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1 A beautiful problem

In the academic year 1956-1957, John Nash had a visit-
ing position at the Institute for Advanced Study (IAS)
in Princeton, on a sabbatical leave from MIT, but he
actually lived in New York City. The IAS at the time
“was known to be about the dullest place you could
find”1 and Nash used to hang around the Courant In-
stitute which was close to home and full of activity.
That’s how he came across a problem that mathemati-
cians had been trying to solve for quite a while. The
story goes that Louis Nirenberg, at the time a young
professor at Courant, was the person responsible for the
unveiling: “...it was a problem that I was interested in
and tried to solve. I knew lots of people interested in
this problem, so I might have suggested it to him, but
I’m not absolutely sure”, said Nirenberg recently in an
interview to the Notices of the AMS (cf. [19]).

As so many other great questions of 20th century math-
ematics, it all started with one of Hilbert’s problems
presented on the occasion of the 1900 International
Congress of Mathematicians in Paris, namely the 19th
problem: Are the solutions of regular problems in the
calculus of variations always necessarily analytic? A
simple example of such a problem is, in modern termi-
nology, the problem of minimizing a functional

min
w∈A

∫
Ω

L(∇w(x)) dx

where Ω ⊂ Rn is a bounded and smooth domain, the
Lagrangian L(ξ) is a smooth (possibly nonlinear) scalar
function defined on Rn and A is a set of admissible
functions (typically the elements of a certain function
space satisfying a boundary condition like w = g on ∂Ω,
for a given g). The question is to prove that, given the

smoothness of L, the minimizer (assuming it exists) is
also smooth.

Problems of this type are related to elliptic equations in
that a minimizer u is a weak solution of the associated
Euler-Lagrange equation

n∑
i=1

∂

∂xi
Lξi

(∇u(x)) = 0 in Ω .

This equation can be differentiated with respect to xk,
to give that, for any k = 1, 2, . . . , n, the partial deriva-
tive ∂u

∂xk
:= vk satisfies a linear PDE of the form

n∑
i,j=1

∂

∂xi

(
aij(x)

∂vk

∂xj

)
= 0 , (1)

with coefficients aij(x) := Lξiξj (∇u(x)). The PDE is
elliptic provided L is assumed to be convex.

In the 1950’s, regularity theory for elliptic equations
was essentially based on Schauder’s estimates which,
roughly speaking, guarantee that if aij ∈ Ck,α then the
solutions of (1) are of class Ck+1,α, for k = 0, 1, . . .
So if it could be shown that u ∈ C1,α then aij(x) :=
Lξiξj (∇u(x)) would belong to C0,α, v to C1,α and u to
C2,α; a bootstrap argument would then solve Hilbert’s
19th problem.

Meanwhile, the existence theory had been developed
through the use of direct methods: the minimization
problem has a unique solution provided L, apart from
satisfying natural growth conditions like

|L(ξ)| ≤ C |ξ|p ,
1Cathleen Morawetz, quoted in [15].
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is also coercive and uniformly convex. The notion of
solution had to be conveniently extended and the ad-
missible set A taken to be the set of functions that,
together with their first weak derivatives, belong to Lp,
i.e., that belong to the Sobolev space W 1,p.

So the existence theory gave a minimizer u ∈W 1,p and
the missing step for the regularity problem to be solved
was

u ∈W 1,p =⇒ u ∈ C1,α

i.e., from first derivatives in Lp to Hölder continuous
first derivatives. In terms of the elliptic PDE (1), reg-
ularity theory worked if the leading coefficients were
already somewhat regular (at least continuous) since
it was based on perturbation arguments and compari-
son of the solutions with harmonic functions. Assum-
ing only the measurability and the boundedness of the
coefficients (together with the essential structural as-
sumption of ellipticity) was insufficient, and nothing
was known about the regularity of the solutions in this
case.

The problem was solved by C.B. Morrey in 1938 for
the special case n = 2 but the techniques he employed
were typically two dimensional, involving complex anal-
ysis and quasi-conformal mappings. The n-dimensional
problem remained open until the late 50’s and that’s
exactly what Nirenberg told Nash about.

2 De Giorgi’s breakthrough

The problem wouldn’t resist the genius of John Nash
and Ennio De Giorgi. The two men worked totally un-
aware of each other’s progress and solved the problem
using entirely different methods.

It was De Giorgi who did it first (actually for p = 2;
the result would later be extended to any p ∈ (1,∞))
and it is his proof that will now be analyzed. To re-
ally understand in full depth De Giorgi’s ideas there
is no way around the technicalities. In what follows I
did my best to explain things in a clear way but the
reader should not expect everything to be trivial or im-
mediately understandable; so please grab a pencil and
a piece of paper and be prepared to struggle a bit with
inequalities and iterations.

Consider the equation

n∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= 0 in Ω (2)

where Ω ⊂ Rn is a smooth bounded domain and the
coefficients aij are only assumed to be measurable and
bounded, with

‖aij‖L∞ ≤ Λ ,

and to satisfy the uniform ellipticity condition (for
λ > 0)

n∑
i,j=1

aijξiξj ≥ λ|ξ|2 , ∀x ∈ Ω, ∀ξ ∈ Rn .

A weak solution of equation (2) is a function u ∈
W 1,2(Ω) which satisfies the integral identity

n∑
i,j=1

∫
Ω

aij
∂u

∂xi

∂ϕ

∂xj
= 0 (3)

for all test functions ϕ ∈W 1,2
0 (Ω) (the elements of W 1,2

which vanish on the boundary ∂Ω in a suitable weak
sense).

To simplify the writing we assume from now on that

Ω = B1 :=
{
x ∈ Rn : |x| < 1

}
.

Theorem 1 Every weak solution of (2) is locally
bounded.

Proof. Let k ≥ 0 and η be a smooth function with
compact support in B1. Put v = (u − k)+ and take
ϕ = vη2 as test function in (3). The use of the assump-
tions and Young’s inequality give∫

B1

|∇v|2η2 ≤ 4Λ2

λ2

∫
B1

|∇η|2v2 . (4)

These Cacciopoli inequalities on level sets of u will be
the building blocks of the whole theory and once they
are obtained the PDE can be forgotten: the problem
becomes purely analytic.

Next, by Hölder and Sobolev’s inequalities (with 2∗ =
2n/(n− 2) being the Sobolev exponent),∫

B1

(vη)2 ≤
(∫

B1

(vη)2
∗
) 2

2∗

|{vη 6= 0}|1−
2
2∗

≤ c(n) |{vη 6= 0}|
2
n

∫
B1

|∇(vη)|2

and since, due to (4),∫
B1

|∇(vη)|2 ≤
(

4Λ2

λ2
+ 1
)∫

B1

|∇η|2v2

we arrive at∫
B1

(vη)2 ≤ c(n, λ,Λ) |{vη 6= 0}|
2
n

∫
B1

|∇η|2v2 .

Now for fixed 0 < r < R < 1, choose the cut-off func-
tion η ∈ C∞0 (BR) such that 0 ≤ η ≤ 1, η ≡ 1 in Br and
|∇η| ≤ 2

R−r . Putting, for ρ > 0,

A(k, ρ) =
{
x ∈ Bρ : u(x) > k

}
,

9



we obtain (with C ≡ c(n, λ,Λ))∫
A(k,r)

(u− k)2 ≤ C

(R− r)2
|A(k,R)|

2
n

∫
A(k,R)

(u− k)2.

For h > k and 0 < ρ < 1,∫
A(h,ρ)

(u− h)2 ≤
∫

A(k,ρ)

(u− k)2

and

(h− k)2|A(h, ρ)| ≤
∫

A(k,ρ)

(u− k)2

so we have

∫
A(h,r)

(u− h)2

≤ C

(R− r)2
|A(h,R)|

2
n

∫
A(h,R)

(u− h)2

≤ C

(R− r)2
1

(h− k)
4
n

(∫
A(k,R)

(u− k)2
)1+ 2

n

or, equivalently, with ψ(s, ρ) = ‖(u− s)+‖L2(Bρ)

ψ(h, r) ≤ C

R− r

1
(h− k)

2
n

ψ(k,R)1+
2
n , (5)

for any h > k > 0 and 0 < r < R < 1.

We are now ready to use the brilliant iteration scheme
devised by De Giorgi. Define, for m = 0, 1, 2, . . .

km = k (1− 1
2m

)

rm =
1
2

(1 +
1

2m
)

where k is to be determined later. Due to (5), we then
have, for m = 0, 1, 2, . . .,

ψ(km, rm) ≤ C
2m+1+ 2m

n

k
2
n

ψ(km−1, rm−1)1+
2
n (6)

and can prove, by induction, that, for some γ > 1,

ψ(km, rm) ≤ ψ(k0, r0)
γm

, ∀m = 0, 1, 2, . . . (7)

if k is chosen sufficiently large. In fact, it is trivial that
it holds for m = 0; now suppose it holds for m− 1 and
write

ψ(km−1, rm−1)1+
2
n ≤

{
ψ(k0, r0)
γm−1

}1+ 2
n

=
ψ(k0, r0)

2
n

γ
2m
n −(1+ 2

n )

ψ(k0, r0)
γm

.

From (6) we obtain

ψ(km, rm) ≤ 2Cγ1+ 2
n
ψ(k0, r0)

2
n

k
2
n

2m(1+ 2
n )

γ
2m
n

ψ(k0, r0)
γm

and choose first γ > 1 such that γ
2
n = 21+ 2

n and then
k large enough so that

2Cγ1+ 2
n
ψ(k0, r0)

2
n

k
2
n

≤ 1 ⇐ k = C∗ ψ(k0, r0)

where C∗ ≡ C∗(n, λ,Λ).

Finally let m→∞ in (7) to get ψ(k, 1
2 ) ≤ 0, i.e.,

‖(u− k)+‖L2(B 1
2
) = 0 .

Hence
sup
B 1

2

u+ ≤ C∗ ‖u+‖L2(B1) .

Using a dilation argument, this estimate can be refined;
indeed, for any θ ∈ (0, 1) and p > 1, it holds

sup
Bθ

u+ ≤ C(n, λ,Λ)
(1− θ)n/p

‖u+‖Lp(B1) .

The same type of reasoning gives similar conclusions
concerning u− and the result follows. �

The basic general idea to obtain results concerning the
continuity of a solution of a PDE at a point consists in
estimating its oscillation in a nested sequence of con-
centric balls (cylinders in the parabolic case), centered
at the point, and showing that it converges to zero as
the balls shrink to the point. If this can be measured
quantitatively it gives a modulus of continuity.

Denote the oscillation of a function u in Br by osc(u, r).
A further analysis, which uses the previous theorem,
leads to

Theorem 2 Let u ∈ H1(B2) be a weak solution of (2)
in B2. There exists a constant γ = γ(n, λ,Λ) ∈ (0, 1)
such that

osc (u, 1/2) ≤ γ osc (u, 1) .

Thus (see below), there exists some constant α ∈ (0, 1)
such that, for 0 < r < R < 1,

osc (u, r) ≤ C
( r
R

)α

osc (u,R) ,

which gives a Hölder modulus of continuity and

Theorem 3 (De Giorgi - Nash) Every weak solu-
tion of (2) is Hölder continuous.
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3 Three papers... and a correc-
tion

In a series of three fundamental papers (and a correc-
tion) published in Communications on Pure and Ap-
plied Mathematics, the journal of the Courant Insti-
tute, Jürgen Moser made significant contributions to
the theory. He first gave in [11] a new proof of De Gior-
gi’s theorem, using the simple general principle that the
estimates (4) hold for any convex function f(u) of a so-
lution u; the results were obtained by applying such
estimates to powers f(u) = |u|p, p ≥ 1, and to the log-
arithmic function log+ u−1. Then he proved Harnack’s
inequality for elliptic equations (cf. [12]):

Theorem 4 (Moser’s Harnack inequality) If u is
a positive weak solution of (2) and K is a compact sub-
set of Ω, then

max
K

u ≤ C min
K

u ,

where C ≡ C(Ω,K, λ,Λ).

The proof of the Harnack inequality made no use of
the Hölder continuity of the solutions, which in turn is
a simple consequence of that fact, as Moser showed in
the paper. In fact, assume again that Ω = B1. Let, for
0 < r < 1,

M(r) = max
Br

u , m(r) = min
Br

u ,

and apply Harnack’s inequality to the domains Br and
B r

2
to get

max
B r

2

(M(r)− u) = M(r)−m(r/2)

≤ C
(
M(r)−M(r/2)

)
= C min

B r
2

(M(r)− u)

and

M(r/2)−m(r) ≤ C
(
m(r/2)−m(r)

)
since M(r) − u and u −m(r) are positive solutions in
Br. Adding these two inequalities, we obtain

M(r/2)−m(r/2) ≤ C − 1
C + 1

(
M(r)−m(r)

)
or, with α = C−1

C+1 < 1,

osc (u, r/2) ≤ α osc (u, r) .

By induction,

osc (u, 2−k r) ≤ αk osc (u, r) ; k = 1, 2, . . .

Now, for ρ < r, we can take k such that 2−k−1 r < ρ ≤
2−k r to obtain

osc (u, ρ) ≤ C
(ρ
r

)β

osc (u, r)

with β = − log α
log 2 > 0, and as a consequence the Hölder

continuity of the function u.

Moser extended his results to parabolic equations, ob-
taining a Harnack inequality for nonnegative solutions
of the parabolic analogue of (2), assuming only the
boundedness of the coefficients and the condition cor-
responding to ellipticity (cf. [13] and [14]). Again his
approach was essential nonlinear and contrasted dra-
matically with the approach via fundamental solutions
that had been used by Hadamard and Pini to obtain
Harnack estimates for solutions of the heat equation.

4 When Stanley met Living-
stone

In 1958 the ICM would take place in Edinburgh and the
deliberations on the Fields medalists were concluded
early that year (the two medals were eventually award-
ed to Thom and Roth). Solving the regularity problem
would probably be worth a medal. Nash in his own
words [18]: “It seems conceivable that if either De Gior-
gi or Nash had failed on this problem (...) then the lone
climber reaching the peak would have been recognized
with mathematics’ Fields medal.”Nash solved the prob-
lem in the spring of 1957 using a nonlinear approach
to attack linear equations. The main results would be
announced in a note to the Proceedings of the Nation-
al Academy of Sciences ([17]), submitted by Marston
Morse of the IAS on October 6, 1957. By then, Nash
had already found out, in late spring, about De Giorgi’s
proof: “(...) although I did succeed in solving the prob-
lem, I ran into some bad luck since, without my being
sufficiently informed on what other people were doing in
the area, it happened that I was working in parallel with
Ennio De Giorgi of Pisa, Italy. And De Giorgi was first
actually to achieve the ascent of the summit (...).”In
fact, the seminal paper of De Giorgi was presented by
Mauro Picone on April 24, 1957 to the Academy of Sci-
ences of Torino and the results had been announced at
the Congress of the Unione Matematica Italiana, which
took place in Pavia in October, 1955. Some say that
Nash was devastated when he learned about De Giorgi.
That summer De Giorgi visited the Courant Institute
and Peter Lax would say later about the meeting of the
two men: “It was like Stanley meeting Livingstone.”

The approach of Nash to the problem was totally dif-
ferent from De Giorgi’s and some people think that his
ideas were never fully understood (cf. [4]). He treated
parabolic equations directly and obtained the results for
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elliptic equations as corollaries. The essence of his rea-
soning consisted of obtaining control of the properties
of fundamental solutions of linear parabolic equations
with variable coefficients. The crucial estimate is the
moment bound

k1

√
t ≤

∫
|x| T (x, t) dx ≤ k2

√
t ,

which controls the moment of a fundamental solution
T . About this result Nash wrote in [16]: “(...) it opens
the door to the other results. We had to work hard to
get (the bound), then the rest followed quickly.”

Although the problem was “morally”solved, writing the
paper proved to be technically very hard and Nash con-
tinued to work on it when he went back to MIT in the
summer of 1957. A few steps in the proof were not
clear and only a joint effort with such people as Lennart
Carleson (who was visiting MIT on leave from Uppsala)
and Elias Stein, both explicitly credited in the paper for
some of the proofs, eventually led to his famous paper
published in 1958 (Nash writes as an acknowledgement:
“We are indebted to several persons”and then names
eleven colleagues). There’s a petite histoire about the
publishing of the paper (cf. [15]): Nash first submitted
it to Acta Mathematica through Carleson, who was an
editor there, and made him know that he wanted the
paper to be refereed quickly. Carleson gave it to Lars
Hörmander (later a Fields medalist, together with John
Milnor, in the Stockholm ICM in 1962) who did the job
in two months and recommended the paper for pub-
lication. But Nash withdrew the paper, which would
appear later in the American Journal of Mathematics.
The reason for this might have been that, after “loos-
ing”the Fields, Nash wanted the paper to be eligible for
the AMS Bôcher Prize (awarded for a notable research
memoir in analysis published during the previous five
years in a recognized North American journal). The
1959 prize would be awarded to Louis Nirenberg for his
work on partial differential equations.

Whether Nash’s ideas were ever understood in full
depth by anyone except himself remains unclear. The
fact is that his work, although profusely cited, didn’t
give rise to much subsequent research. It was the more
understandable approach of De Giorgi and Moser that
the PDE community adopted and developed to full ex-
tent.

5 Intrinsic scaling

The work of De Giorgi, Moser and Nash concerned lin-
ear PDE’s but the approach was essentially nonlinear
since the linearity had no bearing in the proofs: it all
stems out of the structure assumption on the differen-
tial operator.

In the elliptic case, this fact allowed for the extension
to quasilinear equations of the type

∇ · a(x, u,∇u) = b(x, u,∇u) in Ω ,

where the principal part a satisfies the growth assump-
tion

|a(x, u,∇u)| ≤ Λ |∇u|p−1 + ϕ(x)

and the ellipticity condition

a(x, u,∇u) · ∇u ≥ λ |∇u|p − ϕ(x) ,

for constants 0 < λ ≤ Λ and a bounded ϕ ≥ 0; the
prototype is the p-Laplacian equation

∇ · (|∇u|p−2∇u) = 0 .

Notice the nonlinear dependence on the partial deri-
vatives and the nonlinear growth with respect to the
gradient. The equation is degenerate if p > 2 and
singular if 1 < p < 2, since its modulus of ellipticity
|∇u|p−2 vanishes or blows up, respectively, at points
where |∇u| = 0. Ladyzhenskaya and Ural’tzeva estab-
lished the Hölder continuity of weak solutions (cf. [9],
the bible of elliptic equations), extending De Giorgi’s
results, and Serrin [20] and Trudinger [21] obtained the
Harnack inequality for nonnegative solutions following
Moser’s ideas.

Surprisingly enough, the theory didn’t succeed so well
in the parabolic case

ut −∇ · a(x, u,∇u) = b(x, u,∇u) in Ω× [0, T )

and Moser’s proof could only be extended (by Aron-
son, Serrin and Trudinger) for the case p = 2, which
corresponds to principal parts with a linear growth on
|∇u|. The same happened with the methods of De Gior-
gi, which the Russian school extended to the parabolic
case (always for p = 2), thus rediscovering Nash’s re-
sults concerning the Hölder continuity (of solutions of
parabolic equations) by entirely different methods. So,
unlike the elliptic case, degenerate or singular equations
like

ut −∇ · (|∇u|p−2∇u) = 0 ,

for which the principal part of the equation grows non-
linearly with |∇u|, seemed to behave differently, and the
questions of regularity remained open until the 1980’s.

To understand the difficulty, consider a parabolic cylin-
der

Q(τ,R) := BR × (0, τ) .

The use of Cacciopoli inequalities on level sets leads in
this case to expressions of the form (compare with (4))

sup
0<t<τ

∫
BR×{t}

v2ηp +
∫ τ

0

∫
BR

∣∣∇v∣∣p ηp

≤ C

∫ τ

0

∫
BR

|∇η|p vp .
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The iterative argument of De Giorgi, as adapted by the
Russian school to the parabolic case, required the equa-
tion to be nondegenerate (p = 2) so that the integral
norms appearing in these estimates were homogeneous.
This is not the case in the inequality above: the pres-
ence of the power p jeopardizes the homogeneity in the
estimates and the recursive process itself. The key idea
to overcome the difficulty presented by the inhomogene-
ity was introduced by DiDenedetto (cf. [3] for an ac-
count of the theory and an extensive list of references)
and consists essentially of looking at the equation in
its own geometry, i.e., in a geometry dictated by its
degenerate structure. This amounts to re-scaling the
standard parabolic cylinders by a factor depending on
the oscillation of the solution. This procedure of in-
trinsic scaling, which somehow is an accommodation of
the degeneracy, allows the recovering of the homogene-
ity in the energy estimates, written over these re-scaled
cylinders, and the proof then follows more or less easily.
One can say heuristically that the equation behaves in
its own geometry like the heat equation.

Let’s briefly describe the procedure for the degenerate
case p > 2. Consider R > 0 such that Q(Rp−1, 2R) ⊂
Ω× [0, T ), define

ω := osc (u,Q(Rp−1, 2R))

and construct the cylinder

Q(a0R
p, R) , with a0 =

(ω
A

)2−p

where A depends only on the data. Note that for p = 2,
i.e., in the nondegenerate case, we have a0 = 1 and
these are the standard parabolic cylinders that reflect
the natural homogeneity of the space and time vari-
ables. Assume, without loss of generality, that ω < 1
and also that

1
a0

=
(ω
A

)p−2

> R

which implies that Q(a0R
p, R) ⊂ Q(Rp−1, 2R) and the

relation
osc (u,Q(a0R

p, R)) ≤ ω . (8)

This is in general not true for a given cylinder since
its dimensions would have to be intrinsically defined in
terms of the oscillation of the function within it; it is
the starting point of the iteration process, in which the
difficulties coming from the degenerate structure of the
problem are overcome through the use of the re-scaled
cylinders. The details are extremely technical and the
interested reader can consult [3].

These ideas have been explored to obtain regularity re-
sults for other partial differential equations, like the
porous medium equation or doubly nonlinear parabolic
equations. I’ll comment briefly on two extensions for
which I am partly responsible.

The inclusion

γ(u)t −∇ · (|∇u|p−2∇u) 3 0 , p > 2,

where γ is a maximal monotone graph with a singular-
ity at the origin, occurs as a model for the well-known
two-phase Stefan problem when a nonlinear law of diffu-
sion is considered, u being in that case the temperature
and γ(u) the enthalpy. As before, the equation is de-
generate in the space part, but now it is also singular in
the time part since “γ′(0) = ∞”. In this case a further
power appears in the energy estimates (the power one,
which is due to estimating the singular term) and no
re-scaling permits the compatibility of the three pow-
ers involved. The proof of the regularity in [22] uses
the geometry of the nonsingular case to deal with the
degeneracy but the price of a dependence on the oscilla-
tion in the various constants that are determined along
the proof has to be paid. Owing to this fact, it is no
longer possible to exhibit a modulus of continuity for
the solution of the problem but only to define it implic-
itly. This is enough to obtain the continuity but the
Hölder continuity, which holds in the nonsingular case,
is lost.

Another example concerns the parabolic equation with
two degeneracies

∂tu−∇ · (α(u)∇u) = 0 ,

where u ∈ [0, 1] and α(u) degenerates for u = 0 and
u = 1. An equation of this type is physically rele-
vant since it shows up in a model describing the flow
of two immiscible fluids through a porous medium and
also in polymer chemistry and combustion. In [23] it is
shown that u is locally Hölder continuous if α decays
like a power at both degeneracies. A fine analysis of
what happens near the two degeneracies leads to the
construction of the cylinders used in the iterative pro-
cess, with the appropriate geometry being once again
dictated by the structure of the PDE.

Acknowledgements. I would like to thank Prof. João
Queiró for his encouragement and interest.
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