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Introduction

As everyone knows, Einstein’s Relativity forbids all ma-
terial objects (or even signals) to travel faster than light.
What is sometimes ignored is that this is a local state-
ment: speed with respect to an observer can only be de-
fined in a neighborhood of this observer. For instance, it
is well known that the universe is expanding, all galax-
ies (on average) speeding away from each other. An
analogy which is particularly well suited is the surface
of an expanding balloon, with the galaxies as points on
this surface. Although the galaxies are not moving with
respect to the balloon’s surface, the distance between
them is increasing; if they are sufficiently far apart (i.e.,
if the balloon is large enough), then the distance will in-
crease faster than 300000 kilometers per second. So in a
sense they will be moving faster than the speed of light
with respect to each other. This is indeed what hap-
pens with galaxies at the edge of the visible universe.
The “thou shall not travel faster than light” command-
ment in this analogy simply forbids objects to travel
faster than light with respect to the balloon’s surface.
(Incidentally, this analogy also shows that there is no
“center of the universe” where the Big Bang occurred;
the Big Bang simply means the epoch where the balloon
was very small and very hot - in a sense it happened in
all points of space).

These ideas were used by Miguel Alcubierre ([Alc94]) to
construct (in theory) a “warp drive”, allowing a space-
ship to travel faster than light, by deforming space in
the following manner: take a ball containing your space-
ship (the “warp bubble”), and keep it undeformed; con-
tract space in front of the bubble, expand space behind
it. Since there is no a priori constraint on the speed of
contraction/expansion, it is possible to move the bubble
from one point to another as quickly as one wishes.

In what follows we will explain exactly how this is done
within the mathematical framework General Relativity,

show how it can be generalized and see how this attempt
at circumventing Einstein’s prohibition is doomed to
fail.

General Relativity

General Relativity is the physical theory of space,
time and gravitation. It states that spacetime is
a 4-dimensional Lorentzian manifold (i.e., a pseudo-
Riemannian manifold (M, g) for which the metric g has
signature (−,+,+,+)), satisfying the Einstein equation

G = 8πT,

where the Einstein tensor G is just the trace-reversed
Ricci tensor,

G = R− trR

2
g,

and the energy-momentum tensor T describes the mat-
ter content of the spacetime. Thus any 4-dimensional
Lorentzian manifold can be thought of as a spacetime
containing the matter described by

T =
1
8π

G.

However, an arbitrary choice is almost certain to gen-
erate an unphysical energy-momentum tensor.

A nonzero tangent vector v ∈ TM is said to be timelike,
lightlike or spacelike according to whether g(v, v) < 0,
g(v, v) = 0 or g(v, v) > 0 (the zero vector is by defi-
nition spacelike). A curve c : R → M whose tangent
vector ċ remains in one of the above classes is given the
same name. Timelike curves are interpreted as possible
histories of test particles with nonvanishing rest mass
(which must travel slower than light); the length

τ =
∫ t1

t0

|g (ċ(t), ċ(t))|
1
2 dt
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is then the time measured by the particle between the
events c(t0) and c(t1). Lightlike curves are interpreted
as possible histories of test particles with vanishing rest
mass (which must travel at the speed of light, e.g., pho-
tons or neutrinos).

If c is a geodesic, i.e.,

∇ċċ = 0,

then
d

dt
[g(ċ, ċ)] = 2g (ċ,∇ċċ) = 0.

Thus geodesics are always curves of a given type. Time-
like geodesics are interpreted as the histories of free-
falling test particles with nonzero rest mass; the fact
that they are geodesics means that free-falling particles
measure more time between any two (sufficiently close)
events than any other particle. Lightlike geodesics are
interpreted as the histories of free-falling test parti-
cles with zero rest mass; the extremality property in
this case is that no other massive or massless particle
can travel between two (sufficiently close) events on the
lightlike geodesic.

Unlike Newtonian mechanics, General Relativity pro-
vides no canonical way of splitting spacetime into space
plus time. A possible choice is to take an arbitrary
spacelike hypersurface, i.e., a hypersurface Σ ⊂ M
whose orthogonal vector field is timelike, and consider
its evolution along the orthogonal geodesics. A local
chart (x1, x2, x3) on Σ can therefore be extended to a
local chart (t, x1, x2, x3) on M (from this point on called
an Eulerian chart), where t is the arclength (time) mea-
sured along the orthogonal (timelike) geodesic. In these
local coordinates, the metric is just

g = −dt⊗ dt + γ(t),

where
γ(t) = gij(t, x1, x2, x3)dxi ⊗ dxj

must be a Riemannian metric on Σ (we are using the
summation convention on the indices i, j = 1, 2, 3).
This allows us to interpret General Relativity as de-
scribing the evolution of a Riemmannian metric γ(t) on
the 3-dimensional manifold Σ. This metric yields the
distances measured between nearby Eulerian observers.

The Einstein equation can then be formulated in terms
of γ and the extrinsic curvature

K =
1
2

∂γ

∂t
.

It implies

∂

∂t
(trK)− tr(K2) = −8π

(
T00 −

1
2

trT

)
;

trR + (trK)2 − tr(K2) = 16πT00,

where R = R(t) is now the Ricci tensor of (Σ, γ) (not
(M, g)).

It is also possible to show that

trK =
1

(det γ)
1
2

∂

∂t

[
(det γ)

1
2

]
.

In other words, trK measures the fractional variation
of the volume element for Eulerian observers: tr K < 0
in some region means that the volume of that region is
decreasing.

Most models of matter are described by energy-
momentum tensors satisfying both the strong energy
condition, which implies

T00 −
1
2

trT ≥ 0,

and the weak energy condition, which implies

T00 ≥ 0

(confusingly the strong energy condition does not imply
the weak energy condition). If T satisfies the strong en-
ergy condition and trK does not vanish at some point
then our Eulerian chart must break down at some value
of t: indeed, in this case the Einstein equation implies
that

∂

∂t
(trK)− tr(K2) ≤ 0.

Using the inequality

(trA)2 ≤ n tr(A2)

(which holds for any real n×n symmetric matrix A) one
can easily prove that starting from a nonzero value trK
must blow up in finite time. This breaking down of the
Eulerian chart can either be a coordinate singularity
or a genuine geometric singularity (meaning that M is
geodesically incomplete); indeed this can be thought of
as a primitive version of the famous Penrose-Hawking
singularity theorems.

Warp Drive Spacetimes

We will now describe a class of spacetimes which can be
understood simply by studying a (time-dependent) vec-
tor field in Euclidean 3-space. These will then be used
to construct our warp drives. If you find what follows
a bit too technical you can turn to the short summary
in the beginning of section 4.

Definition 1. A warp drive spacetime (M, g) is defined
by taking M = R4 with the usual Cartesian coordinates
(t, x, y, z) ≡ (t, xi) and

g = −dt⊗ dt +
3∑

i=1

(dxi −Xidt)⊗ (dxi −Xidt)

for three unspecified bounded smooth functions (Xi) ≡
(X, Y, Z).

9



The Riemannian metric γ induced in the spacelike hy-
persurfaces {dt = 0} is just the ordinary Euclidean flat
metric. A warp drive spacetime is completely defined
by the vector field

X = Xi ∂

∂xi
= X

∂

∂x
+ Y

∂

∂y
+ Z

∂

∂z
,

which we can think of as a (time-dependent) vector field
defined in Euclidean 3-space.

Notice carefully that the chart (t, xi) is not an Eulerian
chart; Eulerian observers’ histories are integral curves
of the unit normal vector to the {dt = 0} hypersurfaces,

n =
∂

∂t
+ Xi ∂

∂xi
=

∂

∂t
+ X.

Proposition 2. The extrinsic curvature tensor is

K =
1
2

(
∂iX

j + ∂jX
i
)
dxi ⊗ dxj .

Proof. The extrinsic curvature tensor is given by

K =
1
2
£nγ =

1
2
£( ∂

∂t +X)γ.

Now

£ ∂
∂t

γ = £ ∂
∂t

δijdxi ⊗ dxj =
∂δij

∂t
dxi ⊗ dxj = 0

(where δij is the Kronecker delta). On the other hand,
since X is tangent to the spacelike hypersurfaces, we
can use the usual formula for the Lie derivative of the
metric,

£Xγ =
(
δkjDiX

k + δikDjX
k
)
dxi ⊗ dxj =(

DiX
j + DjX

i
)
dxi ⊗ dxj ,

where D stands for the Levi-Civita connection deter-
mined by γ. Since γ is just the flat Euclidean metric,
D = ∂ and we get the formula above.

Corollary 3. The expansion of the volume element as-
sociated with the Eulerian observers is given by ∇ ·X.

Proof. We just have to notice that

trK = Ki
i = ∂iX

i.

Corollary 4. A warp drive spacetime is flat wherever
X is a Killing vector field for the Euclidean metric (ir-
respective of time dependence). In particular, a warp
drive spacetime is flat wherever X is spatially constant.

Proof. Since the spacelike surfaces are flat, all curvature
comes from the extrinsic curvature. Thus the spacetime
will be flat wherever the extrinsic curvature is zero, i.e.,
wherever £Xγ = 0.

In particular, the Einstein equation implies that there
is no matter in these regions. Also there is no geodesic
deviation, and hence no tidal forces.

Theorem 5. Non flat warp drive spacetimes violate the
weak or the strong energy condition.

Proof. We already know that if the strong energy con-
dition holds and tr K 6= 0 at some event, then trK
blows up in finite time. Since ∇ ·X is finite, the strong
energy condition can only hold if trK ≡ 0. However, it
follows from the Einstein equation that

T00 =
1

16π

(
trR + (trK)2 − tr(K2)

)
where R = 0 is the Ricci tensor of the flat Cauchy sur-
faces dt = 0. Thus if trK = 0 we have T00 ≤ 0, and
T00 = 0 iff K ≡ 0. Consequently if the spacetime does
not violate neither the strong nor the weak energy con-
ditions it must be flat.

Warp Drive With Zero Expansion

We have seen in the previous section that given a time-
dependent smooth bounded vector field X in Euclidean
3-space we can construct a Lorentzian manifold with a
global chart {t, xi} having the following properties:

1. The space sections {dt = 0} are just Euclidean 3-
space;

2. The free-fall Eulerian observers move in this Eu-
clidean 3-space with velocity X;

3. The fractional volume variation of these observers is
(unsurprisingly) ∇ ·X;

4. There exists no matter nor tidal forces wherever X
is spatially constant;

5. Unfortunately, the strong or weak energy conditions
are always violated.

If
ċ = ṫ

∂

∂t
+ ẋi ∂

∂xi

is the tangent vector to a timelike geodesic, we must
have

g(ċ, ċ) < 0 ⇔ −ṫ2+
3∑

i=1

(ẋi−Xiṫ)2 < 0 ⇔
∥∥∥∥dx

dt
−X

∥∥∥∥ < 1,

where
x = xi ∂

∂xi
= x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
.

This can be readily interpreted as meaning that the
speed of any test particle with nonvanishing rest mass
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with respect to the Eulerian observers must be smaller
than the speed of light (which is normalized to 1). How-
ever, there is no a priori limit for the speed X of the
Eulerian observers themselves. This was used by Miguel
Alcubierre ([Alc94]) to construct the following example
of a spacetime in which superluminal travel is possible:

Example 6. Choose

X = vsf(rs);
Y = Z = 0,

with

vs(t) =
dxs(t)

dt
;

rs =
[
(x− xs)2 + y2 + z2

] 1
2 ,

where xs(t) is arbitrary and f : [0,+∞) → [0, 1] is a
smooth function such that f ′ ≤ 0, f = 1 in a neigh-
borhood of the origin and f = 0 in a neighborhood of
infinity. Let us call the region f(rs) = 1 the interior of
the warp bubble and the region f(rs) = 0 the exterior
of the warp bubble. In both these regions X is spatially
constant, and hence they contain no matter and gener-
ate no tidal forces; nevertheless, Eulerian observers in-
side the warp bubble move with arbitrary speed vs with
respect to Eulerian observers outside the warp bubble
(there is no reason why vs should be smaller than 1).

The expansion of the volume element associated with
the Eulerian observers in this example is

trK = ∂xX = vsf
′(rs)

x− xs

rs
.

Since f ′ ≤ 0, we see that volume is decreasing in front
of the bubble and increasing behind it. This compres-
sion/expansion was thought to be a fundamental ingre-
dient in the warp drive mechanism; we will presently
see that it’s not. Alcubierre also found that the energy
conditions were violated at the bubble’s wall (i.e., the
region where f ′ 6= 0), as we now know to be unavoid-
able.

It is convenient to replace the x coordinate with

ξ = x− xs(t).

This effectively corresponds to replacing X with X−vs,
so that the Eulerian observers inside the bubble stand
still whereas the Eulerian observers outside the bubble
move with speed vs in the negative ξ-direction. Obvi-
ously trK retains its value, but now

rs =
(
ξ2 + y2 + z2

) 1
2

does not depend on the coordinate t.

Definition 7. The vector field X is said to generate a
warp bubble with velocity vs(t) if X = 0 for small ‖x‖
(the interior of the warp bubble) and X = −vs(t) for
large ‖x‖ (the m exterior of the warp bubble)

To construct a warp drive with zero expansion all one
has to do then is to find a divergenceless field generat-
ing a warp bubble with velocity vs(t) ∂

∂x (see [Nat02] for
details on how to do this).

The Alcubierre warp drive can be pictured as contract-
ing space in front of the warp bubble and expanding it
behind; a zero expansion warp drive can be thought of
as sliding the warp bubble through normal space.

Lightlike geodesics and horizons

Besides violating energy conditions, warp drive space-
times have much more serious problems, namely hori-
zons. To see evidence of this, let us consider the case of
a vector field X generating a warp bubble with velocity
vs

∂
∂x satisfying

∂X
∂t

= 0
(
⇒ dvs

dt
= 0

)
.

Since null geodesics must satisfy

g(ċ, ċ) = 0 ⇔ dt2 =
3∑

i=1

(dxi−Xidt)2 ⇔
∥∥∥∥dx

dt
−X

∥∥∥∥ = 1,

we see that a flash of light outside the warp bubble
can be pictured in the Euclidean 3-space as a spheri-
cal wavefront which is simultaneously expanding with
speed 1 and moving in the direction of X with speed
‖X‖ = vs. Thus it is clear that if vs > 1 then events
inside the warp bubble cannot causally influence events
outside the warp bubble at large positive values of x,
as no particle emitted from inside the bubble can reach
those points. Assuming cylindrical symmetry about the
x-axis, there will be a point on the positive x-axis where
‖X‖ = 1; the cylindrically symmetric surface through
this point whose angle α with X is given by

sinα =
1
‖X‖

is a horizon, in the sense that events inside the warp
bubble cannot causally influence events on the other
side of this surface (see figure 1). Notice that away
from the warp bubble we have

sinα =
1
vs

which is the familiar expression for the Mach cone an-
gle. Also notice that the interior of the warp bubble
is causally disconnected from part of the bubble’s wall.
This is the so-called you-need-one-to-make-one prob-
lem with the warp drive: the warp bubble wall, where
your (unphysical) matter fields live, cannot be gener-
ated from inside the bubble. You’d need someone who
was already traveling faster than light to generate it for
you.
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Figure 1: Computing the horizon.
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