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1 Introduction

The great advances in computational mathematics over the
last half century, driven by profound developments in nu-
merical methods along with remarkable progresses in the
field of high performance computing, are playing a major
role in the scientific and engineering innovation.

Partial differential equations arise in the mathematical
modelling of many physical, chemical and biological phe-
nomena in a wide and diverse range of subject areas such as
fluid dynamics, electromagnetism, material science, medi-
cal imaging. Very frequently is either impossible or imprac-
ticable to find closed form solutions to the equations under
consideration and it is crucial to obtain numerical approx-
imations to the unknown analytical solution.

When assigned with the task of solving numerically a
partial differential equation, the first question one faces is
tho choose an adequate method.

The demand for finding accurate numerical models for
physical phenomena around complex geometries are mak-
ing high order methods very attractive for practical appli-
cations. Among the possible choices, the discontinuous
Galerkin (DG) finite element method, which ensures geo-
metric flexibility and supports high order locally adapted
resolution, appears to offer most of the desired properties.

The DG finite element method appeared in the litera-
ture back to 1973 in [16], as a proposal to solve the steady-
state neutron transport equation. The first convergence
analysis results were presented in 1974, in [13] and improved
later for example in [12], [14] and [15]. The extension to non-
linear scalar conservation laws was achieved in late 1980’s
([4]). Important progresses, namely the development of
adaptive solution techniques and the extension to multidi-
mensional cases and to unstructured grids, took place in the
next two decades (see e.g. [5], [11]). Since the years 2000
there has been an explosion in activities and DG methods
become widely used for solving a large range of problems,
for example, electromagnetic wave’s propagation ([8]), or
fluid flow in porous media ([17]).

Being capable of producing highly accurate numeri-
cal solutions, DG methods gather many desirable features
over the finite differences, finite volume and finite element
methods, when used to derive spacial discretizations. The
widely used finite differences, on top of being simple, lead
to very efficient schemes in many problems. However they
are not suitable to handle complex geometries. The finite
volume method uses an element based approach and en-
sures geometric flexibility. Moreover it is locally conserva-
tive. The main drawback of the finite volume method is its
limitation for achieve high-order accuracy on general un-
structured grids. The need to solve geometrically complex
large scale problems with higher-order convergence, justi-
fies the huge interest in the flexibility offered by the finite
element schemes, which is the natural choice inmany prob-
lems. However, the basis functions are globally defined and
consequently it is not straightforward to deal for instance
with hanging nodes. While the mass matrix is sparse and
typically well conditioned, finding, for instance, a steady
state solution implies to solve a system that involves the
global mass matrix. In addition, the finite element method
is less natural when compared with finite volume method
to deal with conservation laws, where there is a flow in spe-
cific directions. Discontinuous Galerkin methods fulfill the
need of geometrical flexibility and locally adapted resolu-
tion. Some other features include local mass conservation,
possible definition on unstructured meshes, hp-adaptivity
with locally varying polynomial degrees.

There is likewise a wide variety of methods for the in-
tegration in time. For example, we can mention the fully
explicit leap-frogmethod ([1]), or the classes of implicit and
explicit Runge-Kutta type methods (e.g. [3],[10]), which re-
flect a method-of-lines approach with the time and space
separately discretized. Explicit time-stepping schemes are
computationally very effective. Nevertheless, those meth-
ods are only conditionally stable. If an explicit time integra-
tor is considered, the maximum time step size allowed is re-
latedwith the smallest elements of the spatialmesh. Locally
refined meshes often obstruct the efficiency for the simula-
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tion of time-dependent phenomena, because of the strin-
gent stability constraint caused by the existence of some
small elements in the spatial mesh. This could be the case
when the problem involves modelling small structures with
complex shapes and consequently a veryfinemesh is needed
at some spatial locations. As an examplewemention theuse
of Maxwell’s equation to model the electromegnetic wave’s
propagation in the human retina described in [2] and [18].
Simulating the full complexity of the retina, in particular
taking into account the variation of the size and shape of
each structure, demands the use of a spatial mesh which
reflects that level of detail. This is remarkably limitative
for the choice of the time step in the case of explicit time-
stepping schemes. By taking smaller time-steps precisely
where the smallest elements are located, local time-stepping
methods ([9]) become a possible approach. Another inter-
esting choice, is to consider locally implicit time-schemes
([6]). Here we highlight another alternative, which is to
consider the DG method in time. In contrast to explicit
Runge-Kutta methods, the DG in time is unconditionally
stable ([7]). This idea suggests the use of DG methods in
a space-time approach, giving a framework for high-order
accurate methods. In this technique, time is considered as
an extra dimension and it is treated in a similar fashion as
the spatial coordinates.

The advantages of DGmethods for space, time or space-
time integration, include their flexibility on the choice of
meshes and thus their capacity to handle complicated ge-
ometries, their potential for error control andmesh adapta-
tion, their possible definition on unstructured meshes. The
possibility of parallel implementation attenuates the major
drawbacks which are high memory requirements and com-
putational cost.

In spite of the theoretical developments, which encour-
age the use of high order finite element methods, the range
of polynomial degrees used in finite element computations
for practical applications and in commercial codes is usu-
ally rather small. In many cases, this fact is due to com-
putational efficiency rather than any theoretical issue. The
search of efficient solvers for the linear systems originated
from theDGfinite element approach is nowadays a trend of
utmost importance.

Inwhat followswewill briefly discuss the formulation of
theDGfinite elementmethod for linearwave problems. We
will also summarise the theoretical convergence properties
to give an appreciation of what can be expected in terms of
accuracy of the schemes.

2 The continuous setting

Let Ω be an open, bounded, Lipschitz domain in ℝd, d ≥ 1,
and let T > 0 be a finite time. We consider the following

linear evolution problem: find u ∶ Ω × [0,T] → ℝ such
that

𝜕𝜕u
𝜕𝜕t

+ Au = f in Ω × (0,T],

u(., 0) = u0 in Ω, (1)

u = 0 on Γ− × (0,T],

where A is a first-order linear differential operator

Au = 𝛽𝛽 𝛽 𝛽u + 𝜎𝜎u,

𝛽𝛽 ∶ Ω → ℝd is a given Lispschitz convection field, 𝜎𝜎 ∶
Ω → ℝ is a bounded reaction term, f ∶ Ω × [0,T] → ℝ is
the source term, u0 ∶ Ω → ℝ is the initial datum, and Γ− is
the inflow part of the boundary defined as

Γ− = {x ∈ Γ ∶ −𝛽𝛽(x) 𝛽 n > 0},

with n denoting the outer normal unit vector to Γ. The out-
flow boundary, Γ+, is defined by Γ+ = Γ\Γ−. We make the
following hypothesis on the data

𝜎𝜎(x) − 1
2
div𝛽𝛽(x) ≥ 𝜇𝜇0 > 0 ∀x ∈ Ω.

Let us consider the space

V = {v ∈ L2(Ω) ∶ 𝛽𝛽 𝛽 𝛽v ∈ L2(Ω), v|Γ−
= 0},

endowed with the norm

‖v‖2
V = 𝜇𝜇0‖v‖2

L2(Ω) + ‖𝛽𝛽 𝛽 𝛽v‖2
L2(Ω).

Assuming that f ∈ C0([0,T], L2(Ω)) and u0 ∈ V , taking
the L2-inner product, from (1) we obtain the following vari-
ational problem: find u ∈ C0([0,T],V ) ∩ C1([0,T], L2(Ω))
such that, ∀v ∈ L2(Ω), ∀t ∈ (0,T],

(𝜕𝜕u
𝜕𝜕t

(t), v)L2(Ω) + (Au(t), v)L2(Ω) = (f (t), v)L2(Ω),

u(0) = u0.
(2)

Using the relation

(𝛽𝛽 𝛽 𝛽u + 𝜎𝜎u, u)L2(Ω) = (𝜎𝜎 − 1
2
div𝛽𝛽, u2)L2(Ω)

+ 1
2
((𝛽𝛽 𝛽 n)u, u)L2(Γ),

we can derive the following energy inequality, which ex-
presses the continuous dependence of the solution of (2) on
the data,

‖u(t)‖2
L2(Ω) + ∫

t

0
et−𝜏𝜏

∫Γ+

(𝛽𝛽(x) 𝛽 n(x))u(x, 𝜏𝜏)2 dx d𝜏𝜏

≤ et‖u0‖2
L2(Ω) + ∫

t

0
et−𝜏𝜏‖f (𝜏𝜏)‖2

L2(Ω) d𝜏𝜏, t ∈ [0,T].
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Figure 1.— Partition of the computational domain in one dimension

The proof of the uniqueness of solution follows from the
above inequality. Further results on the well-posedness of
(2), namely the existence of solution, can be found in [19].

3 The discrete setting

We introduce some key ideas behind the DG finite element
method in a simple case, considering the scalar wave equa-
tion

𝜕𝜕u
𝜕𝜕t

+ a𝜕𝜕u
𝜕𝜕x

= 0, x ∈ (0, 1) = Ω, t ∈ (0,T], (3)

with a > 0, subject to the initial condition u(x, 0) = u0(x)
and the inflow boundary condition u(0, t) = 0.

Assume that the computational domainΩ is partitioned
into K nonoverlapping elementsDk such that Ω = ∪kDk, as
illustrated in the Figure 1. On each elementDk, the solution
is approximated by polynomials of degree less than or equal
toN = Np − 1,

̃uk(x, t) =
Np

∑
n=1

̂ukn(t)𝜑𝜑n(x),

where 𝜑𝜑n, n = 1, … ,Np, form the local polynomial basis.
The global solution u(x, t) is then assumed to be approxi-
mated by the piecewise N order polynomials defined as the
direct sum of the K local polynomial solutions

u(x, t) ≃ ̃u(x, t) =
K

⨁
k=1

̃uk(x, t).

In order to deduce the method, we start by multiplying
equation (3) by test functions 𝜑𝜑n. Spatial integration by
parts over each element Dk yields

∫Dk
(

𝜕𝜕 ̃uk
𝜕𝜕t

𝜑𝜑n − a ̃uk
𝜕𝜕𝜑𝜑n

𝜕𝜕x ) dx = −[a ̃uk𝜑𝜑n]
xrk

xlk

= − ∫𝜕𝜕Dk

n ⋅ a ̃uk𝜑𝜑n dx, 1 ≤ n ≤ Np,

where n represents the local outward pointing normal. The
next step is to substitute in the resulting contour integral

the flux by a numerical flux (a ̃u)∗, which will be specified
later. Reversing the integration by parts yields

∫Dk
(

𝜕𝜕 ̃uk
𝜕𝜕t

𝜑𝜑n + a
𝜕𝜕 ̃uk
𝜕𝜕x

𝜑𝜑n) dx

= ∫𝜕𝜕Dk

n ⋅ (a ̃uk − (a ̃u)∗) 𝜑𝜑n dx, 1 ≤ n ≤ Np.

The approximate solution is allowed to be discontinu-
ous across elements boundaries. In this way, we introduce
the notation of average {{ũ}} = ̃u−+ ̃u+

2
and of the jumps of

the solution values across the interfaces of the elements,
[ũ] = ũ−− ̃u+, where the superscript ‵‵+" denotes the neigh-
bouring element and the superscript ‵‵ −" refers to the local
element. The coupling between elements is introduced via
the numerical flux

(a ̃u)∗ = {{a ̃u}} + a1 − 𝛼𝛼
2

n ⋅ [ ̃u], 0 ≤ 𝛼𝛼 ≤ 1.

If 𝛼𝛼 = 1 the numerical flux is called central flux being the
average of two solutions. The case 𝛼𝛼 = 0, corresponds to
the upwind flux which takes into account the direction of
the flux.

Figure 2 (see next page) shows the computed solution of
equation (3), considering a = 2, u0(x) = sin(𝜋𝜋x), at time
t = 0.1, obtained by means of the DG method with upwind
flux, for different values ofN and K.

The flexibility of DG methods allows us to easily change
basis functions. For instance, we could use Lagrange poly-
nomials or other polynomials satisfying a desired orthogo-
nality property. One possible choice is to consider the or-
thonormal basis

𝜑𝜑j(r) =
Pj(r)

√𝛾𝛾j
,

where Pj are the Legendre polynomials of order j and 𝛾𝛾j =
2

2j+1
. This basis can be computed through the recurrence

aj+1𝜑𝜑j+1(r) = r𝜑𝜑j(r) − aj𝜑𝜑j−1(r),

aj =
√

j2

(2j + 1)(2j − 1)
,

3



Bulletin #37 October 2016 29 

Figure 2.— Numerical solution of the wave equation. Top left: N=1, K=10. Top right: N=1, K=20. 
Bottom left: N=1, K=40. Bottom right: N=4, K=10

with 𝜑𝜑0(r) = 1
√2

, 𝜑𝜑1(r) = √
3
2
r. The affine mapping

x(r) = xlk + 1 + r
2

(xrk − xlk),

relates x ∈ Dk with the reference variable r ∈ [−1, 1].
We now go back to the more general problem (1) in two

or three space dimensions. We will present the discrete set-
ting in both time and space based on DG in time-space dis-
cretizations. Wewill also present a result for the error anal-
ysis.

4 Semi-discretization in time

We start by decomposing the time interval I = (0,T] into
disjoint subintervals In = (tn−1, tn], where n = 1, … ,N,
0 = t0 < t1 < ⋯ < tN−1 < tN = T. We use the nota-
tion 𝜏𝜏n = tn − tn−1.

The approximate solution is a piecewise polynomial
with respect to time, locally defined on the space

Pk(In,V ) =

{w ∶ In → V ,w(t) =
k

∑
j=0

Wjtj, ∀t ∈ In,Wj ∈ V , ∀j}.

The space Pk(In, L2(Ω)) is defined analogously, with V re-
placed by L2(Ω). The jump of w𝜏𝜏 at tn is defined as

[w𝜏𝜏]n = w𝜏𝜏(t+n ) − w𝜏𝜏(tn),

where w𝜏𝜏(t+n ) = limt→t+n w𝜏𝜏(t). Using the known value
u𝜏𝜏(tn−1) from the previous time interval and u0 for n = 1,
the local problem on In reads: find u𝜏𝜏|In ∈ Pk(In,V ) such
that

∫In
( 𝜕𝜕u𝜏𝜏

𝜕𝜕t
+ Au𝜏𝜏, v𝜏𝜏)L2(Ω) dt + ([u𝜏𝜏]n−1, v𝜏𝜏(t+n−1))L2(Ω)

= Qn ((f , v𝜏𝜏)L2(Ω)) ,

∀v𝜏𝜏 ∈ Pk(In, L2(Ω)). The right-hand side is evaluated by
means of some numerical integration formula

Qn ((f , v𝜏𝜏)L2(Ω)) ≃ ∫In

(f , v𝜏𝜏)L2(Ω) dt.

5 Space discretization

Let 𝒯𝒯h be a shape-regular mesh of Ω which is assumed to
have a polygonal (d = 2) or polyhedral (d = 3) boundary.
By h we denote the mesh diameter. Let Vh be the space of
piecewise polynomials of order less or equal to r. The mesh
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Figure 3.— Legendre polynomials

edges or faces (cases d = 2 and d = 3, respectively) are col-
lected in the set ℱh, split into the set of the ones belonging
to the interior, ℱ int

h , and boundary, ℱ ext
h .

The discrete operator which defines the DG method in
time, Ah, defined for all v ∈ H1(Ω) ∪ Vh and wh ∈ Vh, is
given by

(Ahv,wh)L2(Ω) = ∑
T∈𝒯𝒯h

(𝜎𝜎v + 𝛽𝛽 𝛽 𝛽v,wh)L2(T)

+ ∑
F∈ℱ ext,inflow

h

((𝛽𝛽 𝛽 n)v,wh)L2(F)

− ∑
F∈ℱ int

h

((𝛽𝛽 𝛽 n)[v], {{wh}})L2(F)

+ ∑
F∈ℱ int

h

(
1
2

|𝛽𝛽 𝛽 n|[v], [wh])L2(F)
.

This operator verifies the following important properties.

• Consistency: Let Ph ∶ L2(Ω) → Vh be the L2-
orthogonal projector onto Vh. Then

Ahw = PhAw, ∀w ∈ H1(Ω).

• Discrete coercivity: Let us consider the mesh-

dependent norm

|||vh|||2 = 𝜇𝜇0‖v‖2
L2(Ω) + ∑

F∈ℱ ext
h

‖|𝛽𝛽 𝛽 n|1/2v‖2
L2(F)

+1
2 ∑

F∈ℱ int
h

‖|𝛽𝛽 𝛽 n|1/2[v]‖2
L2(F).

Then ∃C > 0 such that

C|||vh|||2 ≤ (Ahvh, vh)L2(Ω),

∀vh ∈ Vh.

6 Full space-time discretization

Putting all together, we now derive the fully discrete
method.

We consider the finite element space Vn
h resulting from

themesh𝒯𝒯 n
h which can change fromone time interval to the

next. The local problem in In reads: find u𝜏𝜏h|In ∈ Pk(In,Vn
h )

such that, for all v𝜏𝜏h ∈ Pk(In,Vn
h ),

∫In

(
𝜕𝜕u𝜏𝜏h

𝜕𝜕t
+ Ahu𝜏𝜏h, v𝜏𝜏h)L2(Ω) dt

+ ([u𝜏𝜏h]n−1, v𝜏𝜏h(t+n−1))L2(Ω)

= Qn ((f , v𝜏𝜏h)L2(Ω)) .
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This method, which was analysed in [7], is uncondition-
ally stable and convergent. The error bound in the follow-
ing result shows that the method is of arbitrary high order
in time and in space.

Theorem 1.— Let u be the exact solution of (2), which is
assumed to be enough regular, and let u𝜏𝜏h be the fully dis-
crete solution of the DG method. Assume that k ≥ 1 and
𝜏𝜏n ≤ 1, for all n = 1, … ,N. Then the following error bound
holds for allm = 1, … ,N,

‖u(tm) − u𝜏𝜏h(tm)‖2
L2(Ω) ≤

C((E0)2 + tm max
1≤n≤m {CT

n (u)𝜏𝜏2(k+2)
n + CS

n(u)h2r+1}
+C′

m(u)h2(r+1)) ,

with E0 = ‖Phu(0) − u𝜏𝜏h(0)‖L2(Ω),

CT
n (u) = |u|2

Ck+3( ̄In,L2(Ω)) + |u|2
Ck+2( ̄In,V ),

CS
n(u) = ‖u‖2

C1( ̄In,Hr+1(Ω))

and,

C′
m(u) = |u(tm)|2Hr+1(Ω).

The error bound point out not only the influence of the
mesh size but also the dependence on the choice of the de-
gree of the polynomials used in the construction of the fi-
nite element space, making possible to balance accuracy
and computational efficiency.

7 Outlook

The demand for modelling intricate systems often involv-
ing multiscales and multiphysics around complex geome-
tries has been a source of motivation for great progress in
the field of computational mathematics. High order meth-
ods for solving partial differential equations, such as finite
element methods or spectral methods, are attractive due to
the need of great accuracy on realistic models. Neverthe-
less a number of challenges still exist not only in the devel-
opment of new mathematical tools but also in translating
academic progresses into engineering practice.

There is a truly need of a formulation and analysis
of new multiscale, multiphysics, scalable, parallel efficient
methods for treating multiple time and spatial scales that
arise in modelling complex phenomena. The arising of new
methodsdemandsdevelopments in their analysis and inves-
tigators are engaged to seek results on the well-posedness
of the models, a priori and a posteriori error estimators, sta-
bility and convergence aspects. Another important issue
to address is reliability of computer predictions due to un-
certainty. Physical phenomena can rarely be modelled with
complete fidelity evenunder the best of circumstances, even

though they often support life-and-death decisions in dif-
ferent fields. The uncertainty may occur in all phases of
the predictive process, from model selection and choice of
the parameters to the observation data. Mathematicians
are driven forward to investigate uncertainty quantification
and error estimators.

In the particular topic of the present article, there are
still important questions to be addressed. First, the inves-
tigation of the theoretical aspects of the DG time-stepping
method, as the convergence properties, is far from being
closed. The existent literature does not encompasses all
models. The introduction of nonlinearities or the change
of the boundary conditions, often needed to model real ap-
plications, entail subtleties and often the analysis is not
straightforward from the existent results. Another chal-
lenge appears when applying theDG time-steppingmethod
in practice and we are faced with the task of solving big
linear systems at each time-step possible defined by ma-
trixes with large condition numbers. The drawback in the
computational cost can be tamed using efficient solvers.
There has been a great interest in investigating strategies
like multigrid methods, domain decomposition methods
and to develop robust and efficient preconditioners. An ad-
ditional aspect which deserves attention is how to deal effi-
cientlywith the quadrature rules, which involve sums on the
quadrature points, in the case of high order methods.
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