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1 Background

The practical significance of the problem of combining
logics is widely recognized, namely in knowledge rep-
resentation (within artificial intelligence) and in formal
specification and verification of algorithms and proto-
cols (within software engineering and security). In these
fields, the need for working with several calculi at the
same time is the rule rather than the exception. For in-
stance, in a knowledge representation problem it may be
necessary to work with temporal, spatial, deontic and
probabilistic aspects (e.g., for reasoning with mixed as-
sertions like “with probability greater than 0.99, some-
time in the future smoking will be forbidden every-
where”). And in a software verification problem it may
be necessary to mix equational, epistemic and dynamic
logic features. That is, one needs, at least, to be able
to develop theories with components in different logic
systems, or, even better, to work with theories defined
in the combination of those logic systems (where such
mixed assertions are allowed).
Motivated by these applications that require the joint
use of several deduction formalisms, the interest in com-
bination of logic systems has recently been growing (as
reflected in the series [9, 20, 2, 18, 26, 1]), but the topic
is also of interest on purely theoretical grounds. For in-
stance, one might be tempted to look at predicate tem-
poral logic as resulting from the combination of first-
order logic and propositional temporal logic. However,
the approach will be significant only if general preserva-
tion results are available about the combination mech-
anism at hand. For example, if it has been established
that completeness is preserved by a combination mech-
anism • and it is known that logic system L is given
by L′ •L′′, then the completeness of L follows from the
completeness of L′ and L′′. No wonder that much theo-
retical effort has been dedicated to establishing preser-
vation results and/or finding preservation counterexam-
ples about different combination mechanisms. For an
early overview of the practical and theoretical issues see
also [4].

Several forms of combination have been studied, like
product [30, 21, 22, 23], fusion [38, 28, 29, 40, 19],
temporalization [12, 13, 41, 14], parameterization [6],
synchronization [33] and fibring [15, 16, 3, 17, 34, 42].
Fusion is the best understood combination mechanism.
In short, the fusion of two modal systems leads to a
bimodal system including the two original modal oper-
ators and common propositional connectives. Several
interesting properties of logic systems (like soundness,
weak completeness, Craig interpolation property and
decidability) were shown to be preserved when fusing
modal systems (see [28, 27]).

More recently, research has been directed at fibring,
a more general combination mechanism proposed by
Gabbay [15, 16]. Fibring can be applied beyond the uni-
verse of modal systems and captures fusion as a special
case. Although well understood at the proof-theoretic
level since it was proposed, fibring raised some difficul-
ties at the semantic level [34].

For the sake of simplicity, we adopt here a basic uni-
verse of logic systems encompassing only propositional-
based systems endowed with Hilbert calculi and ordered
algebraic semantics. Nevertheless, this universe is rich
enough to illustrate interesting features of fibring and to
provide the basis for the combination of systems vary-
ing from intuitionistic to many-valued logics (includ-
ing modal systems as special cases). Those interested
in wider universes (encompassing first-order quantifica-
tion, higher-order features, non truth-functional seman-
tics, non Hilbert calculi, etc) where fibring can still be
defined should look instead at [35, 36, 7, 5, 25, 31].

It is straightforward to define fibring in this basic uni-
verse. And, with respect to preservation results, we
concentrate our attention on finding sufficient condi-
tions only for the preservation of (strong global) com-
pleteness. Barring some examples and omitted proofs
that can be found in the literature, the following pre-
sentation is self contained.
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2 Logic systems

A signature C is an N-indexed family of countable sets.
The elements of each Ck are called constructors of arity
k.

Let T (C,Ξ) be the free algebra over C generated by Ξ.
The language L(C) is T (C, ∅). We shall consider differ-
ent signatures but we assume fixed once and for all a
set Ξ of propositional variables. Fixed Ξ, the schema
language T (C,Ξ) is denoted by sL(C).

A rule over C is a pair r = 〈Θ, η〉 where Θ ∪ {η} ⊆
sL(C). We shall work only with finitary rules, that is,
we assume that the set Θ of premises is finite.

An ordered algebra over C is a tuple A = 〈A,≤,>, ·A〉
where 〈A,≤,>〉 is a topped partial order and 〈A, ·A〉 is
an algebra over C.

A logic system is a tuple L = 〈C,A, R`, Rg〉 where C is
a signature, A is a class of ordered algebras over C (the
models of the system) and both R` and Rg are sets of
rules over C. It is common to assume that the set of
local rules R` is included in the set Rg of global rules.

As an example consider the following intuitionistic sys-
tem. The signature contains the usual connectives. The
class of models includes every ordered algebra induced
by a Heyting algebra (with a ≤ b iff a∧A b = aub = a).
The local rules are the usual rules of a Hilbert calculus
for intuitionistic propositional logic. Finally, there are
no extra global rules. A detailed presentation of intu-
itionistic logic along these lines can be found in [32].

Consider also the example of the following modal sys-
tem. The signature contains the usual basic proposi-
tional constants and connectives plus the modal opera-
tor �. The class of models includes every ordered alge-
bra induced by a general Kripke structure 〈W,B, ρ, V 〉
as follows:

• A = B; a ≤ b iff a ⊆ b; > = W ;

• πA = V (π);

• ¬A(a) = W \ a;

• ⇒A(a, b) = (W \ a) ∪ b;

• �A(a) = {w ∈W : wρv implies v ∈ a for every
v ∈W}.

(The notion of general Kripke structure was proposed
in [39] in order to obtain a completeness theorem for
modal logic.) A more direct approach would be to take
as models the ordered algebras induced by modal alge-
bras. The local rules include the classical propositional
rules plus the normalization axiom

〈∅, (�(ξ1 ⇒ ξ2))⇒ ((�ξ1)⇒ (�ξ2))〉 .

The unique extra global rule is the necessitation rule
〈{ξ1},�ξ1〉.

Many other interesting logics (even many-valued ones
like Gödel’s and  Lukasiewicz’s — see for instance [24])
are also logic systems in the sense given above.

Within the context of a logic system, the denotation
[[ϕ]]αA of a schema formula ϕ on an ordered algebra A
and for an assignment α : Ξ → A is easily defined by
induction on the structure of ϕ.

In any given logic system L = 〈C,A, R`, Rg〉 we are
able to define the following four consequence operators:

• global entailment: Γ �g ϕ iff, for every A ∈ A
and α : Ξ → A, if > ≤ [[γ]]αA for each γ ∈ Γ then
> ≤ [[ϕ]]αA;

• local entailment: Γ �` ϕ iff, for every A ∈ A,
α : Ξ → A and a ∈ A, if a ≤ [[γ]]αA for each γ ∈ Γ
then a ≤ [[ϕ]]αA;

• global derivation: Γ `g ϕ iff ϕ can be derived
from Γ using the rules in Rg;

• local derivation: Γ `` ϕ iff ϕ can be derived from
Γ and theorems (formulae globally derived from
an empty set of assumptions) using only the rules
in R`.

Observe that in the modal system described above we
can globally derive (�ξ1)⇒ (�ξ2) from ξ1 ⇒ ξ2 but we
can not do so locally. The distinction between local and
global reasoning appeared in the context of modal logic
(local means carried out at a single world and global
refers to reasoning about all worlds) but can be useful
in other universes.

A logic system is said to be strongly globally sound when
if Γ `g ϕ then Γ �g ϕ. And it is said to be strongly glob-
ally complete when if Γ �g ϕ then Γ `g ϕ. When we
only consider Γ = ∅ we get the corresponding weak no-
tions. Mutatis mutandis, we define the local versions.

3 Completeness theorem

A logic system is said to be full when A is composed of
all ordered algebras over C that fulfill the rules in both
R` and Rg. Therefore, every full logic system is (weakly
and strongly, locally and globally) sound. A logic sys-
tem has verum if its language contains a theorem that
denotes > in every model.

A logic system is said to be congruent when for
every Γ closed for global derivation, c ∈ Ck and
ϕ1, . . . , ϕk, ψ1, . . . , ψk ∈ sL(C):

Γ, ϕi `` ψi

Γ, ψi `` ϕi
i = 1, . . . , k

Γ, c(ϕ1, . . . , ϕk) `` c(ψ1, . . . , ψk)
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Theorem 3.1 Every full and congruent logic system
with verum is strongly globally complete.

The proof is carried out using a Lindenbaum-Tarski
construction. A syntactic ordered algebra AΓ can be
built as follows from each Γ closed for `g. First we
define a congruence relation over sL(C): ϕ ∼=Γ ψ iff
Γ, ϕ `` ψ and Γ, ψ `` ϕ. Then, we choose A to be
sL(C)/ ∼=Γ. The partial order is defined as follows:
[ϕ]Γ ≤ [ψ]Γ iff Γ, ϕ `` ψ. The top > is the equivalence
class of the verum. Finally, for each language construc-
tor, cAΓ([ϕ1]Γ, . . . , [ϕk]Γ) = [c(ϕ1, . . . , ϕk)]Γ. Clearly,
by construction, we infer that [[ϕ]]λξ.[ξ]Γ

AΓ
= > iff ϕ ∈ Γ

and that AΓ fulfills the rules of the logic system.

Assume ∆ 6`g ε. We have to show ∆ 6�g ε. It is suf-
ficient to find an ordered algebra A ∈ A such that
[[δ]]λξ.[ξ]Γ

A = > for each δ ∈ ∆ and [[ε]]λξ.[ξ]Γ
AΓ

6= >. Con-
sider Γ = ∆`g

. Then, AΓ globally satisfies each element
of ∆ (since ∆ ⊆ Γ) but AΓ does not globally satisfy ε
(since ε 6∈ Γ). This concludes the proof of the complete-
ness theorem.

Observe that the requirements for completeness are
quite weak and usually fulfilled by commonly used logic
systems (including those mentioned above as exam-
ples). Furthermore, any complete logic system can be
made full without changing its entailments. And if
verum is not present, it can be conservatively added
to the language. But if the system at hand is not con-
gruent, there is nothing we can do within the scope of
the basic theory of fibring outlined here.

Note also that through a mild strengthening of the re-
quirements of the theorem we can ensure finitary strong
local completeness (see for instance [37]). A similar
strong (local and global) completeness theorem is ob-
tained in [42] without extra requirements for local rea-
soning but assuming a more complex semantics and us-
ing a Henkin construction.

4 Fibring

Consider signatures C and C ′ such that C ′
k ⊆ Ck for

each k ∈ N. Given an ordered algebra A over C, we
denote by A|C′ the reduct 〈A,≤,>, ·A|C′〉 of A by the
inclusion (where ·A|C′ is the restriction of ·A to C ′).
Clearly, A|C′ is an ordered algebra over C ′.

Given two logic systems L′ = 〈C ′,A′, R`
′, Rg

′〉 and
L′′ = 〈C ′′,A′′, R`

′′, Rg
′′〉, their fibring L′ � L′′ =

〈C,A, R`, Rg〉 is as follows:

• Ck = C ′
k ∪ C ′′

k for each k ∈ N;

• A is the class containing every ordered algebra A
over C such that A|C′ ∈ A′ and A|C′′ ∈ A′′;

• R` = R`
′ ∪R`

′′; Rg = Rg
′ ∪Rg

′′.

This definition corresponds to the constrained version
of fibring (as defined in [34]) since any symbols common
to both logic systems will be shared. Unconstrained fib-
ring can be obtained by making sure that no symbols
are in both signatures. Fibring can appear as a univer-
sal construction in a suitable category of logic systems
(as explored in [34] where the categorical approach was
important in fine tuning the semantics of fibring).

As a first example of fibring, consider the combination
of two modal systems while sharing the propositional
connectives. This constrained fibring is equivalent to
the fusion of the two given modal systems. The result
is a bimodal system.

The combination of a modal system with a relevance
system is similar from the point of view of fibring but
beyond the scope of fusion. By sharing the propo-
sitional connectives we obtain a logic system with a
modal box and a relevance implication. For details
about relevance logic see for instance [11].

Note that, even when no symbols are shared, fibring
may impose unexpected interactions between the logi-
cal operations from the two given logics. For instance,
consider the unconstrained fibring of classical proposi-
tional logic and intuitionistic propositional logic. Un-
expectedly, in the resulting logic system the intuition-
istic implication collapses into classical implication. In
short, in the resulting logic system we have two copies
of classical logic. This first example of collapsing was
first identified in [10]. Other examples are given in [37]
where a relaxed notion of fibring is proposed in order
to avoid such collapses.

5 Preservation results

We now turn our attention to transference results. We
start by examining if soundness is preserved by fibring.
Then we consider completeness. To this end we have
to establish the preservation of other interesting prop-
erties, namely the metatheorem of deduction.

Theorem 5.1 Soundness is preserved by fibring.

It is straightforward to prove that (strong and weak,
global and local) soundness is unconditionally preserved
by fibring in the basic universe of logic systems consid-
ered here. However, in larger universes things can be
more complicated. For instance, when fibring logic sys-
tems with quantifiers and using rules with side provisos
(like, provided that term θ is free for variable x in for-
mula ξ), soundness is not always preserved [36, 7].

Weak completeness is also not always preserved as
shown in [42]. Herein we examine in detail if strong
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global completeness is preserved when fibring basic logic
systems as defined above. Adapting the technique origi-
nally proposed in [42], we capitalize on the completeness
theorem stated above about such logic systems. That is,
when fibring two given logic systems that are full, con-
gruent and with verum (and, therefore, strongly glob-
ally complete) we shall try to obtain the strong global
completeness of the result by identifying the conditions
under which fullness, congruence and verum are pre-
served by fibring.

Lemma 5.2 Fullness is preserved by fibring.

Lemma 5.3 The result of fibring has verum provided
that at least one of the given logic systems has verum.

However, congruence is not always preserved by fibring.
Consider the fibring of two logic systems L′,L′′ with the
following signatures and rules:

C ′
0 = {π0, π1, π2} C ′

1 = {c} C ′
k = ∅ for k > 1

R`
′ = ∅ Rg

′ = {〈{ξ}, c(ξ)〉}

C ′′
0 = {π0, π1, π2} C ′′

k = ∅ for k > 0

R`
′′ = Rg

′′ = {〈{π0, π1}, π2〉, 〈{π0, π2}, π1〉}

Clearly, both L′ and L′′ are congruent, but their fib-
ring L = L′ � L′′ is not congruent. Indeed, consider
Γ = {π0}`

g
= {cn(π0) : n ≥ 0}. So, from Γ, π1 and π2

are locally interderivable but, from Γ, c(π1) and c(π2)
are not locally interderivable.

Fortunately, it is possible to establish a useful sufficient
condition for the preservation of congruence by fibring.
A logic system is said to have implication if its signature
contains a binary connective ⇒ fulfilling the following
Metatheorem of Modus Ponens (MTMP)

Γ `` (δ1 ⇒ δ2)
Γ, δ1 `` δ2

and the following Metatheorem of Deduction (MTD):

Γ`g
, δ1 `` δ2

Γ`g `` (δ1 ⇒ δ2)
.

When fibring two logic systems with implication while
sharing the implication symbol, it is straightforward to
verify that the resulting logic system also has implica-
tion. Indeed:

Theorem 5.4 The result of fibring has MTMP pro-
vided that at least one of the given logic systems has
MTMP and the implication symbol is shared.

Theorem 5.5 The result of fibring has MTD provided
that both given logic systems have MTD and the im-
plication symbol is shared.

The latter result is a direct corollary of the following
fact:

Lemma 5.6 MTD holds in a logic system iff: (i) ``

(ξ ⇒ ξ); (ii) {ξ1}`
g `` (ξ2 ⇒ ξ1); and (iii) {(ξ ⇒

γ1), . . . , (ξ ⇒ γk)}`g `` (ξ ⇒ γ) for each local rule
〈{γ1, . . . , γk}, γ〉.

A logic system is said to have equivalence if it has impli-
cation and its signature contains a binary connective ⇔
fulfilling the two Metatheorems of Biconditionality (re-
lating implication with equivalence) and the Metathe-
orem of Substitution of Equivalents (MTSE).

Theorem 5.7 A logic system with equivalence is con-
gruent.

When fibring two logic systems with equivalence while
sharing the implication symbol as well as the equiva-
lence symbol we obtain a logic system with equivalence.
Therefore:

Theorem 5.8 The fibring while sharing implication
and equivalence of full logic systems with equivalence
and verum is strongly globally complete.

This preservation result is quite useful because many
widely used logic systems do have equivalence in the
sense above.

6 Final remarks

In this guided tour of the issues raised by the combi-
nation of logics we defined fibring in a very simple (yet
useful) context and established some interesting trans-
ference results. As already mentioned, fibring can and
has been defined and analyzed in much more complex
situations. Current research is directed at widening the
universe where fibring can be defined and at establish-
ing other transference results like sufficient conditions
for the preservation of interpolation properties, weak
completeness and decidability. Concerning conditions
for the preservation of weak completeness, it is still an
open problem if the ghost symbol technique (used in
[28] for proving the preservation of weak completeness
by fusion) can be generalized in order to be used for fib-
ring. With respect to the preservation of interpolation
properties, the recent results in [8] seem to provide an
appropriate context.
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