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1 Introduction

Classically speaking, convolution operators W on in-
tervals Ω are one-dimensional linear integral operators
where the integration kernels depend on the difference
of the arguments and the domain of integration as well
as the range of the independent variable are given by
the same interval:

W ϕ(x) = cϕ(x) +
∫

Ω

k(x− y)ϕ(y) dy = f(x), x ∈ Ω

Ω may be bounded or semi-infinite, or even consist of a
union of intervals. Here and in various other papers W
is briefly called “convolution type operator”, although
this name stands sometimes for the wider class of con-
volution type operators with variable coefficients, con-
sidered in the Lebesgue spaces Lp(Ω), for instance.

In applications, the composition with differential op-
erators is very important, then naturally considered
in Sobolev spaces, Bessel potential spaces, etc. This
leads us rapidly to distribution theory and the world
of pseudo-differential operators, to admit an adequate
generality of settings. However we shall consider in this
article only convolution operators on intervals in spaces
of Bessel potentials in order to demonstrate some new
important aspects of their theory and use for applica-
tions in mathematical physics, explained in the context
of certain diffraction problems.

The crucial key of our recent approach is the study
of operator relations (presented in the form of opera-
tor matrix identities) between the operators associated
with linear boundary value problems and their bound-
ary integral (or pseudo-differential) equations. Particu-
lar interest is devoted to the construction of relations of

“very good quality” that allow explicit analytical solu-
tion and, e.g., an exact description of their singularities.

2 Convolution type operators

2.1 The general setting

We start giving the formal definition of the class of op-
erators that we shall consider. These are the so-called
convolution type operators

WΦA ,Ω = rΩA| eHr,p(Ω) : H̃r,p(Ω) → Hs,p(Ω) , (2.1)

acting between Bessel potential spaces, where r, s ∈ R,
p ∈]1,∞[, Ω is a finite interval or a half-line, A denotes
a bounded, translation invariant operator from Hr,p(R)
into Hs,p(R) (which can therefore be represented as
a distributional convolution due to Hörmander’s the-
orem) and rΩ stands for the restriction of distributions
from S ′(R) to Ω. More precisely we have

Ω =]0, a[ or Ω =]0,+∞[ (0 < a < +∞) (2.2)
A ϕ = K ∗ ϕ = F−1ΦA ·Fϕ, ϕ ∈ S (2.3)
Hr,p = Hr,p(R) = Λ−rLp = F−1λ−r·FLp(R) (2.4)

H̃r,p(Ω) =
{
ϕ ∈ Hr,p : supp ϕ ⊂ Ω

}
, Hs,p(Ω) = rΩHs,p .

As usual, for 1 ≤ p < +∞, Lp(R) denotes the Lebesgue
space of all measurable functions φ on R with finite
norm

‖φ‖Lp(R) =
(∫

R
|φ(y)|p dy

)1/p

.
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S = S (R) denotes the Schwartz space of rapidly de-
creasing smooth functions, S ′ the dual space of gen-
eralized functions of slow growth, and K ∗ indicates a
convolution (operator) with K ∈ S ′. F is the Fourier
transformation first of all defined by

Fφ(ξ) =
∫

R
φ(x) exp(ixξ) dx, ξ ∈ R,

as a bijection from S onto S , and secondly extended
to the much larger set of distributions in S ′ due to the
rule

〈Fu, φ〉 = 〈u, Fφ〉, u ∈ S ′, φ ∈ S

(where 〈v, ϕ〉 is the value of the functional v ∈ S ′ on
ϕ ∈ S ).

We would like to point out that this last distributional
definition of F is very useful for making a great range
of calculations legal and, additionally, for providing a
uniform definition of the Bessel potential spaces Hr,p

in (2.4), for all real values of smoothness orders r and
1 < p < ∞, due to the use of the Bessel potential op-
erator Λ−r = F−1λ−r·F , where λ(ξ) = (ξ2 + 1)1/2 for
ξ ∈ R.

Hr,p is equipped with the norm of the corresponding
functions in Lp, according to (2.4), H̃r,p(Ω) with the
subspace topology and Hs,p(Ω) with the quotient space
topology, respectively. Multi-indexed spaces (r, s ∈ Rn)
can be considered by analogy, as well as scales of
Sobolev-Slobodečkǐı spaces. For the above indicated
range of indices, all those spaces are Banach spaces.

In formula (2.3) (sometimes called convolution theo-
rem), ΦA ∈ L∞loc(R) is known as the Fourier symbol
of the convolution operator A = K ∗.

Starting with a distribution φ ∈ S ′, we are able to
write a convolution operator characterized by φ as
F−1φ ·F : S → S ′. The set of Fourier symbols φ for
which F−1φ ·F has a bounded extension F−1φ ·F :
Lp(R) → Lp(R) is usually denoted by M p, and their el-
ements are called Lp–Fourier multipliers. The set M p

endowed with the norm ‖φ‖Mp = ‖F−1φ ·F‖L (Lp(R)),
and point-wise multiplication, forms a Banach algebra.
Knowing these facts, and considering the influence of
the smoothness orders in the spaces in (2.1), it is pos-
sible to conclude that if λs−rφ ∈ M p then WΦA ,Ω is a
well defined and bounded (linear) operator.

2.2 About the case Ω = R+ = ]0, +∞[

The probably best known convolution type operator
WΦA ,Ω is that one for which r = s = 0 and Ω = R+. In
this case we are working with the famous Wiener-Hopf
operators acting between Lebesgue spaces. These op-
erators received their name due to the pioneering work

of Norbert Wiener and Eberhard Hopf [36] about the
study of integral equations of the form

Wc+Fk,R+ϕ(x) :=

cϕ(x) +
∫ ∞

0

k(x− y)ϕ(y) dy = f(x) , x ∈ R+ , (2.5)

for an unknown ϕ from Lp(R+) where f ∈ Lp(R+) is
arbitrarily given and c ∈ C and k ∈ L1(R) are fixed and
known. The Wiener algebra is defined by

W =
{
φ : φ = c + Fk , c ∈ C , k ∈ L1(R)

}
which is a Banach algebra when endowed with the nat-
ural norm ‖c + Fk‖W = |c|+

∫
R |k(y)| dy and the usual

multiplication operation. The Wiener algebra is a sub-
algebra of M p.

For those who had the opportunity to read last year’s
Feature Article “Mathematical Finance - a glimpse from
the past challenging the future” in CIM Bulletin 17, we
would like to note that the Norbert Wiener mentioned
there is the same person to whom we are referring here.
In fact, Norbert Wiener appeared already in 1921 with
a work about Brownian motion. Later on, he moved
by invitation of his engineering colleagues to the MIT
where he generalized his work on Browian motion to
more general stochastic processes. This in turn led him
to study harmonic analysis around 1930. In this way,
his work on generalized harmonic analysis led him to
study Tauberian theorems in 1932, and his contribu-
tions on this topic won the Böcher Memorial Prize in
1933 (a prize awarded in memory of Professor Maxime
Böcher) [15].

Wiener-Hopf operators have a similar structure as the
so-called Toeplitz operators. Therefore they are often
studied together, see the famous work of Mark Krĕın
[19]. The basic result for Lp spaces reads as follows.

Theorem 2.1 (Krĕın [19]). The Wiener-Hopf oper-
ator Wc+Fk,R+ in (2.5), acting between Lp spaces, is
one-sided invertible if and only if

c + (Fk)(ξ) 6= 0 , for all ξ ∈ R ∪ {∞} . (2.6)

Moreover, if (2.6) holds true, then Wc+Fk,R+ is invert-
ible, only left-sided invertible or only right-sided invert-
ible in case of the integer κ = wind (c + Fk) being
zero, positive or negative, respectively.

Additionally, under the assumption (2.6), it follows that

dim kerWc+Fk,R+ = max{−κ, 0}
dim cokerWc+Fk,R+ = max{κ, 0} .

In the last theorem the notation windφ refers to the
winding number of the graph of φ. As the name sug-
gests, that is the number of windings around the origin
carried out by the point φ(ξ) when ξ runs from −∞ to
+∞.

Knowledge about the kernel and co-kernel of an oper-
ator belongs to the so-called Fredholm theory of this
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operator. By definition, an operator with closed im-
age and with a finite dimensional kernel and co-kernel
is called a Fredholm operator. For Fredholm operators,
the notion of Fredholm index is important. The Fred-
holm index of such an operator is the difference between
the dimension of the kernel and the dimension of the
co-kernel.

A matrix version of the last theorem was obtained
by Gohberg and Krĕın [14]. Instead of (2.6) a corre-
sponding condition for the determinant of the matrix
Fourier symbol characterizes the Fredholm property of
the Wiener-Hopf operator W , which is then not au-
tomatically one-sided invertible, but an index formula
holds still true:

dim kerW − dim cokerW = wind det(cI + Fk) .

In the last decades great advances were made in the
Fredholm study of Wiener-Hopf operators, for much
more complicated classes of Fourier symbols than the
Wiener algebra. An example is the class of piecewise
continuous functions for which, in the Fredholm case,
an auxiliary new function can be constructed by filling
up the gaps in the graph of the symbol that correspond
with its discontinuities. Such extensions of the initially
non-closed graphs are found with the help of some well
defined arcs so that the winding number of the resulting
continuous curve provides also the value for the Fred-
holm index of the corresponding initial Wiener-Hopf
operator (following therefore the spirit of the above the-
orem of Krĕın). As expected, the shape of the arcs de-
pend on the integrability index p. For details see the
work of Roland Duduchava [11].

2.3 About the case Ω =]0, a[

In view of the above background, the idea to treat the
more difficult case of Ω =]0, a[ consists of reducing it
somehow to the situation where Ω = R+. That is
why one of the objectives in the theory of convolu-
tion type operators is to construct operator relations
between convolution type operators with Ω 6= R+ and
others with Ω = R+, although both structures are of
great difference in general.

Due to the interest originating from mathematical
physics applications, several papers were directly de-
voted to the study of the Fredholm property, index for-
mulas, and invertibility of WΦA ,Ω, for the case where
Ω is a finite interval; see for instance the work of
M. P. Ganin [13], B. V. Pal’cev [22, 23], V. Yu. Novok-
shenov [29], Yu. I. Karlovich, I. M. Spitkovsky [17, 18],
M. A. Bastos, A. F. dos Santos [3], M. A. Bastos,
A. F. dos Santos, R. Duduchava [4] and L. P. Castro,
F.-O. Speck [8]. While the early work of M. P. Ganin is
written in a classical form focusing explicit solution in
certain special cases and reduction to Riemann-Hilbert

boundary value problems on R, most of the recent work
is based on the construction of an algebraic equivalence
after extension relation, see [20, 21] and [4] as well,[

WΦA ,Ω 0

0 IY

]
= E

[
WΦ,R+ 0

0 IZ

]
F (2.7)

with a matrix Wiener-Hopf operator WΦ,R+ according
to the previous case where Ω = R+, i.e. to find, beside
of WΦ,R+ , additional Banach spaces Y,Z and invertible
linear operators E,F acting between dense subspaces
of the corresponding direct topological sums such that
(2.7) holds. If E and F are homeomorphisms, (2.7)
is said to be a (topological) equivalence after extension
relation and we write in this case

WΦA ,Ω
∗∼ WΦ,R+ . (2.8)

This is equivalent to the fact that WΦA ,Ω and WΦ,R+

are matricially coupled and WΦ,R+ is an indicator for
WΦA ,Ω, see [1, 2]. In fact, it is known from [2, Theorem
1] that two (general) bounded linear operators acting
between Banach spaces, T and S, are (topologically)
equivalent after extension if and only if they are matri-
cially coupled, that is, if and only if there are additional
operators Tj and Sj (with j = 0, 1, 2) so that[

T T2

T1 T0

]
: X1 ⊕ Y2 → X2 ⊕ Y1

[
S0 S1

S2 S

]
: X2 ⊕ Y1 → X1 ⊕ Y2

are bounded invertible linear operators satisfying[
T T2

T1 T0

]−1

=

[
S0 S1

S2 S

]
. (2.9)

The notion of matricial coupling was introduced and
used in [1], already within the spirit of finding solutions
for integral equations, and we can also find some of the
roots of this notion in the early work of Allen Devinatz
and Marvin Shinbrot [10].

Since 1984 it is known that matricial coupling implies
(topological) equivalence after extension, but only in
1992 it was proved by Bart and Tsekanovskĭı [2] that
the converse holds also true.

Thinking of the related work of several Portuguese re-
searchers on matrix completion problems [5, 9, 30, 32,
33], we would like to point out that matrices T and S
of complex numbers (of size mT × nT and mS × nS ,
respectively), are matricially coupled if and only if

rank T − rank S = mT −mS = nT − nS . (2.10)

This means that once given matrices T and S of arbi-
trary size such that (2.10) holds true, we can solve the
completion problem of constructing additional matrices
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T0, T1, T2, S0, S1 and S2 such that (2.9) occurs (and vice
versa).

Both relations, the algebraic equivalence after extension
relation (2.7) and the topological one (2.8), are reflex-
ive, symmetric and transitive. But evidently (2.8) has
much stronger transfer properties:

• WΦA ,Ω belongs to the same regularity class (in-
vertibility, Fredholm property, generalized invert-
ibility, normal solvability etc.) as WΦ,R+ does,
since the operators have isomorphic kernels and
co-kernels; indices and defect numbers are the
same;

• explicit formulas for generalized inverses or reg-
ularizers of WΦ,R+ imply corresponding formulas
for those of WΦA ,Ω, and vice versa;

• qualitative properties of solutions can be con-
cluded, dependent on the particular form of E
and F : singular behavior, asymptotic expansion
etc. [7, 31];

• operator theoretical conclusions are possible: de-
scription of the spectrum, numerical range, reduc-
tion of order, perturbation, positivity, application
of the fixed point principle, normalization [27] etc.

For the finite interval case, Kuijper [20] proposed an ex-
tension method to construct algebraic equivalence after
extension relations (2.7) based on certain injective and
surjective operators which are determined by the geom-
etry of Ω. Kuijper’s method guarantees the existence of
invertible linear operators E and F that are constructed
just by an algebraic decomposition of the domain and
image spaces into the corresponding defect spaces of the
two operators and their algebraic complements.

Theorem 2.2 (Kuijper). For Ω =]0, a[, the convo-
lution type operator WΦA ,Ω introduced in (2.1) is alge-
braically equivalent after extension to a new Wiener-
Hopf matrix operator

WΦC ,R+ = rR+C : [Lp
+(R)]2 → [Lp(R+)]2 (2.11)

where C = F−1ΦC ·F , ΦC ∈ [L∞(R)]2×2, and

ΦC =

[
τ−aζr 0

λs
−ΦA λ−r

+ τaζs

]
,

with τa(ξ) = exp(iaξ), λ±(ξ) = ξ ± i, for ξ ∈ R, and
ζ = λ−/λ+.

Here we used the abbreviations Lp
+(R) := H̃0,p(R+)

and Lp(R+) := H0,p(R+).

For most cases of the smoothness orders r and s, the
Kuijper theorem was already improved, in the sense that
it is possible to present a topological equivalence af-
ter extension relation in explicit form; namely for non-
critical orders, i.e., if s−1/p ∈ R\Z. In the critical cases

only existence of a stronger relation could be proved.
We will not go into details here but the interested reader
can proceed into this direction by consulting [1, 8].
However, until now there is no general unifying method
to obtain a topological equivalence after extension re-
lation for all orders r, s ∈ R (and 1 < p < +∞) in the
finite interval variant.

It is clear that explicit relations (in the form of opera-
tor matrix identities) have their direct profits. One of
the consequences of such explicit formulas can be seen,
e.g., in the fact that if we know a (generalized) inverse
of WΦC ,R+ , say W−

ΦC ,R+
, then the explicit equivalence

after extension relation[
WΦA ,Ω 0

0 IY

]
= E

[
WΦC ,R+ 0

0 IZ

]
F (2.12)

allows a quick way to find an explicit (generalized) in-
verse of WΦA ,Ω since[

W −
ΦA ,Ω 0

0 IY

]
= F−1

[
W−

ΦC ,R+
0

0 IZ

]
E−1

is a (generalized) inverse of the matricial operator in
the right-hand side of (2.12), and therefore W −

ΦA ,Ω is a
generalized inverse of WΦA ,Ω. Naturally, a similar rea-
soning is obtained for one-sided inverses if they exist.

One can say that Theorem 2.2 provides a reduction of
complexity: We start with a convolution type operator
acting between Bessel potential spaces on the interval
Ω and arrive at a Wiener-Hopf operator acting between
Lebesgue spaces on the interval R+. The price consists
of a larger size of the operator and a more complicated
Fourier symbol, which contains terms oscillating at in-
finity.

2.4 On Fourier symbols ΦA from
the Wiener algebra

Let us now consider operator (2.1) when ΦA is an in-
vertible element in the Wiener algebra on the real line

ΦA ∈ G W (2.13)

and

Ω =]0, a[, p = 2, r = s = k ∈ Z. (2.14)

In this case, the Fourier symbol ΦC of the last theorem
takes the particular form

ΦP =

[
τ−aζk 0

ΦA ζk τaζk

]
.

A so-called Wiener-Hopf factorization [34] of ΦP is
well-known in the case of ΦA ≡ 1 and k = 0, because[

τ−a 0

1 τa

]
=

[
τ−a 1

1 0

] [
1 τa

0 −1

]
, (2.15)
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which implies a formula for the inverse of WΦA ,Ω in the
case of a sectorial symbol

ΦA = c (1 + ε), ‖ε‖L∞(R) < 1 (2.16)

in terms of a Neumann series (provided c ∈ C\{0},
k = 0 and p = 2 are satisfied).

We will now describe a procedure to obtain a gener-
alized inverse of (2.1) under the assumptions (2.13)–
(2.14) for general k ∈ Z and some restrictions; more
precisely the formulas are:

(a) explicit in closed analytical form, if ΦA is rational;

(b) explicit in analytical form plus Neumann series, if
ΦA is not rational.

The strategy is as follows

(i) Letting w = windΦA , we consider, instead of

WΦA ,Ω = rΩF−1ΦA ·F : H̃k,p(Ω) → Hk,p(Ω),

the restricted or continuously extended operator

W
(s)

ΦA ,Ω : H̃s,p(Ω) → Hs,p(Ω),

W
(s)

ΦA ,Ω =


Rst rΩF−1ΦA ·F , s > k

Ext rΩF−1ΦA ·F , s < k

WΦA ,Ω , s = k

(2.17)

respectively, where s = −w.

(ii) We relate the operator (2.17) (in the sense of The-
orem 2.2) with a Wiener-Hopf operator

W
(s)

ΦA ,Ω
∗∼ WΦP

(s),R+
= rR+F−1ΦP

(s) ·F

: [L2
+(R)]

2 → [L2(R+)]
2

ΦP
(s) =

[
τ−aζs 0

ΦA ζs τaζs

]

where wind (ΦA ζs) = 0.

(iii) Now we consider the particular cases ΦA ζs =
Φ0 r+ if s ≥ 0 or ΦA ζs = Φ0 r− if s ≤ 0 where

Φ0 satisfies (2.16) and r± ∈ G R±(
•
R), i.e., r±

are invertible rational functions which are restric-
tions to

•
R = R∪{∞} of holomorphic functions in

the upper/lower half-plane and continuous in the
union of the upper/lower half-plane with the real
line. It is known [13] that the previous factoriza-
tion exists (due to the sign of s) and that it can
be constructed by means of Weierstrass approxi-
mation.

(iv) So we have to factor (after elementary factoriza-
tion)

G =

[
τ−aζsr−1

+ 0

Φ0 τaζsr−1
−

]

=

[
τ−aρ1 0

Φ0 τaρ2

]

where either r− = 1 (for s ≥ 0) or r+ = 1 (for
s ≤ 0), and all non-oscillating symbols are 1 at ∞

Φ0(∞) = r+(∞) = r−(∞) = ρ1(∞) = ρ2(∞) = 1.

(v) We reduce G to a non-oscillating symbol G0 by
using (2.15)

G =

[
τ−a 1

1 0

]
G0

[
1 τa

0 −1

]

with

G0 =

[
Φ0 τa(Φ0 − ρ2)

τ−a(ρ1 − Φ0) ρ1 − Φ0 + ρ2

]
.

(vi) Consider the principal part of G0

G1 =

[
1 τa(1− ρ2)

τ−a(ρ1 − 1) ρ1 − 1 + ρ2

]

separately in the two cases s ≥ 0 or s ≤ 0, respec-
tively:

(vi+) s ≥ 0, ρ1 = ζsr−1
+ , ρ2 = ζs

G1 =

[
1 τa(1− ζs)

τ−a(ζsr−1
+ − 1) ζsr−1

+ − 1 + ζs

]

=

[
1 0

τ−a(ζsr−1
+ − 1) ζ2sr−1

+

]

×

[
1 τa(1− ζs)

0 1

]

=

[
1 0

b− 1

] [
1 0

0 ζ2s

] [
1 0

b+ r−1
+

]

×

[
1 τa(1− ζs)

0 1

]

where b− + b+ζ2s = τ−a(ζsr−1
+ − 1), i.e., b− =

P− τ−a(ζsr−1
+ − 1) and b+ = P+ τ−a(ζ−sr−1

+ −
ζ−2s), with P± = Fχ±F−1 being the Cauchy
projection operators due to the characteristic
functions χ± of R±;
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(vi−) s ≤ 0, ρ1 = ζs, ρ2 = ζsr−1
−

G1 =

[
1 τa(1− ζsr−1

− )

τ−a(ζs − 1) ζs − 1 + ζsr−1
−

]

=

[
1 0

τ−a(ζs − 1) 1

] [
1 τa(1− ζsr−1

− )

0 ζ2sr−1
−

]

=

[
1 0

τ−a(ζs − 1) 1

] [
1 c−

0 r−1
−

] [
1 0

0 ζ2s

]

×

[
1 c+

0 1

]

where c+ + c−ζ2s = τa(1 − ζsr−1
− ), i.e., c+ =

P+ τa(1− ζsr−1
− ) and c− = P− τa(ζ−2s− ζ−sr−1

− ).

(vii) Thus, since one-sided inverses are stable against
small perturbations, we obtain a one-sided inverse
of WΦP

(s),R+
in both cases and indWΦP

(s),R+
=

−2s = 2w. From (ii) we have a one-sided inverse
of W

(s)
ΦA ,Ω. Consequently, due to the so-called Shift

Theorem [6, 12] and (i), we are able to obtain a
generalized inverse of WΦA ,Ω, for the present case.

3 Applications in diffraction
theory

In this section we would like to exemplify the use of con-
volution type operators in some boundary value and/or
transmission problems in weak formulation which orig-
inate from diffraction of time-harmonic waves by an in-
finite strip, see [16, 25, 26, 28, 35] for a detailed back-
ground. The proofs of the results presented below can
be found in [8].

A. Sommerfeld was the first to formulate and solve a
canonical boundary value problem for the Helmholtz
equation which governs time-harmonic scalar waves. In
his famous Habilitation Thesis of 1896 he was deal-
ing with geometries formed by half-planes and wedges.
He used series expansions and Riemann surface con-
cepts to arrive at the solutions of corresponding Dirich-
let boundary value problems. The so-called Sommer-
feld integrals were afterwards systematically used by
authors from Soviet Union and culminated in what is
now known as the Maliuzhinets method [24]. West-
ern authors preferred using the so-called Wiener-Hopf
method, based on the Fourier transformation and fac-
torization of the Fourier symbol of the corresponding
convolution type operators – in the spirit of the last
section.

Here we will consider the diffraction by a strip of an
incoming plane wave u0 of the form

u0 = exp [−ik(x1 cos θ0 + x2 sin θ0)] ,

where θ0 is the angle of incidence (see the Figure), and
we have omitted the time harmonic factor exp(−iω0t).

A plane wave incident upon a strip located on the x1 axis,

between 0 and a, and having boundary data g1 and g2 on its

banks.

The wave number k = ω0
√

εµ is assumed to be complex
satisfying =m (k) > 0 , i.e., ε and µ are parameters of
a lossy medium. The electromagnetic theory yields, for
a large spectrum of materials, a quasi-homogeneous re-
fracted wave, which propagates perpendicularly to the
boundary regardless of the incident angle. The x3–
dependence is therefore cancelled due to the perpen-
dicular wave propagation, leading us to the consider-
ation of a R2 situation with the strip Σ and its x1–
complement Σ′ here represented by

Σ =
{
x = (x1, x2) ∈ R2 : x1 ∈ [0, a], x2 = 0

}
= [0, a]× {0} (3.18)

Σ′= (R\]0, a[)× {0} . (3.19)

The diffracted or scattered field then satisfies the
Helmholtz equation as well as the total field does, and
several possible boundary conditions can be valid on
the banks of Σ corresponding to different material be-
havior.

These considerations lead us to the problem of finding
an element u ∈ Lp(R2) such that

u± = u|R×R± ∈ H l,p(R× R±) (3.20)

Lu± = (∆ + k2)u± = 0 in R× R± (3.21)
[u]Σ′ = (u+(x)− u−(x))|x∈Σ′ = 0 (3.22)[

∂u

∂x2

]
Σ′

=
(

∂u+

∂x2
(x)− ∂u−

∂x2
(x)

)
|x∈Σ′

= 0 (3.23)

where p ∈]1,∞[, l > 1/p, l − 1/p /∈ N, k ∈ C with
=m (k) > 0 are given and

Bju(x1) = Σσ1+σ2≤mj
b+
σ,jD

σu+(x1, 0)

+b−σ,jD
σu−(x1, 0)

= gj(x1), x1 ∈ [0, a], j = 1, 2(3.24)

where σ = (σ1, σ2),m = (m1,m2) ∈ N2
0, b±σ,j ∈ C and

gj ∈ H l− 1
p−mj ,p(]0, a[) are assumed to be known.
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From the physical point of view, one is mainly inter-
ested in solutions in the energy space, u ∈ H1,2(R2 \Σ)
[26]. But we know already from the study of half-plane
problems that many of these are ill-posed in that space
setting [27]. They need a normalization which is often
implemented by change of the space parameters l, p of
H l,p. Another reason to consider the problem in a scale
of spaces is to look for regularity results and asymptotic
expansion [31].

The boundary values of u are taken in the sense of the
trace theorem. The choice of the other data spaces re-
sults from the representation formula [26] (cf. Prop.
3.1 later on) as a consequence of (3.24). The orders
of the boundary operators Bj are arbitrary (from the
mathematical point of view).

We associate an operator with the problem, say

P(l,p) : u 7→ g = (g1, g2) (3.25)

where the domain D(P(l,p)) of P(l,p) is characterized
by (3.20)–(3.23), the action and the image space of
P(l,p) are described by (3.24) with the corresponding
norms. Evidently the problem (3.18)–(3.24) is well-
posed in this space setting if and only if the operator

P(l,p) : X → Y , (3.26)
X = H l,p(R× R+)×H l,p(R× R−),

Y = ×2
j=1H

l− 1
p−mj ,p(]0, a[)

is boundedly invertible.

The main objectives are:

(i) to find the spaces in which the operator P(l,p)

is boundedly invertible and those where it is nor-
mally solvable (which implies the Fredholm prop-
erty in the elliptic case and the existence of a gen-
eralized inverse in terms of factorization);

(ii) to determine the defect numbers (not only the in-
dex) of P(l,p) by computing the partial indices of
a matrix symbol, which appears in a topological
(not only algebraic) equivalence after extension
relation in the above-mentioned sense;

(iii) to get a generalized inverse of P(l,p), if possible

(a) in closed analytical form, or
(b) in terms of a uniformly convergent series un-

der physically reasonable assumptions on the
parameters. As a matter of fact it is not pos-
sible to deduce these results only from an al-
gebraic equivalence after extension relation
between P(l,p) and a Wiener-Hopf operator,
cf. [4].

The convolution type operators enter here in the scene
because we are able to recognize a relation between
P(l,p) and such an operator in form of an operator ma-
trix identity.

Proposition 3.1. The operator P(l,p) is (algebraically
and topologically) equivalent to a convolution type op-
erator on the interval [0, a] acting in the corresponding
boundary data spaces of Bessel potentials. More pre-
cisely P(l,p) = WΦA ,Ω B−T0 where the trace operator

T0 : D(P(l,p)) →
[
H l− 1

p ,p(R)
]2

,

T0u = u0 = (u+
0 , u−0 )

T
= (u+

|x2=0, u
−
|x2=0)

T

is bounded invertible by the representation formula

u = K u0

u(x1, x2) = F−1
ξ 7→x1

{
exp[−t(ξ)x2] û+

0 (ξ) χ+(x2)

+ exp[t(ξ)x2] û−0 (ξ) χ−(x2)
}

.

Here K is called a Poisson operator, ϕ̂ denotes the
Fourier transform of ϕ, and t(ξ) = (ξ2 − k2)1/2. Fur-
ther

B− = F−1

[
1 −1

−t −t

]
·F

:
[
H l− 1

p ,p(R)
]2

→ X0 = H l− 1
p ,p(R)×H l− 1

p−1,p(R)

maps the Dirichlet trace vector u0 = (u+
0 , u−0 )

T
= T0 u

(for u ∈ D(P(l,p))) into the jump vector of Dirichlet
and Neumann data

f =
(
u+

0 − u−0 , u+
1 − u−1

)T
=

(
[u]Σ∪Σ′ ,

[
∂u

∂x2

]
Σ∪Σ′

)T

.

The operator WΦA ,Ω : X0 → Y is an operator of
the form (2.1) where r = (l − 1/p, l − 1 − 1/p), s =
(l −m1 − 1/p, l −m2 − 1/p) and

ΦA (ξ) =

[ ∑
|σ|≤m1

1
2

(
b+
σ,1 − b−σ,1

)
(−iξ)σ1(−t(ξ))σ2∑

|σ|≤m2

1
2

(
b+
σ,2 − b−σ,2

)
(−iξ)σ1(−t(ξ))σ2

∑
|σ|≤m1

−1
2t(ξ)

(
b+
σ,1 + b−σ,1

)
(−iξ)σ1(t(ξ))σ2∑

|σ|≤m2

−1
2t(ξ)

(
b+
σ,2 + b−σ,2

)
(−iξ)σ1(t(ξ))σ2

]
.(3.27)

Corollary 3.2. The system of equations WΦA ,Ωf = g
decouples, i.e. ΦA is triangular after multiplication with
a constant matrix, if and only if some linear combi-
nation of the two boundary conditions (3.24) contains
only a linear combination of either “difference” or “sum
data”, i.e. it can be written as

Bu(x1) =
∑

|σ|≤m0

bσDσ(u+ ± u−)(x1, 0), x1 ∈ [0, a].

Using the theory of the last section we can now proceed
with finding the concrete form of the related Wiener-
Hopf operator.
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Theorem 3.3. Let P(l,p) be the operator defined by
(3.18)–(3.26). Then we have the equivalence after ex-
tension relation

P(l,p) ∗∼WΦU ,R+ ∈ L
([

Lp
+(R)

]2n
, [Lp(R+)]2n

)
(3.28)

where n = 2 or 1 (in certain decomposing cases de-
scribed below) and

ΦU =

[
τ−aζrIn 0

λs
−ΦA λ−r

+ τaζsIn

]
(3.29)

where ΦA is given by (3.27) or can be replaced by a
scalar symbol according to Corollary 3.2 in the case n =
1, respectively. The orders are r = (l−1/p, l−1−1/p),
s = (l − m1 − 1/p, l − m2 − 1/p) or, for n = 1, are
components of these two vectors.

In the last result the equivalence after extension is an
algebraic one but for certain cases we can perform a
topological relation. This is the case of p = 2, by using
Theorem 3 of [2].

We notice that in the decomposing case, ΦA is trian-
gular (say upper). Therefore, one can identify and use
(in the following way) an operator WΦU2 ,R+ that has
the form (3.28)–(3.29) with n = 1. If it is invertible we
have

P(l,p) ∗∼

[
WΦU1 ,R+ ∗

0 WΦU2 ,R+

]
=

=

[
I ∗

0 WΦU2 ,R+

] [
WΦU1 ,R+ 0

0 I

]
,

i.e., equivalence after extension to WΦU1 ,R+ and the re-
mainder operator has the same form (3.28)–(3.29) with
n = 1.

For technical reasons we extend in this final part the
definition of λ±(ξ) = ξ ± i and work now with

λ±(ξ) = ξ ± k , =m (k) > 0 .

This makes the Fourier symbols simpler since we can
combine factors λs

± with t, but does not change the
principal nature of factorizations or the topology of
Bessel potential spaces Hs,p = λ−s

+ Lp = λ−s
− Lp.

If WΦU2 ,R+ is not invertible, but a shifted one W
(w)
ΦU2 ,R+

:

H̃w,p(R+) → Hw,p(R+) (defined by restriction or con-
tinuous extension) is invertible for some w = (w1, w1) ∈
R2, one can try to consider W

(w,w)
ΦU ,R+

first and then “shift
back”, i.e. express results for WΦU ,R+ in terms of re-
sults for W

(w,w)
ΦU ,R+

.

Corollary 3.4. The symbol ΦU can be written in the
form

ΦU = ζr

[
τ−aIn 0

λs−r
− ΦA τaζs−rIn

]

where s− r ∈ Zn, i.e. λs−r
− and ζs−r are rational, pre-

cisely s − r = (−m1, 1 − m2) if n = 2, which admits
integer components up to 1. Moreover, the elements of
λs−r
− ΦA are:

• Hölder continuous functions with a possible jump
at infinity, and

• algebraic compositions of ζ1/2 and rational func-
tions.

Arriving at this point, a Wiener-Hopf factorization of
ΦU and the operator relations of the former section
would lead us to (generalized) inverses of P, and there-
fore to solutions of the initial boundary value problem
(3.24). However the factorization problem in general is
not solved and remains an open problem for challenging
future research.

4 Conclusion

The operator theoretic approach enables us to identify
clearly the relations between the (operator associated
with the) given problem and the (operator associated
with the) boundary pseudodifferential equations. One
can analyze simultaneously classes of problems with dif-
ferent boundary conditions and space settings with re-
spect to the questions mentioned before: Solvability,
explicit analytical presentation (in particular cases) and
qualitative results like regularity, singular behavior and
asymptotic expansion. The method was demonstrated
for a prototype class of problems from diffraction the-
ory.
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