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Surprising as it may be at first sight, there are a number
of connections between the theories of finite semigroups
and dynamical systems, both viewed in a broad sense.
For instance in symbolic dynamics, ideas or analogies
from the theory of finite automata find a natural setting
for application in sofic systems [10, 24] and, even though
not usually formulated in dynamical terms, the dynam-
ical behavior of various operators on finite groups has
been extensively studied. The purpose of this note is to
review some further connections that have emerged re-
cently driven mainly by work on finite semigroups and
thus perhaps open the path to new investigations in this
area.

The main tool underlying our approach is found
in profinite constructions, be it semigroups, groups,
graphs or categories. Generally speaking, profinite
structures are a way of encoding, with the help of an
additional topological structure, common properties of
a class of finite structures of the same type. This idea
can be found in various areas, from Galois theory [17]
to finite semigroup theory [6, 35, 4].

Results which are given without reference are an-
nounced here for the first time and will be proved else-
where.

A general framework for dynamics
in profinite structures

We start by quickly recalling some terminology from
model theory. See [27] for details.

Let L be a first-order language given by a finite set F
of operation symbols and a finite set R of relation sym-
bols together with a function α with nonnegative inte-
ger values describing the arity of each symbol. Let A
be an L-structure, which is determined by a choice of a
nonempty set A (the universe), for each operation sym-
bol f ∈ F an operation fA : Aα(f) → A, and for each
relation symbol R ∈ R a relation RA ⊆ Aα(R). For ex-
ample, semigroups are structures in the language with

one binary operation symbol and ordered semigroups
are structures in the language that has an additional
binary relation symbol, in both cases with the usual
properties bing assumed.

A homomorphism of L-structures A → B is a function
γ : A → B between the corresponding universes such
that, for every operation symbol f ∈ F with arity m,
and all a1, . . . , am ∈ A,

γ
(
fA(a1, . . . , am)

)
= fB

(
γ(a1), . . . , γ(am)

)
(1)

and for every relation symbol R ∈ R with arity n and
all a1, . . . , an,

(a1, . . . , an) ∈ RA ⇒
(
γ(a1), . . . , γ(an)

)
∈ RB. (2)

Note that the reverse implication of (2) is not assumed
in our definition of homomorphism. So, for the defini-
tion of isomorphism we take a bijective homomorphism
whose inverse is also a homomorphism.

A substructure of a structure A is a structure B such
that the corresponding universes satisfy the inclusion
B ⊆ A, and each operation fB and each relation RB is
the restriction to the set B of the corresponding opera-
tion fA and relation RA on A. Given a subset X of the
universe A of a structure A, the substructure generated
by X is the structure B with universe B the smallest
subset of A that contains X and that is closed under
every operation fA with f ∈ F . Direct products of
structures are defined by taking the Cartesian product
of their universes and interpreting operation and rela-
tion symbols component-wise.

From this point on we will abuse notation and talk
about structures rather than L-structures and a struc-
ture A with universe A will be referred simply as ‘the
structure A’ and we will talk of an operation f and a
relation R instead of fA and RA, respectively.

We say that a structure A is finite if the set A is fi-
nite. If the set A is endowed with a topology such that
each operation f is continuous and each relation R is
closed, then we say that A is a topological structure.

8



Finite structures are viewed as topological structures
for the discrete topology. For a class C of topological
structures, a topological structure A is said to be resid-
ually in C if for any two distinct points a, b ∈ A there
is a continuous homomorphism γ : A → F into some
F ∈ C such that γ(a) 6= γ(b). A compact, Hausdorff,
residually in C, structure is called a pro-C structure.
In case C consists of all finite structures, then we talk
respectively of a residually finite and a profinite struc-
ture. Note that a structure is profinite if and only if it
embeds as a closed substructure in a product of finite
structures.

For instance, profinite groups have been extensively
studied in connection with Galois theory, number the-
ory, and model theory [17, 29], and free profinite semi-
groups play a prominent role in the theory of pseu-
dovarieties of finite semigroups [4, 6, 35], which will be
introduced in the next section.

We say that a topological structure A is finitely gener-
ated if there is a finite subset of A such that the sub-
structure it generates is dense in A.

We denote by End A the set of continuous endomor-
phisms of a topological structure A. Note that it is a
monoid under the operation of composition. Its group
of units is the group Aut A of continuous automor-
phisms of A.

For the study of a profinite structure A, it is useful to
have at hand a topology on EndA for which End A is
a profinite monoid and the evaluation mapping

End A×A → A
(γ, a) 7→ γ(a) (3)

is continuous. Two classical candidates are the point-
wise convergence topology, that is the induced topology
from the product topology in AA, and the compact-
open topology. These topologies do not always satisfy
the above requirements but we do have the following
result that extends well-known facts in the theory of
profinite groups [29].

Theorem 1. Let A be a finitely generated profinite
structure. Then EndA is a profinite monoid and AutA
is a profinite group under the point-wise convergence
topology, which coincides with the compact-open topol-
ogy, and the evaluation mapping (3) is continuous.

Dynamics of continuous endomor-
phisms

A topological dynamical system (T, f) is a topological
structure T for the language with only one operation
symbol f , which is unary, and no relation symbols. Two
topological dynamical systems (T, f) and (U, g) are said
to be conjugate if they are isomorphic as topological
structures; an isomorphism ϕ : T → U between them

is usually called a conjugacy, since it is a homoeomor-
phism which satisfies ϕ ◦ f = g ◦ ϕ.

For example, if A is a finitely generated profinite struc-
ture then, fixing γ ∈ End A, we have a topological
dynamical system (A, γ), which just says that A is a
topological space and γ is a continuous transformation
of A. For the infinite iteration of γ, we use Theorem 1
to introduce an operation that is well-known in finite
semigroup theory.

For an element m of a finite monoid M , the sequence
(mn!)n becomes constant for n ≥ |M |, therefore it con-
verges in M , and moreover this eventual constant value
is an idempotent. Since a profinite monoid embeds in
the product of its finite continuous homomorphic im-
ages, if m is an element of a profinite monoid M , then
the sequence (mn!)n also converges in M ; its limit is de-
noted mω and by the above it is an idempotent. Sim-
ilarly, we may define mω+k to be the limit of the se-
quence (mn!+k)n≥|k| for any integer k. Note that, if G

is a profinite group, then gω+k = gk for every g ∈ G
and integer k.

Going back to our dynamical system (A, γ), we have a
very special infinite iterate γω of γ, which is an idempo-
tent, namely the only idempotent in the (closed) sub-
semigroup of End A generated by γ. We proceed to
examine how the dynamics of the system is determined
by this particular iterate.

Recall that a point x of a topological dynamical system
(X, ϕ) is periodic if there exists k such that ϕk(x) = x;
the point x is recurrent if, for every neighborhood U of x
and every k, there exists ` ≥ k such that f `(x) ∈ U ;
and x is uniformly recurrent if there exists m such that,
for every neighborhood U of x and every k, there exists
` ∈ {k + 1, . . . , k + m} such that f `(x) ∈ U . Note that
periodicity implies uniform recurrence which in turn im-
plies recurrence.

Of course, if X is finite then the above three properties
are equivalent and the periodic points are the elements
of the image of ϕω (note that ϕ is an element of the
finite monoid of all transformations of X). So in par-
ticular, if A is a finite structure and γ ∈ End A, then the
three notions are equivalent for points of the dynamical
system (A, γ). For general topological dynamical sys-
tems, there are well-known examples in which no two
of the three notions are equivalent. But, what about
dynamical systems of the form (A, γ) with A a finitely
generated profinite structure? It is easy to construct
examples in which periodicity and uniform recurrence
are inequivalent but it turns out that the two forms
of recurrence coincide in such systems. The following
result improves [2, Proposition 3.1].
Proposition 1. Let A be a finitely generated profinite
structure and let γ be a continuous endomorphism of A.
Then every recurrent point of A under the action of γ
is uniformly recurrent and the set of all such points is
the image of γω.
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Relatively free structures and im-
plicit operations

We extend the notion of generating set X of a structure
A by allowing X to be a topological space for which
there is a continuous function X → A (the generat-
ing mapping) whose image generates A in the previous
sense. In general we will omit reference to the gen-
erating mapping although we always consider a spe-
cific one when we talk about a generating space. Note
that a generating mapping may not be injective. To
avoid degenerate cases, from hereon we will consider
only nonempty generating spaces.

We say that a structure A is weakly free with respect
to a generating mapping ι : X → A if every continuous
mapping ϕ : X → A extends (uniquely) to a continuous
endomorphism ϕ̂ of A in the sense that ϕ̂◦ι = ϕ. There
is a related notion of relatively free structure that we
proceed to introduce.

By a pseudovariety of finite structures (always of a fixed
first-order language) we mean a class of such struc-
tures that is closed under taking homomorphic images,
substructures and finite direct products. Note that, if
ϕ : A → B is an onto homomorphism, then we call B a
homomorphic image of A even though relation symbols
may be interpreted in B as larger sets than the images
of their interpretations in A. Pseudovarieties of finite
semigroups and monoids have been extensively stud-
ied in connection with applications to automata, for-
mal languages, circuit complexity, and temporal logic
[15, 1, 30] and embody at present the most developed
part of finite semigroup theory.

Let V be a pseudovariety of finite structures. We say
that a pro-V structure A is V-free with respect to a gen-
erating mapping ι : X → A if every continuous map-
ping ϕ : X → B into another pro-V structure extends
(uniquely) to a continuous homomorphism ϕ̂ : A → B
in the sense that ϕ̂ ◦ ι = ϕ. A profinite structure is
relatively free with respect to a generating mapping ι if
it is V-free with respect to ι for some pseudovariety V.
Elements of a generating set for a relatively free struc-
ture are often called letters. In case |X| = n, we will
usually presume an ordering x1, . . . , xn of the letters.

Proposition 2. A profinite structure A is relatively
free with respect to a generating mapping ι if and only
if A is weakly free with respect to ι.

From the definition of V-free structure A with respect
to a generating mapping ι : X → A it follows that, for
a fixed space X, it is unique up to isomorphism. The
existence of such a structure is established by observing
that it may be constructed as the projective limit of all
X-generated members of V. In general the generating
mapping is understood and we talk simply about the
relatively V-free structure on the space X. It will be

denoted ΩXV. In case X is a (nonempty) finite set, we
sketch an alternative construction of ΩXV. See [4] for
details.

Let F (X) denote the absolutely free structure on the
set X, whose algebraic structure is that of the alge-
bra of terms in X in the fixed first-order language L,
and where all relational symbols are interpreted as the
empty set. The intersection of all kernels of homomor-
phisms into members of V is a congruence θ on F (X).
Endow the quotient ΩXV = F (X)/θ with the struc-
ture in which, for an n-ary relational symbol R in L,
and w1, . . . , wn ∈ F (X), we set (w1/θ, . . . , wn/θ) ∈ R
in ΩXV if and only if (ϕ(w1), . . . , ϕ(wn)) ∈ R in B for
every B ∈ V and every homomorphism ϕ : F (X) → B.
Then, by construction, ΩXV is a minimal V-free ab-
stract structure in the sense that, for the natural map-
ping ι : X → ΩXV and any mapping ϕ : X → B with
B ∈ V, there is a unique homomorphism ϕ̂ : ΩXV → B
such that ϕ̂ ◦ ι = ϕ and any homomorphism of ΩXV
onto a structure with the same property is an isomor-
phism. It is an easy exercise to show that ΩXV embeds
in ΩXV as the substructure generated by X and this
partly explains the notation since this substructure is
dense. The letter Ω is meant to suggest that the ele-
ments of ΩXV may be viewed as polynomial operations
over V in the set X of variables. We also give below an
interpretation of the elements of ΩXV as operations.

We may define a metric structure on ΩXV by setting
d(u, v) = 2−r(u,v), for distinct u, v ∈ ΩXV, where
r(u, v) denotes the minimum cardinality of B ∈ V for
which there exists a homomorphism ϕ : ΩXV → B
such that ϕ(u) 6= ϕ(v), and taking d(u, u) = 0. In-
stead of proving the triangle inequality, it is more nat-
ural to establish the stronger ultra-metric inequality
d(u,w) ≤ max{d(u, v), d(v, w)}. A sequence in ΩXV
is a Cauchy sequence if and only if its image under any
homomorphism into a member of V converges. This
implies that, in ΩXV, L-operations are uniformly con-
tinuous with respect to d and that L-relations are closed
sets. Hence the completion of ΩXV with respect to the
metric d is a topological structure and one can show
that it is isomorphic with ΩXV.

The elements of ΩXV may also be viewed as opera-
tions as follows. Let A be a pro-V structure. For
w ∈ ΩXV, we define an operation wA : AX → A by
letting, for a function ϕ : X → A, wA(ϕ) = ϕ̂(w)
where ϕ̂ : ΩXV → A is the unique continuous homo-
morphism such that ϕ̂ ◦ ι = ϕ. Thus w becomes an
|X|-ary operation with a ‘natural’ interpretation on ev-
ery pro-V structure, and it is an easy exercise to show
that this interpretation commutes with continuous ho-
momorphisms between pro-V structures; such an oper-
ation is said to be an implicit operation (on the class
of pro-V structures). We say w ‘becomes’ an opera-
tion since the fact that ΩXV is residually in V implies
that already the natural interpretations of w as an op-
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eration in the members of V completely determine w.
Moreover, one can show that every implicit operation
on V arises in this way. In other words, the natural in-
terpretation determines a bijection between ΩXV and
the set of |X|-ary implicit operations on V and there-
fore we may think of the elements of ΩXV themselves
as implicit operations.

Since, up to isomorphism, ΩXV depends only on n =
|X| and V, we may write ΩnV instead of ΩXV.

Sometimes it is also useful to consider some structure
on the generating set X. Usually this is done by re-
ducing the first-order language by dropping some op-
eration or relation symbols. The case described above
in some detail corresponds to dropping all such sym-
bols, so that structures are plain sets. Of course then,
rather than considering functions from X into struc-
tures of the given language, one takes homomorphisms
in the reduced language. The above may be carried out
in this context, mutatis mutandis. A further restriction
which is sometimes useful is to assume that X is a topo-
logical structure of the reduced language, in which case
homomorphisms from X are also assumed to be con-
tinuous, as we already did in the definition of relatively
free profinite structure.

Dynamics of implicit operators

The implicit operation point of view is particularly
suited for iteration, and thus for a dynamical study.
It was basically as a result of this observation that the
author started getting involved with dynamical systems
[3].

Let us concentrate on the case of a finite generating set
X = {x1, . . . , xn}. Since ΩXV is weakly free, a continu-
ous endomorphism γ of ΩXV is completely determined
by the n-tuple (γ(x1), . . . , γ(xn)). Thus, giving an el-
ement of γ ∈ EndΩXV is equivalent to choosing an
n-tuple (w1, . . . , wn) of n-ary implicit operations on V.
We will abuse notation and write γ = (w1, . . . , wn).
Moreover, for any pro-V structure A, we have an as-
sociated transformation γA : An → An defined by the
natural interpretations of the wi as follows:

v ∈ An 7→ ((w1)A(v), . . . , (wn)A(v)).

Such a transformation of An is called an n-ary implicit
operator on A, as in [3] from where the following result
can be derived.

Proposition 3. The set of n-ary implicit operators on
a profinite structure A is a profinite monoid with respect
to the component-wise point-wise convergence topology
and the evaluation mapping is continuous. Moreover,
in case A is weakly free on n generators, this profi-
nite monoid is isomorphic with End A via the corre-
spondence described above.

One may thus consider an arbitrary pro-V structure
A and implicit operations w1, . . . , wn ∈ ΩnV and the
idempotent infinite iterate (w1, . . . , wn)ω on An. The
behavior of this operator may be closely linked with
structural properties of A. Examples of this situation
are explored in [2] for pseudovarieties of finite groups.
We present next a few examples of this phenomenon.

Denote by S the pseudovariety of all finite semigroups.
Note that the subclass G consisting of all finite groups is
also a pseudovariety. Define the commutator of x and y
to be [x, y] = xω−1yω−1xy, which determines a binary
implicit operation on finite semigroups that coincides
with the usual commutator on finite groups.

Example 2. Note that, on finite groups, the first com-
ponent of ([x, y], y)n is the usual iterated commutator
[x, ny]. Similarly, for an integer k, denote by [x, ω+ky]
the binary implicit operation defined by taking the first
component of ([x, y], y)ω+k. Then, by a theorem of
Zorn [37], a finite group G is nilpotent if and only if
G satisfies the operation equation [x, ωy] = 1.

In the preceding example, strictly speaking 1 is not an
operation in our chosen language but we could take any
idempotent like xω in its place. Or we could take, for
an implicit operation w, w = 1 to be an abbreviation
of the equations wy = yw = w where y is a new vari-
able. In general, an equation whose sides are implicit
operations on V (which can always be viewed as being
of the same arity) is called a pseudoidentity. It is said
to be valid in a pro-V structure A if the natural inter-
pretations in A of both sides coincide. For a set Σ of
pseudoidentities, the class of all structures from V that
satisfy all pseudoidentities from Σ is denoted [[Σ]]. It is
a pseudovariety and every pseudovariety W contained
in V is of the form W = [[Σ]] for some set Σ of pseu-
doidentities, in which case we also say that Σ is a basis
of pseudoidentities of W or that W is defined by Σ. This
is an extension of Reiterman’s Theorem [28] that has
been independently established in [26, 27].

Example 3. Let w denote the ternary operation de-
fined by (w, y, z) = ([[x, y], [x, z]], y, z)ω. B. Plotkin
has proposed a conjecture that translates into saying
that the pseudovariety of all finite solvable groups is
defined by the pseudoidentity w([x, y], x, y) = 1 [18]. In
the same vein the author [2] has proposed the follow-
ing alternative pseudoidentity: u = v where (u, v) =
([x, y], [xω−1, yω−1])ω. The proof that such characteri-
zations of solvability for finite groups hold is not likely
to be very simple since one consequence of them is that
a finite group is solvable if and only if all its 2-generated
subgroups are solvable. This property was first es-
tablished by Thompson [32] as a consequence of his
monumental classification of finite simple groups whose
proper subgroups are solvable, whose proof extends over
400 printed pages and which earned J. G. Thompson
the Fields Medal in 1970. A much shorter yet rather
involved proof of the 2-generator characterization of fi-
nite solvable groups has been given by Flavell [16].
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Figure 1: The Thuë-Morse operator on Z/70Z Figure 2: The Thuë-Morse operator on
(Z/2Z× Z/2Z) o Z/3Z

Figure 3: Action of the operator (yω−1xy, x) on D256 Figure 4: Action of the Thuë-Morse operator on A6

One may try to visualize the dynamical behavior of an
implicit operator on a finite structure. The examples in
Figures 1 through 4 were calculated using GAP [31] for
the group calculations and Mathematica [36] for con-
verting them into a picture of the action of a binary
implicit operator on a finite group G. The method used
was to draw a square grid of pixels, each pixel repre-
senting a point in G×G. Each pixel is colored with the
three basic colors green, red and blue. The intensity of
green represents the distance of the point to the cycle
in its orbit so that, in particular, pixels corresponding
to periodic points get no green color component. By
taking a total ordering of the cycles and associating
to each cycle an increasing intensity of blue and a de-
creasing intensity of red, according to its position in the
ordering, each pixel gets the blue and red tonality de-
termined by the cycle in its orbit. Of course, the final
picture will depend on the ordering of the elements of
the group G and the ordering of the cycles. We just
took the ordering of the groups given by GAP and the
ordering of cycles is by first appearance as the cycle in
the orbit of the successive elements of G.

The picture for the Thuë-Morse implicit operator
(x, y) 7→ (xy, yx) acting on the cyclic group Z/70Z is
shown on Figure 1, where the intensities of the basic

colors have been weighted to increase the spatial visual
effect. Figure 2 represents the action of the same op-
erator on the wreath product of the Klein 4-group by
the group of order 3. The fractal-like Figure 3 por-
trays the action of the iterated conjugation operator
(x, y) 7→ (yω−1xy, x) on the dihedral group D256 of or-
der 256. Finally, in contrast, with the above examples,
where one immediately recognizes patterns, the much
more “chaotic” Figure 4 represents the action of the
Thuë-Morse operator on the alternating group A6.

So far these examples have only been used to exper-
imentally explore the behavior of operators or simply
for their aesthetic appeal. They may be viewed as ap-
proximations or as representing a small portion of the
pictures of the action of the same operators on profi-
nite groups, which seems to explain their fractal-like
appearance.

Here is a small sample of other results concerning the
action of implicit operators on finite groups.

Theorem 4 (Širšov [34]). Consider the binary im-
plicit operations u and v defined by (u, v) = (xy, yx)ω,
the idempotent iterate of the Thuë-Morse operator.
Then a finite group satisfies the pseudoidentity u = v if
and only if it is an extension of a nilpotent group by a
2-group.
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Theorem 5. Let (u, v) = (yω−1xy, x)ω. Then the
pseudoidentity u = 1 defines the pseudovariety of all
finite nilpotent groups.

The following result provides partial information on fi-
nite groups for which the iterated commutator has pe-
riod 1. A structure A is said to divide a structure B if
A is a homomorphic image of a substructure of B.

Theorem 6. Let G be a finite group satisfying the pseu-
doidentity [x, ω+1y] = [x, ωy]. Then

a. G is supersolvable and G is a direct product of a
group of order relatively prime to 6 with a group of
order 2m3n which has a normal Sylow 3-subgroup
(Brandl [11]) ;

b. G is either nilpotent or divisible by the symmetric
group S3 (A. Costa [13]).

Dynamics of implicit operators on
free profinite semigroups

We first introduce briefly the most basic tools in semi-
group theory. Readers interested in more details might
wish to consult a book in the area such as [23].

In a semigroup S, say that an element s is a factor of
(or lies J -below) another element t if t can be written
as a product t = t1 · · · tr with r ≥ 1 and some ti = s.
Two elements are associates if they are factors of each
other. This defines an equivalence relation on S which
is one of Green’s relations, denoted J . Similarly, one
may consider left factors or prefixes, with correspond-
ing equivalence relation R, and right factors or suffixes,
with corresponding equivalence relation L. For a com-
pact semigroup, the smallest equivalence relation, de-
noted D, containing both R and L is precisely J . The
intersection R∩L provides the last of Green’s relations,
denoted H. The maximal subgroups of S are precisely
the H-classes that contain idempotents and any two of
them contained in the same D-class are isomorphic.

An element s of a semigroup S is regular if there exists
t ∈ S such that sts = s. All or none of the elements in
a D-class are regular, and the former condition holds if
and only if the D-class contains an idempotent.

Free pro-V semigroups have been computed for some
very special examples of pseudovarieties of semigroups,
often with numerous applications as in the case of the
pseudovariety

J = [[(xy)ω = (yx)ω, xω+1 = xω]]

which consists of all finite semigroups in which the J -
classes are singletons. It turns out that ΩnJ is a rel-
atively free structure in the language with a symbol
added for the ω-power operation, and a finite basis of
equations (that is, a finite presentation consisting of

universal relations) has been given and the word prob-
lem has been solved for this structure [1].

But for instance very little is known about the free profi-
nite semigroups ΩnS. As in the previous section, we
may use infinite iteration of implicit operators to define
complex implicit operations from simple ones. This has
been recently used as a tool to study the semigroups
ΩnS in [8]. We proceed to review a sample of results
from that paper.

The semigroup ΩnS is the free semigroup on n letters
and so its elements may be viewed as words on the let-
ters, for which an appropriate model is the sequence of
letters in the unique factorization into letters. Since im-
plicit operations are limits of sequences of finite words,
we may also call them profinite words. So, of course, a
profinite word w ∈ ΩnS is said to be finite if it belongs
to ΩnS and we will say it is infinite otherwise. The
length of a finite word is the length of the sequence of
letters that compose it.

An infinite profinite word w is said to be recurrent if
every finite factor of w is also a factor of every infinite
factor of w; and we say that w is uniformly recurrent
if every finite factor of w is also a factor of every suffi-
ciently long finite factor of w. One can easily show that
these two notions are equivalent. We prefer to refer to
uniformly recurrent profinite words for reasons that will
be made clear in the next section.

An implicit operator ϕ = (w1, . . . , wn) (wi ∈ ΩnS) is
finite if its components are finite words; we say that
ϕ is primitive if, for some finite exponent k, all com-
ponents of ϕk admit all letters as factors; and ϕ is G-
invertible if the induced operator on (ΩnG)n is invert-
ible. These notions are carried to continuous endomor-
phisms of ΩnS via the isomorphism of Proposition 3.
One can easily show that, for a primitive implicit op-
erator (w1, . . . , wn), all components of the idempotent
iterate (v1, . . . , vn) = (w1, . . . , wn)ω are J -equivalent
[8]. Moreover, in case the wi are finite, then the vi are
uniformly recurrent.

Theorem 7. [8] Let (w1, . . . , wn) be a primitive, G-
invertible, implicit operator all of whose components
start with the same letter and end with the same letter.
Let (v1, . . . , vn) = (w1, . . . , wn)ω. Then {v1, . . . , vn}
freely generates a profinite subgroup of ΩnS which is
a retract of ΩnS. Moreover, every retract subgroup iso-
morphic with ΩnG is obtained in this way.

For example, the components of (xyx, x)ω freely gener-
ate a profinite subgroup of Ω2S but those of the oper-
ator (xy, yx)ω do not even belong to the same H-class
although they are J -equivalent.

The interest in finding n-tuples (v1, . . . , vn) of profinite
words which freely generate profinite retract subgroups
of ΩnS, which are called group-generic, stands from
the fact that such n-tuples may be used to construct
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bases of pseudoidentities for pseudovarieties of semi-
groups which are derived from pseudovarieties of groups
as follows. Let H be a pseudovariety of groups. Then
the class H of all finite semigroups whose subgroups be-
long to H is a pseudovariety. To obtain a basis of pseu-
doidentities for H from a given basis for H simply trans-
form each pseudoidentity u(x1, . . . , xn) = w(x1, . . . , xn)
into u(v1, . . . , vn) = w(v1, . . . , vn) where (v1, . . . , vn) is
a group-generic n-ary implicit operator. As an example,
if Ab is the pseudovariety of all finite Abelian groups
and (v1, v2) = (xyx, x)ω, then Ab = [[v1v2 = v2v1]].
An alternative approach for the construction of group-
generic n-tuples of profinite words which involves idem-
potents from the minimal ideal of ΩnS is presented
in [7].

The iteration ϕω of finite implicit operators ϕ =
(w1, . . . , wn) is of special interest because the elements
of ΩnS with which we start are particularly simple and
because similar iterations take place in other areas of
Mathematics, from symbolic dynamics to the theory
of computation. In the case of a finite, primitive, G-
invertible, implicit operator, we have the following im-
provement of Theorem 7.
Theorem 8. Let ϕ be a finite, primitive, n-ary, im-
plicit operator and let J be the J -class of ΩnS con-
taining the ϕω(xi) (i = 1, . . . , n). If ϕ is G-invertible
then there is at least one maximal subgroup H of ΩnS
contained in J which satisfies H = ϕω(H). Moreover,
H is a free profinite group on n generators of the form
ϕω(u) with u ∈ ΩnS.

For example, taking ϕ = (xy, zx, yzx), with a little
additional calculation one can show that the profinite
words ϕω(x), ϕω+1(x), ϕω+2(x) freely generate a maxi-
mal subgroup of Ω3S. We do not know if this subgroup
is a retract of Ω3S although we conjecture it is not.

In general one cannot expect the retract subgroups of
ΩnS isomorphic with ΩnG to be maximal subgroups.
Indeed, by [7, 8] one can find such subgroups in the
minimal ideal and there one can show that maximal
subgroups are not n-generated for n > 1.

To show more generally that, for n > 1, the minimal
ideal of ΩnS cannot be reached through iteration of fi-
nite n-ary implicit operators, we introduce some numer-
ical parameters. We first consider the factor complexity
of a profinite word w ∈ ΩnS which is given by a function
qw that associates to a positive integer k the number of
factors of w of length k. One can easily show that the
limit

h(w) = lim
k→∞

1
k

logn qw(k)

exists for every infinite w ∈ ΩnS with n > 1 and we
call it the entropy of w. Note that J -equivalent in-
finite elements of ΩnS have the same complexity and
entropy.
Theorem 9. [8] Entropy does not increase by applying
an implicit operation nor by iteration. More precisely:

a. if u ∈ ΩmS and v1, . . . , vm ∈ ΩnS, then

h(u(v1, . . . , vm))
≤ max{h(u) logn m, h(v1), ..., h(vm)};

b. if w1, . . . , wn ∈ ΩnS and z1, . . . , zn are the com-
ponents of the iterate (w1, . . . , wn)ω, then

max
1≤i≤n

h(zi) ≤ max
1≤i≤n

h(wi).

We say that a subset X of ΩnS is closed under itera-
tion if, whenever w1, . . . , wn ∈ X, the components of
(w1, . . . , wn)ω also belong to X.

Consider the minimal ideal I of ΩnS. It is a J -class
and every element of I admits every element of ΩnS
as a factor. Hence elements of I have entropy 1 and,
conversely, one can show that every profinite word of
entropy 1 belongs to I. We thus obtain the following
corollary of Theorem 9 which in particular states that
the minimal ideal is inaccessible by iteration for n > 1.

Corollary 1. [8] For n > 1, the complement of the
minimal ideal I of ΩnS is closed under iteration and
under the application of implicit operations w ∈ ΩmS
with h(w) < 1

logn m .

Symbolic dynamics

We proceed to relate more closely free profinite semi-
groups with symbolic dynamics. Consider the pseu-
dovarieties defined by the following pseudoidentities:

K = [[xωy = xω]]
D = [[yxω = xω]]
LI = [[xωyxω = xω]]

In words: K consists of all finite semigroups in which
idempotents are left zeros; D is the left-right dual of K;
LI consists of all locally trivial finite semigroups in which
every submonoid is trivial and it is the smallest pseu-
dovariety containing both K and D.

The free pro-K semigroup ΩnK on n letters is the com-
pletion of ΩnK = ΩnS with respect to the metric d
defined by d(u, v) = 2−p(u,v) where p(u, v) is the length
of the longest common prefix of u and v. A sequence
of words which is not eventually constant is a Cauchy
sequence if and only if prefixes of any given length sta-
bilize for sufficiently large indices and the limit is com-
pletely determined by these successive prefixes, or in
other words it may be identified with a right infinite
word xi0xi1 . . . xir . . .. Such infinite words are one of
the objects studied in symbolic dynamics, precisely un-
der the metric resulting from d. Multiplication in ΩnK
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is by concatenation of words except that right infinite
words are declared to be left zeros.

Dually, ΩnD is a compactification of ΩnD = ΩnS
by adding all left infinite words . . . xir . . . xj2xj1 and
declaring words (finite or infinite) to be close if they
have a long common suffix. As for ΩnLI, it embeds
naturally in the product ΩnD × ΩnK as follows: add
to ΩnLI = ΩnS points at infinity consisting of pairs
(. . . xj2xj1 , xi0xi1 . . .) of a left infinite and a right infi-
nite word, which may also be identified with a doubly
infinite word . . . xj2xj1xi0xi1 . . . with a marked origin,
that is a function w ∈ XZ defined on the integers with
values in X = {x1, . . . , xn}. Two doubly infinite words
with marked origins are close if they coincide in a large
factor centered at the origin, which induces the product
topology on XZ.

The shift transformation sending w ∈ XZ to the func-
tion σ(w) : n 7→ w(n + 1) corresponds to a letter con-
jugation v 7→ a−1va in ΩnLI where a = w(0). The
shift defines the natural action of the cyclic group Z
on XZ. A symbolic dynamical system or subshift, is a
closed subset S of XZ which is stable under the group
action. It is easy to see that a subshift S is completely
determined by the language L(S) ⊆ ΩnS of its finite
factors and that the languages that arise in this way
are precisely the subsets L of ΩnS which are factorial,
that is they are closed under taking factors, and ex-
tendable, that is for any w ∈ L there are a, b ∈ X such
that aw,wb ∈ L. A subshift S ⊆ XZ is viewed as a
topological dynamical system (S, σ|S).

A subshift whose factors are the factors of the powers
of a finite word is said to be periodic. The subshift S
is said to be sofic if the language L = L(S) can be rec-
ognized by a homomorphism ϕ : ΩnS → S into a finite
semigroup S in the sense that L = ϕ−1ϕ(L). If, more-
over, S ∈ LI then L is said to be locally testable and S is
called a subshift of finite type. Equivalently, a subshift
S ⊆ XZ is of finite type if and only if there is a finite set
W of words such that L(S) consists of the finite words
over X which do not admit any word from W as a fac-
tor. A subshift S is irreducible if, for all u, v ∈ L(S),
there exists w ∈ ΩnS such that uwv ∈ L(S). A minimal
subshift is a nonempty subshift which does not properly
contain any other nonempty subshift. It is well known
that a subshift is minimal if and only if its language con-
sists of all finite factors of a uniformly recurrent doubly
infinite word.

A major open problem in symbolic dynamics is whether
conjugacy is decidable for sofic subshifts, or even just
for subshifts of finite type. There is a coarser equiv-
alence relation, the eventual conjugacy or shift-equiv-
alence, for which complete invariants are given by di-
mension groups [24]. These are ordered Abelian groups
which are effectively computable and so eventual con-
jugacy is decidable. To define eventual conjugacy, one
considers first the power Sn of a subshift S ⊆ XZ whose

alphabet is the set Xn of all length n words over X. El-
ements of S are considered as words over Xn by scan-
ning the successive non-overlapping factors of length n
that compose them. The so-called eventual conjugacy
of subshifts S and T means that their powers Sn and
T n are conjugate for all sufficiently large n. Eventual
conjugacy is known to be strictly coarser than conju-
gacy even for irreducible subshifts of finite type [21, 22].

Given a subshift S ⊆ XZ, we may consider the clo-
sure L(S) of its language of finite factors in ΩnS. The
set L(S) completely determines S since the language of
its finite factors is precisely L(S). This suggests doing
symbolic dynamics in ΩnS, an object that has a much
richer structure than XZ. The question that imme-
diately comes to mind is what transformation of ΩnS
should we consider. The shift transformation corre-
sponds to the conjugation χ : w 7→ a−1wa, where a
is the first letter of w, which means sending w = av to
va. However, a finite iterate of this transformation con-
jugates by a finite factor and coinciding in finite factors
corresponds to the completion ΩnLI of the free semi-
group ΩnS rather than the much richer structure ΩnS
which really interests us here. We do not know of any
single transformation which plays for ΩnS the role the
shift plays in the case of ΩnLI. Our connection between
ΩnS and subshifts proceeds in a different direction.

By Zorn’s Lemma and compactness, the closed set L(S)
must contain elements which are J -equivalent to all
other elements of L(S) of which they are factors. This
suggests studying the J -classes of such elements, which
we will call the minimal J -classes of S. The following
results provide the basis for this study.

Proposition 4. Let S ⊆ XZ be a subshift and let w
be a regular element of ΩnS. Then the following con-
ditions are equivalent:

a. w ∈ L(S);

b. w is J -equivalent to some element of L(S);

c. all finite factors of w belong to L(S).

Theorem 10. Let S ⊆ XZ be a subshift.

a. If S is sofic, then there are only finitely minimal
J -classes of S and L(S) is a union of J -classes.

b. The subshift S is irreducible if and only if S has
only one minimal J -class and it is regular. The
regular J -classes that appear in this way are those
that contain profinite words which are limits of se-
quences of finite factors.

c. The subshift S is minimal if and only if S has
only one minimal J -class J and J contains all
its regular factors. The J -classes that appear in
this way are those that contain uniformly recur-
rent profinite words or, equivalently the J -classes
which contain infinite profinite words and all their
regular factors.
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In terms of the factor (J -)ordering, minimal subshifts
are thus in bijective correspondence with J -maximal
regular J -classes. One might expect such J -classes to
have low entropy since they are far from the minimal
ideal, provided the alphabet has more than one letter.
However, it has been recently shown that there are uni-
formly recurrent doubly infinite words with arbitrarily
large entropy h < 1 [14].
Corollary 2. For n ≥ 2, there are J -maximal regular
J -classes in ΩnS of arbitrarily large entropy h < 1.

At the other end, we already know that there are J -
maximal regular J -classes of ΩnS with zero entropy,
such as the J -class containing the ϕω(xi) for any finite
primitive continuous endomorphism ϕ of ΩnS.

The study of sofic subshifts and of minimal subshifts
correspond to major subareas of symbolic dynamics. In
general, the dynamics of a sofic subshift is determined
by that of certain irreducible sofic subshifts associated
with it. Since minimal subshifts are irreducible (but not
sofic, unless they are periodic), irreducibility is usually
assumed and it is therefore not a serious restriction,
which we will assume from hereon.

In semigroup theory, when a semigroup has a nontriv-
ial minimal ideal, a lot of its structural properties are
reflected in the minimal ideal and in the action of the
semigroup on this ideal. Although L(S) is not in general
a subsemigroup of ΩnS, it does have a minimal J -class
J , which is regular, and so one may view it as a partial
semigroup, for which J plays the role of the minimal
ideal. One way to formalize this idea is to consider a
profinite category associated with S as follows.

By the transition graph Γ(S) of a subshift S ⊆ XZ we
mean the (directed) graph with vertex set S and an
edge v → σ(v) for each vertex v. As a purely com-
binatorial graph, this is a rather uninteresting graph
in which every vertex has in-degree and out-degree 1
and, for instance, all (nonempty) subshifts without
periodic points over finite alphabets have isomorphic
graphs. But both the sets of vertices S and edges
{(v, σ(v)) : v ∈ S} ⊆ S×S have a topological structure
induced from XZ and the partial operations of taking
the beginning and end vertices of an edge are continu-
ous.

This suggests coming back to the general framework
of structures of first-order languages at the beginning
of the paper. However, the treatment of partial oper-
ations, which has important applications for instance
in computer science, is much more delicate and appar-
ently has only be done in special cases in the sense
of obtaining Birkhoff/Reiterman-type theorems charac-
terizing certain classes of structures by means of equa-
tions [12]. One of the difficulties lies in the definition
of a suitable notion of substructure and homomorphic
image. For (small) categories, this has been done by
Tilson [33] with the profinite approach added in [20, 9].

For our present purposes we do not need Birkhoff/
Reiterman-type theorems, but rather just free profinite
constructions. This does carry through from the discus-
sion in earlier sections of this paper with a few minor
adjustments. For substructures we take subsets such
that whenever an operation is defined on elements of
the subset then the resulting value is also in the sub-
set. For a homomorphism, whenever an operation is
defined on elements of the domain, the corresponding
operation should also be defined on their images and
the usual relation (1) should hold. We assume further
that there are unary relations in the language which
are interpreted in structures so as to form partitions of
their universes (into sorts in the language of computer
science) and so that all operations take their arguments
in one sort and all their values are also of a single sort.
Note that this is a nontrivial restriction. It allows us
to define products of structures as subsets of the Carte-
sian product consisting of elements in which all com-
ponents have the same sort, and then define operations
and relations component-wise. Profinite structures are
defined as in the case of fully-defined operations and
free profinite structures may be constructed by taking
projective limits, which in turn are realized as appro-
priate substructures of products of finite structures.

In our case, we may view (small) categories as struc-
tures of a suitable first-order language, namely the lan-
guage with unary relation symbols V and E, unary
operation symbols α, ω and I, and binary operation
symbol π. Their interpretation in a category C is the
following: V is the set (sort) of vertices (or objects); E
is the set (sort) of edges (or morphisms); α is the par-
tial operation defined on edges where α(e) is the vertex
where the edge starts; ω is the partial operation defined
on edges where ω(e) is the vertex where the edge ends;
I is the partial operation defined on vertices where I(v)
is the identity at v; π is the partial associative opera-
tion defined on edges e, f such that ω(e) = α(f) and
the edge π(e, f) starts at α(e) and ends at ω(f).

Graphs may be viewed as structures of the reduced
language in which the symbols I and π are dropped.
Semigroupoids are structures of the language with the
symbol I dropped. The general framework gives us the
right notions of graph homomorphism, category homo-
morphism (or functor), topological graph, profinite cat-
egory, and so on.

Back to subshifts, with the above topology, not only
Γ(S) is a topological graph but, more precisely, we have
the following expected result.

Proposition 5. The graph Γ(S) is profinite.

Recall that a homomorphism (or functor) ϕ : C → D
between two categories is faithful if its restriction to
every set of edges of C with fixed beginning and end
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is injective. We say that a graph is strongly connected
if, for all vertices v and w, there is an edge v → w.
Groupoids are strongly connected categories in which
all morphisms are isomorphisms.

Note that the class Cat of all finite categories is a pseu-
dovariety. The free structure ΩΓCat on a graph Γ is
then the free category on Γ, whose edges are the finite
paths in Γ. In case Γ is a profinite graph, ΩΓCat may
be constructed as in an earlier section as the comple-
tion of ΩΓCat with respect to a suitable metric. We call
the edges of ΩΓCat profinite edges and we say they are
infinite if they do not lie in ΩΓCat.

Note that from the free profinite category ΩΓ(S)Cat one
can reconstruct the subshift S as a topological dynam-
ical system: the space S is the closed subspace V of
vertices and the shift transformation v → σ(v) is char-
acterized by the edges which are not local identities
and which cannot be factorized nontrivially. In par-
ticular, two subshifts are conjugate if and only if their
associated profinite graphs (respectively categories) are
isomorphic.

A subshift S ⊆ XZ further determines a labeling of
its associated profinite graph Γ(S): label the edge
v → σ(v) with the letter v(0) across which the shift
moves the origin of the doubly infinite word v. This la-
beling extends uniquely to a continuous homomorphism
λ : ΩΓ(S)Cat → ΩXM to the free profinite monoid on X,
which is obtained from ΩXS by adding an identity as an
isolated point, where monoids are seen as one (virtual)
vertex categories.

Proposition 6. The mapping λ is faithful.

We thus have another strong, “geometrical”, connection
between subshifts and free profinite semigroups. The
next result summarizes some relationships between the
profinite constructions associated with a subshift.

Theorem 11. Let S ⊆ XZ be a subshift.

a. The subshift S is irreducible if and only if the cate-
gory ΩΓ(S)Cat is strongly connected. In this case,
the labeling λ embeds the minimal ideal of each
local monoid of ΩΓ(S)Cat in the minimal J -class
of S as a union of maximal subgroups of ΩnS.

b. The subshift S is minimal if and only if the cat-
egory ΩΓ(S)Cat is strongly connected and its sub-
semigroupoid whose edges are the infinite profinite
paths of Γ(S) is a groupoid.

In particular, for an irreducible subshift S ⊆ XZ,
the maximal subgroups of the minimal ideals of local
monoids of the profinite category ΩΓ(S)Cat are mutu-
ally isomorphic and they are isomorphic to the maxi-
mal subgroups of the minimal J -class of S. This gives
a geometrical meaning to the groups computed in the
preceding section. We also obtain the following result.

For shortness, let us denote G(S) any of the maximal
subgroups of the minimal J -class of an irreducible sub-
shift S.

Corollary 3. The group G(S) is a conjugacy invariant
of S.

A subshift S ⊆ XZ is said to be generated by a finite
primitive endomorphism ϕ of ΩnS if L(S) is the set of
factors of the words of the form ϕn(xi) or, equivalently,
the finite factors of the profinite words ϕω(xi). Since
for such ϕ, ϕω(xi) is uniformly recurrent, we do always
generate a subshift in this way. The subshifts thus ob-
tained are also called substitution subshifts.

As a consequence of Theorem 8 we should note that
G(S) is a very rough conjugacy invariant. However,
it is easy to see that the action of the alphabet on the
minimal J -class of an irreducible subshift S is sufficient
to allow us to recover S. Hence, one should be able to
extract from this action enough information to charac-
terize the conjugacy class of S. At present it remains an
open problem how to do it and whether that may lead
to a solution of the conjugacy problem for subshifts of
finite type or even for sofic subshifts.

We end this section with a partial extension of The-
orem 8 to non-substitution subshifts. A subshift S is
said to be Sturmian if L(S) has exactly n + 1 elements
of length n for every n ≥ 1. It is well known that this is
the minimum possible value for a non-periodic subshift
and that Sturmian subshifts are minimal [19]. Taking
n = 1, we see that a Sturmian subshift involves only
two letters and so it may be considered as a subshift
over a two-letter alphabet.

The following result has also been announced in [5].

Theorem 12. Let S be a Sturmian subshift. Then the
group G(S) is a free profinite group on two generators.

For example, the continuous endomorphism of Ω2S de-
fined by ϕ = (xy, x) generates the so-called Fibonacci
subshift, which has many remarkable properties [25].
The name is justified since the number of occurrences
of y in ϕn(x) is the nth term of the Fibonacci sequence
1, 1, 2, 3, 5, 8, 13, . . . The associated group is a free profi-
nite group on two generators by Theorem 12.

Sturmian substitution subshifts have been character-
ized as those subshifts on two-letter alphabets which
are generated by finite primitive G-invertible contin-
uous endomorphisms of Ω2S [25, Chapter 2]. Hence
Theorem 12 is indeed an extension of Theorem 8 for
two-letter alphabets. The following partial extension
to larger alphabets has also been announced in [5].

We say that a word w is right special for a subshift S,
if there are at least two letters a, b such that wa, wb ∈
L(S). In this case, the number of such letters is called
the right-degree of w. The left analogues of this notion
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are defined dually. A subshift S ⊆ XZ is said to be
an Arnoux-Rauzy subshift if, for every positive integer
n, there is exactly one right special word of length n,
which is of right-degree |X|, and one left special word
of length n, which is of left-degree |X|. One can easily
show that an Arnoux-Rauzy subshift is minimal.
Theorem 13. Let S be an Arnoux-Rauzy subshift over
an alphabet with m letters. Then the group G(S) is a
free profinite group on m generators.
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