8; (b) c0 = 0.0; (c) c0 = 0.18; (d) c0 = 0.25; (e) c0 = 0.3 and (f) c0 = 1.7.
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ʮ.ʮ CɓǯȘǹȶ ȥȂ ȶǹȽȶ

The results of the previous section show that we now have
a situation not present in the classical case of the real�com-
plex Ruadratic maps: the existence of ƫxed points forming
sets of non-isolated points. The same may be true for peri-
odic points of other periods� see, e.g. [6]. This motivates us
to introduce a deƫnition of cycles of sets.

DǹȂȋȟȋȽȋȥȟ ʯ.Ť We say that the sets ൞ႱИ Н И ൞ᅔႼႲ form an
ШഌИ ഍Щ-set cycle ൕᅔᆠᅕ for the map ๪๧, and write

ൕᅔᆠᅕ ۚ ൞Ⴑ
๪๧צ ൞Ⴒ

๪๧צ ߂
๪๧צ ൞ᅔႼႲИ

if:

(i) each of the sets ൞ᅎ� ആ Ҳ ѱИ Н И ഌ ҭ 1И is formed by peri-
odic points of period ഍ of ๪๧�

(ii) ൞ᅎ Ҳ ๪๧Ш൞ᅎႼႲЩ, ആ Ҳ 1И Н И ഌ ҭ 1, and ๪๧Ш൞ᅔႼႲЩ Ҳ ൞Ⴑ�

(iii) the sets ൞ႱИ Н И ൞ᅔႼႲ are pairwise separated by ླ-
neighborhoods.

Note that ifൕᅔᆠᅕ is an ШഌИ ഍Щ-set cycle, then ഍must be a mul-
tiple of ഌ. When ഌ Ҳ ഍, we simply call the cycle an ഍-set
cycle and denote it by ൕᅕ.

As shown in [6], for ๧ Ҳ ഀႱ Ҭ ഀႲ๭, with ഀႲ Ҵ ѱ and ഀႱИ ഀႲ
satisǛing ഀႳႲ Ҵ ѵഀႱ Ҭ Ѵ, the set

൜ Ҳ ՈҭႲ

Ⴓ
Ҭ ᅇᆫ

Ⴓ
๭ Ҭ ഐႳ๯ Ҭ ഐႴ๱ ЦЦ ഐႳႳ Ҭ ഐႳႴ Ҳ

ᅇᆬᆫႼႵᅇᆪႼႴ

Ⴕ
Ք (4)

is made up of periodic points of period Ǟo of the map ๪๧
and, if ๷ ٝ ൜, then ๷ Ҳ ๪๧Ш๶Щwhere ๶ Ҳ ҭ1ФѳҬ ШഀႲФѳЩ๭ ҭ ഐႳ๯ ҭ
ഐႴ๱ ٝ ൜. )ence,

ൕႲᆠႳ ۚ ൜

،

๪๧ (5)

is a Ш1И ѳЩ-set cycle.
Other examples of set cycles for the Ruadratic coRuater-

nionic map can be found in [6].
We would like to remark that some results for the

Ruadratic map on the algebraӢႳШӔЩŤwhich can naturally,
be translated to the coRuaternionic formalismŤwere ob-
tained in [2] and [20].

ʮ.ʯ Bǡȶȋȟȶ ȥȂ ǡȽȽȲǡǯȽȋȥȟ

Due to the appearance of set cycles, we now have to adapt
the usual notion of basin of attraction. We propose to use
the following deƫnition.

5

(a) (b) (c)

(d) (e) (f)

Figure 2: Plots, in different planes parallel to the complex plane, of the basins of attraction of the 2-cycle C2 (red) and of the
(1,2)-set cycle C1,2 (blue). (a) q2 = 0; (b) q2 = 0.2; (c) q2 = 0.4; (d) q2 = 0.8; (e) q2 = 1.25 and (f) q2 = 1.55.
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DǹȂȋȟȋȽȋȥȟ ʰ.Ť Let ൕᅔᆠᅕ ۚ ೶Ⴑ
๪๧צ ೶Ⴒ

๪๧צ ߂
๪๧צ ೶ᅔႼႲ be

an ШഌИ ഍Щ-set cycle for ๪๧. The basin of attraction of ൕᅔᆠᅕ, de-
noted by ӝШൕᅔᆠᅕЩ, is given by

ӝШൕᅔᆠᅕЩ Ҳ
ᅔႼႲ

ސ
ӍႽႱ

ӝШ൞ӍЩИ

where

ӝШ൞ӍЩ ۚҲ Ь๷ ٝ Ӈპხჰ ۚ lim
ᅒ
ഁШ๪ᅒᅔ๧ Ш๷ЩИ ൞ӍЩ Ҳ ѱЭ

and ഁ is a distance ǘnction.

Naturally, when a set cycle reduces to a cycle of isolated
points, we recover the usual deƫnition of basin of attrac-
tion of that cycle.

As an illustrative example, we consider now Ǟo diǃer-
ent cycles for the map ๪๧: the 2-cycle of isolated complex
points

ൕႳ ۚ ๷Ⴒ
๪๧צ ๷ႳИ

where
๷ႲᆠႳ Ҳ

1
ѳ
Ш1 ү ҭѴٹ ҭ ѵ๧ЩИ

and the (1,2)-set cycleൕႲᆠႳ deƫned by (5) with൜ the set given
by (4), for a particular choice of the parameter ๧, the com-
plex number ๧ Ҳ ҭѱМѺѶ Ҭ ѱМѳ๭.

In Fig. 2 we present plots of the basins of attraction of
these Ǟo cycles. The representations are Ǟo-dimensional
plots obtained by assuming ഐႴ Ҳ ѱ and considering diǃer-
ent values for ഐႳ, i.e., all the pictures correspond to plots
in planes parallel to the complex plane. In the plots, the
points in the basin of attraction of the cycle ൕႳ are colored
in red and the points in the basin of attraction of the cycle
ൕႲᆠႳ are colored in blue.

The plot on the top-left of Fig. 2 corresponds to ഐႳ Ҳ ѱ,
i.e., is a plot in the complex plane, and we immediately
recognize the picture associated with the dynamics of the
Ruadratic complex map ๪. As the value of ഐႳ increases, the
Ǟo coRuaternionic basins of attraction appear, showing an
interesting interǞined structure.

ʯ CȥȟǯȘɂȶȋȥȟȶ

As it is well-known, to study the dynamics of complex
Ruadratic maps we only have to consider the particular fam-
ily of maps of the form ഃᅇШചЩ Ҳ ചႳ Ҭ ഀ, since any Ruadratic
map may be converted, by conKugacy, to a member of this
family. In the coRuaternionic case, the situation is totally
diǃerent.

Due to the non-commutativity of the product of co-
Ruaternions, the sum of Ǟo ഌth degree monomials
aႱചaႲച߂ aᅔႼႲചaᅔ and aᆣႱചaᆣႲച߂ aᆣᅔႼႲചaᆣᅔ can not be writ-
ten simply in the form �Ⴑച�Ⴒച߂�ᅔႼႲച�ᅔ and hence, the

general expression of a Ruadratic coRuaternionic polyno-
mial is

ᅕ

ٯ
ᅐႽႲ

aᅐႱചaᅐႲ ചaᅐႳ Ҭ
ᅒ

ٯ
ᅐႽႲ

#ᅐႱച #ᅐႲ Ҭ +И ഍И ഊ ٝ ӎИ

with aᅐᅎ И #
ᅐ
ᅎ and + coRuaternions. Not surprisingly, contrary

to what happens in the commutative case, no conKugacy
eRuivalence of a Ruadratic coRuaternionic polynomial to a
simple form is available.

The important diǃerences from the complex setting
already observed for the simple coRuaternionic Ruadratic
family ๪๧Ш๷Щ Ҳ ๷ႳҬ๧ and the interesting results obtained for
the zeros of unilateral coRuaternionic polynomials lead us
to believe that coRuaternions Ť in particular the study of
more general coRuaternionic Ruadratic maps and of more
general polynomials Ť are an area worth exploring.
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