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1 Introduction

Mathematical Finance is a flourishing area of modern
science that was born in 1900 with Louis Bachelier’s
Ph.D thesis “Théorie de la speculation” [1]. This work
is a result of his attempt to model stock prices on the
Paris stock market. Since then, its importance has in-
creased not only as the basis of the hectic financial ac-
tivity of the modern world but also as a source of many
interesting mathematical problems and theories.

Modelling of risky asset prices and modern option pric-
ing techniques are often considered among the most
mathematically complex of all applied areas of finance.
Their roots rely on stochastic calculus and their devel-
opment is intimately related to the history of stochastic
integration. In fact, financial phenomena and instru-
ments (bank accounts, bonds, stocks, options, rates,
currencies, etc.) combine on the one hand a determin-
istic behaviour and on the other a degree of uncertainty
due to time, risks and the (random) environment. That
is why the theory of stochastic processes perfectly suits
the needs of financial theory and strategy. What is
commonly referred to as Mathematical Finance can be
considered in a näıf way as the resultant of two vectors,
stochastic integration and modelling of asset prices of
financial markets operating under uncertainty.

In this text, given that it is impossible to give a
panoramic or exhaustive view of the subject, we decided
to focus on some key moments that in a pioneering way
have determined the development of Mathematical Fi-
nance due to contributions either on the analysis and
dynamics of financial markets or on the closely related
mathematical theory.

2 Starting at the beginning -
Bachelier and a work ahead of
its time

Bachelier was the first person to model the dynamics
of stock prices based on random walks and their limit
cases. Combining probability techniques with Markov
property, and using the fact that the Gaussian kernel
gives the fundamental solution of the heat equation, he
was able to model and study the market noise of the
Paris Stock Market.

He proposed to regard the stock prices S = (St)t≥0 as
a random (stochastic) process

St = S0 + σWt, t ≥ 0,

where W = (Wt)t≥0 is a stochastic term describing
the noise, that is, the random component of the phe-
nomenon that is called the Brownian motion or Wiener
process.

In the following model, still designated as Bachelier’s
model, the stock prices S = (St)t≤T follow a Brownian
motion with drift, that is,

St = S0 + µt+ σWt, t ≤ T. (2.1)

In (2.1), it is considered that there is a (B,S)−market
such that the bank account B = (Bt)t≤T

remains fixed,
Bt = 1. In a differential form, Bachelier’s model can
be written as

dSt = µ.dt+ σdWt.

In his work, Bachelier gave the price for a European
option. Recalling the definition, option is generally de-
fined as “a contract between two parties in which one
party has the right but not the obligation to buy or sell
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some underlying asset, at an agreed strike price K, at
an assigned time T , called maturity, while the second
party, the writer, has the obligation to sell or buy it if
the first party wants to exercise his right”. Call options
are contracts that give the option holder the right to
buy a given asset, while put options, conversely, entitle
the holder to sell. Having rights without obligations has
financial value. So, option holders must purchase these
rights, that is, must pay a premium. This type of con-
tract derives its value from some underlying asset; so,
they are called derivative assets or simply derivatives.

At expiry or maturity, a call option is worthless if
ST < K but has the value ST − K if ST > K. This
means in financial terms that its payoff is

(ST −K)+ = max (ST −K, 0) .

If, at maturity, ST > K, then the option buyer obtains
a profit equal to (ST −K) since he can buy the stock
at the price K and sell it immediately at ST . On the
other hand, if at maturity ST < K, then the buyer
simply does not exercise his right and his loss is just
the premium paid CT . Starting from Brownian motion,
Bachelier derived a formula for the expectation of the
payoff (ST −K)+ of a call option

CT = E(ST −K)+

which gives us the value of the reasonable (fair) price
to be paid by the buyer to the writer of a call option at
the moment of the contract, that is, as referred above,
the premium. Considering the density function and the
normal distribution, respectively,

ϕ (x) =
1√
2π
e−x2/2 and Φ (x) =

∫ x

−∞
ϕ (y) dy,

(2.2)
the following formula

CT = (S0 −K) Φ
(
S0 −K

σ
√
T

)
+ σ

√
Tϕ

(
S0 −K

σ
√
T

)
(2.3)

is called Bachelier’s formula (which is in fact an up-
dated version of several of Bachelier’s results on op-
tions). It defines the price CT of the standard European
call option with pay-off function (ST − K)+ for the
Bachelier model (2.1). The main interest of this model,
besides of course the historical aspect, lies in the fact
that it is both arbitrage free (does not allow riskless
profits) and complete (is replicable) [15].

Correlations between price assets and options can be
used by the investor to construct a portfolio in such a
way that risk can be reduced – hedging strategy. So,
valuing options becomes of great importance.

We have referred above to Brownian motion. Originally
named after the biologist Robert Brown, this term has
two meanings: the physical phenomenon that describes

the random movement of small particles immersed in
a fluid and the one of the mathematical models (used,
for instance, to describe that movement). In the physi-
cal context, it was first modelled by Albert Einstein in
1905 [5]. At that time, the molecular nature of matter
was still a controversial idea. Einstein observed that, if
the kinetic theory of fluids was right, every small parti-
cle of water would receive a random number of impacts
of random strength and from random directions in any
short period of time. This random bombardment would
explain the jittering motion of small particles exactly in
the way described by Brown.

However, five years before, in 1900, Louis Bachelier had
already given a mathematical theory of Brownian mo-
tion in his doctoral thesis, using a stochastic process
as a model for the price and relying on his belief in
the power of the law of probability to explain the stock
market

“Si, a l’égard de plusieurs questions traitées dans cette
étude, j’ai comparé les résultats de l’observation a ceux
de la théorie, ce n’ eétait pas pour vérifier des for-
mules etablies par les méthodes mathématiques, mais
pour montrer seulement que le marché, a son insu, obéit
a une loi qui le domine: la loi de la probabilité”.

Bachelier’s work had little impact for a long time, in
spite of the favourable report of his mentor, Henri
Poincaré. His mathematical reasoning was not rigor-
ous; and could not be, since the mathematical tech-
niques used later to make it rigorous, that is, measure
theory and axiomatic probability, had not been devel-
oped yet. But his results were basically correct. How-
ever, the “taste and goals” of the scientific elite of that
time were not sensitive to mathematical applications
for economics problems. Although there are some refer-
ences to Bachelier results in later works of Kolmogorov,
Doob and Itô, for example, it was only fifty years later
that his thesis came to the limelight after having been
“discovered” in the MIT library by the economist Paul
Samuelson, Nobel Laureate in Economics in 1970. The
impact of Bachelier’s work in Samuelson’s opinion can
be clearly seen in his remark “Bachelier seems to have
had something of a one-track mind. But what a track”
[13] (see also [14]).

3 The classical Black-Scholes
model

Bachelier’s analytical valuation for options exhibited
however a weakness as far as financial instruments were
concerned, since the prices in the model could take neg-
ative values. In the 1960s, in order to overcome that
weakness, Samuelson suggested modelling prices using
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what is now designated as geometric Brownian motion

St = S0e
σWt+(µ−σ2/2)t (3.1)

and which, from Itô’s calculus, can be written in the
differential form

dSt = St (µdt+ σdWt) . (3.2)

This suggestion provided a workable model for asset
prices and anticipated the central result of modern fi-
nance, the Black-Scholes option-pricing formula. It is
assumed that the bank account B = (Bt)t≥0 evolves
according to the formula

dBt = rBtdt,

where r is the interest rate, whereas the price of the
risky asset evolves according to the stochastic differen-
tial equation (3.2) whose solution with initial condition
S0 is (3.1). The coefficients are constant: µ measures
the global behaviour of S while the coefficient σ, called
the volatility, measures the importance of the noise,
that is, of the influence of the Brownian motion. The
larger σ is, the greater the influence of Brownian mo-
tion. Expression (3.1) shows that S(t) > 0.

Assuming that the function C = C (t, S) is sufficiently
smooth, Fisher Black and Miron Scholes [2] and Robert
Merton [12], working independently, obtained as model
for the dynamics of a European call option the so-called
fundamental equation

∂C

∂t
+

1
2
σ2S2 ∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0 (3.3)

with the final condition

C (T, S) = max (S −K, 0) . (3.4)

An explicit solution can be determined using methods
of partial differential equations that involve transform-
ing this problem into the heat equation with an ade-
quate condition. The solution, that is, the price of a
call option at time t is given by

C (t, S) = SΦ (d+)−Ke−r(T−t)Φ (d−) ,

where Φ is defined in (2.2) and

d± =
ln S

K + (T − t)
(
r ± σ2

2

)
σ
√
T − t

,

and Black-Scholes Option Pricing Formula is

CT = S0Φ

 ln S0
K + T

(
r + σ2

2

)
σ
√
T


−Ke−rT Φ

 ln S0
K + T

(
r − σ2

2

)
σ
√
T

 .

This result can be derived by a so-called martingale
proof but using the solution of the fundamental equa-
tion was, in fact, the original proof established by Black,
Scholes and Merton. If we look at Bachelier’s formula,
it can be easily recognized as a forerunner of the Black-
Scholes formula.

On account of the above achievement, the Nobel prize
in Economics was awarded to R. Merton and M. Sc-
holes in 1997, thus also honoring F. Black (who died in
1995).

The above models concern continuous time. In 1976,
three years after the Black-Scholes-Merton model, a
model for discrete time was developed: the Cox-Ross-
Rubinstein binomial model [3]. It assumed a risk-
neutral world, that is, it recognized that investor risk
preferences did not interfere in the pricing of deriva-
tives. This model was simple, flexible and suitable for
pricing American as well as European options. In fact,
Black-Scholes-Merton gave an exact solution for Euro-
pean options, that could be exercised only at maturity,
but was not able to provide values for American op-
tions that could be exercised before expiry. In general,
solutions for American options can only be obtained
numerically. This explains the important role played
by numerical analysis and computational techniques in
option pricing.

Asset and option pricing are fundamental elements in
Portfolio Theory. This theory concerns the construction
of portfolios, taking into account the benefits of diver-
sification, so that expected returns may be optimized
for a given level of market risk. Pioneering work con-
cerning the Modern Portfolio Theory was carried out
by Harry Markowitz [11], Nobel Laureate in Economics
in 1990.

4 From finance to stochastic
analysis

From the above paragraphs it is clear that financial phe-
nomena and risky asset modelling are a wonderful play-
ground for Mathematics.

A rigorous mathematical theory of Brownian motion
was developed by Norbet Wiener in 1923 [16] by com-
bining new results on measure theory with Fourier anal-
ysis. On account of those studies, Brownian motion is
commonly referred to as Wiener process.

In the 1930s, a fundamental role was played by Kol-
mogorov. Among numerous major contributions made
in a whole range of different areas of Mathematics, ei-
ther pure or applied, he built up probability theory in
a rigorous way, providing the axiomatic foundation on
which the subject has been based ever since, and laid
the foundations of the theory of Markov processes [10].
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The concept of martingales in probability theory was
introduced by Paul Pierre Lévy in the late 1930s. It
was developed extensively by Doob who published a
fundamental work on the subject [4] in 1953.

Considered as the father of stochastic integration,
Kiyosi Itô published his first paper on the subject in
1944 [8]. Reflecting on the studies of Wiener and Kol-
mogorov and attempting to study the connection be-
tween partial differential operators, such as the heat op-
erator, and Markov processes, he constructed a stochas-
tic differential equation of the form

dXt = σ (Xt) dWt + µ (Xt) dt

where W represents a standard Wiener process. This
formula created two problems: the first one was to give
sense to σ (Xt) dWt and the second one was to relate his
work with Kolmogorov’s results on Markov processes.
He gave a positive answer to those problems. Namely,
he developed a new calculus to solve the problem aris-
ing from the fact that Riemann-Stieljes integration was
no longer valid. This new differential/integral calculus
was named after his work as Itô calculus.

By 1980, arbitrage pricing theory had become well un-
derstood. A close link between nonexistence arbitrage
opportunities and martingales was established in the
so-called Fundamental Theorem of Asset Pricing. This
theorem is due to Harrison, Kreps and Pliska [6, 7] and
became a pioneering result after which many contri-
butions appeared to improve the understanding of the
subject. It points out that stochastic integration is ex-
tremely well suited to the study of stochastic processes
arising in finance.

5 Conclusion

The financial world is fast-changing and needs constant
updating in order to operate financial resources where
new financial instruments and strategies are always ap-
pearing. Determination of opportunities is becoming
more and more reliant on complex mathematics, which
drives studies into new areas.

Among all the possible directions, presently most of
them are related to incomplete markets, in which Black-
Scholes style replication is impossible. Risk neutral
world is no longer assumed and any pricing formula
must involve some balance of the risks involved. Mov-
ing to incomplete markets means that mathematical fi-
nance must inevitably demand new approaches and lead
to new developments in mathematical research.

In the above paragraphs we have tried to give the reader
a combination of a slight flavour of some financial con-
cepts and instruments that concern Financial Theory,
together with a quick look at the Mathematics involved.

Above all, we aim to provide a stimulating glance at
the huge complexity and multidisciplinary features of
the subject, as well as at the reciprocal challenges con-
tinuously appearing between practical and theoretical
aspects.
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