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1 A brief introduction

After the notion of uniform hyperbolicity was coined in
the seventies by Smale [26], it became the paradigm of
chaotic dynamics. If, on the one hand, the local dynam-
ics of a uniformly hyperbolic diffeomorphism is simple and
conjugated to the one exhibited by linear saddles, on the
other hand the global dynamics presents an unpredictable
character due to sensibility to initial conditions, dense-
ness of periodic trajectories and orbits with transitive and
(ir)regular behavior. The geometric theory developed for
uniformly hyperbolic dynamics guarantees the existence
of local immersed submanifolds (called stable and unsta-
ble manifolds) that are invariant by the dynamics and that
constitute a crucial ingredient in the construction of finite
Markov partitions. In consequence, subshifts of finite type
can be used as combinatorial models for the dynamics and
the powerfull techniques and ideas from statisticalmechan-
ics extend to this context. The geometric and functional
analytic approaches (via construction of Markov partitions
and the description of the spectrum of transfer operators,
respectively) play a key role in the construction of physi-
cal, Sinai-Ruelle-Bowen and equilibrium measures and the
study of their statistical properties. We refer the interested
reader to e.g. [5, 24] for a more complete account.

The aim of this text is to survey and to be an invitation
to the use of topological methods in dynamics, as a valid
and handy alternative to the aforementioned geometric and
functional analytic approaches. The starting point is the
notion of specification proposed by Rufus Bowen which
consists of the ability of the dynamics to recreate with sharp
proximity true orbits fromany givennumber of finite pieces
of orbits (see e.g. [11]). The relationbetween shadowing and
specification, the description of the latter concept and its
extensions, and its importance as a tool in ergodic theory
will guide the exposition in the remaining sections. There is

evidence that these topological methods may be used to de-
scribe partial hyperbolic dynamics and dynamics of group
actions, contexts in which topological and functional ana-
lytic methods are still unavailable, contributing to one of
the most important leading research directions and chal-
lenges in dynamical systems.

2 Basics on topological dynamics

Throughout this article we assume thatM is a compact Rie-
mannian manifold. Let f be a continuous map onM. Some
of the main concerns of the characterization of the dynam-
ics from a topological viewpoint involve the description of
periodic and transitive behavior, and chaoticity. Let Ω(f ) ⊂
M be the set of non-wandering points of f , that is, the points
x ∈ M so that every open neighborhood of x intersects a
positive iterate of itself by the dynamics. A point x ∈ M is
periodic (of period n) if there exists n ∈ ℕ so that f n(x) = x.
Let Per(f ) denote the set of all periodic points of f . Recall
that f is called transitive if there exists a point x ∈ M so that
its orbit {f n(x) ∶ n ∈ ℕ} is dense inM, and it is called topo-
logically mixing if for any pair of open sets U ,V there exists
N ∈ ℕ so that f n(U) ∩V ≠ ∅ for every n ≥ N. An intricate
challenge that goes back to the sixties was to propose suit-
able mathematical notions of chaos. Historically, one refers
to chaotic dynamics the ones that exhibit at least one of the
following properties: sensitive dependence to initial condi-
tions, expansiveness, strong recurrence and mixing condi-
tions, shadowing, specification, exponential growth of pe-
riodic points or positive topological entropy (see e.g. [15]).

Our main interest here concerns chaotic dynamics in
the sense that pieces of true orbits or pseudo-orbits can be
well approximated by true orbits of the dynamical system.
The first notion that we shall consider is that of shadowing,
which we now describe. Given a metric spaceM, a continu-
ousmap f ∶ M → M and 𝛿𝛿 𝛿 0, a sequence of points (xn)n≥0

1

Topological Methods in Dynamics with 
Applications in Ergodic Theory
Old and New

Paulo Varandas*

* Departamento de Matemática, Universidade Federal da Bahia, Av. Ademar de Barros s/n, 40170-110 Salvador, Brazil,
 E-mail: paulo.varandas@ufba.br
 URL: www.pgmat.ufba.br/varandas



CIM :: INTERNATIONAL CENTER FOR MATHEMATICS 42 

is a 𝛿𝛿-pseudo-orbit if d(f (xn), xn+1) < 𝛿𝛿 for every n ≥ 0. We
say that [xi, ti]i∈ℤ is a (𝛿𝛿,T)-pseudo-orbit for a flow (Xt)t if
d(Xti(xi), xi+1) < 𝛿𝛿 for all i ∈ ℤ. A continuous map has
the shadowing property if for any 𝜀𝜀 𝜀 0 there exists 𝛿𝛿 𝜀 0
so that for any 𝛿𝛿-pseudo-orbit (xn)n≥0 there exists x ∈ M
satisfying d(f n(x), xn) < 𝜀𝜀 for every n ≥ 0. In the case of
homeomorphisms, pseudo-orbits and shadowingpoints are
defined for bothnegative andpositive iterates of the dynam-
ics. A continuous flow (Xt)t satisfies the shadowing property
if, for any 𝜀𝜀 𝜀 0 andT 𝜀 1 there exists 𝛿𝛿 𝛿 𝛿𝛿(𝜀𝜀,T) 𝜀 0 such
that for any (𝛿𝛿,T)-pseudo-orbit [xi, ti]i∈ℤ there is ̃x ∈ Λ and
a reparametrization 𝜏𝜏 ∈ R(𝜀𝜀) (cf. 1) such that

d(X𝜏𝜏𝜏t)( ̃x), x0 ⋆ t) < 𝜀𝜀, for every t ∈ ℝ.

where for t ∈ ℝ, x0 ⋆ t 𝛿 Xt−𝜎𝜎𝜏i)(xi) if 𝜎𝜎(i) ≤ t < 𝜎𝜎(i + 1).

3 Basics on ergodic theory

3.1 Invariant measures

The purpose of ergodic theory is to describe the asymp-
totic behavior of the orbits of ‘almost every point’ with re-
spect to relevant measures for the dynamics. Given a 𝜎𝜎-
algebra ℬ and a measurable map f on M, we say that a
probability measure 𝜇𝜇 is f -invariant if 𝜇𝜇(f−1(A)) 𝛿 𝜇𝜇(A)
for every A ∈ ℬ. We denote by ℳ1(f ) the space of f -
invariant probability measures. A set A ∈ ℬ is f -invariant
if 𝜇𝜇(f−1(A)△A) 𝛿 0. An invariant probability measure 𝜇𝜇
is ergodic if 𝜇𝜇(A) ∈ {0, 1} for every f -invariant set A. By er-
godic decomposition, the space ℳ1(f ) is the convex hull of
the space ℳe(f ) of f -invariant and ergodic probability mea-
sures (see e.g.[33]).

In what follows let 𝜇𝜇 be an f -invariant probability mea-
sure. Two pillars in ergodic theory are due to Poincaré
(1890), and to vonNeumannandBirkhoff (1931-1932). First,
if 𝜇𝜇(A) 𝜀 0 then Poincaré recurrence theorem asserts that
𝜇𝜇-almost every x ∈ A is recurrent: there exists n ≥ 1 so that
f n(x) ∈ A. Later, the ergodic theorems of von Neumann
and Birkhoff brought the ideas present in Boltzman ergodic
hypothesis in thermodynamics into the realm of dynami-
cal systems. Birkhoff’s ergodic theorem guarantees that if
𝜇𝜇 ∈ ℳ1(f ) is ergodic and 𝜙𝜙 ∈ L1(𝜇𝜇) then

1
n

n−1

∑
j=0

𝜙𝜙(f j(x)) ⟶ ∫ 𝜙𝜙 d𝜇𝜇 as n → ∞

for 𝜇𝜇-almost every x ∈ M and, thus, time averages of an ob-
servable for typical orbits coincide with the space average
with respect to the underlying measure. von Neuman er-
godic theorem guarantees the convergence of the previous
time averages for observables 𝜙𝜙 on the Hilbert space L2(𝜇𝜇).

3.2 Thermodynamic formalism

Someof the ideas of thermodynamic formalism,which aims
the selection of invariant measures and the study of their
statistical properties, where introduced from statistical me-
chanics into the realm of dynamical systems by pioneering
contributions of Sinai, Bowen and Ruelle in the late seven-
ties (see [11, 22] and references therein). Two particularly
important classes of invariant measures are the so called
equilibrium states and physical measures.

Given a potential 𝜙𝜙 ∈ C(M, ℝ) the topological pressure
Ptop(f , 𝜙𝜙) for f and 𝜙𝜙 can be defined by the variational prin-
ciple

Ptop(f , 𝜙𝜙) 𝛿𝜙𝜙𝜙{h𝜇𝜇(f ) + ∫ 𝜙𝜙 d𝜇𝜇𝜇 𝜇𝜇∈ℳ1(f )},

where h𝜇𝜇(f ) stands for the entropy of 𝜇𝜇 (see e.g. [33]). An
invariant probabilitymeasure 𝜇𝜇 is called an equilibrium state
for f with respect to 𝜙𝜙 if it attains the previous supremum.
If 𝜙𝜙 𝜙 0 the previous notion coincides with the topological
entropy htop(f )of f . If there exists a unique equilibriumstate
then it is necessarily ergodic and we shall denote it by 𝜇𝜇f ,𝜙𝜙.
An f -invariant probability measure 𝜇𝜇 is a physical measure if
its basin of attraction

B(𝜇𝜇)𝛿{x ∈ M𝜇 1
n

n−1

∑
j=0

𝛿𝛿f j𝜏x) → 𝜇𝜇 as n → +∞}

has positive Lebesgue measure. There are many exam-
ples where equilibrium and physical measures coincide and
are absolutely continuous with respect to some reference
measures with some weak Gibbs property. We say that a
probability measure 𝜈𝜈 is a weak Gibbs measure for f and 𝜙𝜙
if for 𝜈𝜈-almost every x there are constants (Kn)n≥1 so that
lim 𝜙𝜙𝜙n

1
n

logKn(x) 𝛿 0 and

K−1
n (x) ≤ 𝜈𝜈(B(x, n, 𝜖𝜖))

e−nP𝜏𝜙𝜙)+Sn𝜙𝜙𝜏x) ≤ Kn(x)

for every n ≥ 1, where Sn𝜙𝜙 𝛿 ∑n−1
j=0 𝜙𝜙 𝜙 f j and the dy-

namical ball B(x, n, 𝜖𝜖) is the set of points y ∈ M such that
d(f j(y), f j(x)) < 𝜀𝜀 for all 0 ≤ j ≤ n. We say that 𝜈𝜈 is a Gibbs
measure with respect to 𝜙𝜙 if there exists K 𝜀 0 such that the
previous property holds with Kn 𝛿 K (independent of n and
x).

4 Uniform hyperbolicity

A compact f -invariant set Λ ⊂ M is called uniformly hy-
perbolic for f if there exists a Df -invariant splitting TΛM 𝛿
Es ⊕ Eu and constants C 𝜀 0 and 𝜆𝜆 ∈ (0, 1) so that

‖Dfn(x) ∣Esx ‖≤C𝜆𝜆n & ‖Df−n(x) ∣Eux ‖≤C𝜆𝜆n

for every x ∈ Λ and n ≥ 1. We say that f is an
Anosov diffeomorphism if M is a uniformly hyperbolic
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set. Given a hyperbolic set Λ, a point x ∈ Λ and
𝜀𝜀 𝜀 0, the 𝜀𝜀-stable set of x is defined by Ws

𝜀𝜀(x) =
{y ∈ M ∶ d(f n(y), f n(x)) ≤ 𝜀𝜀 for all n ≥ 0} . Similarly, the
set Wu

𝜀𝜀 (x) of points y ∈ M so that d(f−n(y), f−n(x)) ≤ 𝜀𝜀 for
all n ≥ 0 is the 𝜀𝜀-unstable set of x. Given a hyperbolic set Λ
for f there exists a uniform 𝜀𝜀 𝜀 0 so that the stable and un-
stable setsWs

𝜀𝜀(x) andWu
𝜀𝜀 (x) areCr submanifolds tangent to

Esx and Eux, respectively, for every x ∈ Λ. These are referred,
respectively, as the local stable and local unstable manifolds at
x of size 𝜀𝜀. Uniform hyperbolicity is a C1-open condition
in the space Diff1(M) of C1-diffeomorphisms. We refer the
reader to [24] for proofs.

Uniform hyperbolicity for flows is defined similarly.
Given a C1-flow (Xt)t on M and a compact (Xt)t-invariant
set Λ ⊆ M, we say that Λ is a hyperbolic set if there ex-
ists a DXt-invariant and continuous splitting TΛM = E− ⊕
E0 ⊕ E+ (E0 subspace generated by the vector field X(⋅) =
dXt(⋅)
dt

∣t=0) and constants C 𝜀 0 and 0 < 𝜃𝜃 < 1 such that

(i) ‖DXt(x) ∣E−
x

‖≤C𝜃𝜃t, and

(ii) ‖(DXt(x) ∣E+
x
)−1‖≤C𝜃𝜃t

for every x ∈ M and t ≥ 0. The flow (Xt)t is Anosov if the
whole manifold M is a hyperbolic set. We refer the reader
to [24] for more details on uniform hyperbolicity.

5 The notions: specification and gluing
orbit properties

5.1 Discrete-time dynamics

A continuous map f on M satisfies the specification prop-
erty if for any 𝜀𝜀 𝜀 0 there exists an integer N = N(𝜀𝜀) ≥
1 such that: for every k ≥ 1, any points x1, … , xk, and
any sequence of positive integers n1, … , nk and p1, … , pk
with pi ≥ N(𝜀𝜀) there exists a point x in M such that
d(f j(x), f j(x1)) ≤ 𝜀𝜀 for every 0 ≤ j ≤ n1 and

d(f j+n1+p1+⋯+ni−1+pi−1(x) , f j(xi)) ≤ 𝜀𝜀

for every 2 ≤ i ≤ k and 0 ≤ j ≤ ni.
Among the maps that satisfy specification property one

should refer topologically mixing subshifts of finite type,
topologically mixing Anosov diffeomorphisms and topo-
logically mixing continuous interval maps (see [10] and ref-
erences therein). More flexible concepts include somemea-
sure theoretical non-uniform versions of the specification
property that proved to hold for invariantmeasures with no
zero Lyapunov exponents (cf. [18, 32]).

In the sequel we introduce two extensions of the notion
of specification. Let 𝜇𝜇 be an f -invariant probability mea-
sure. We say that (f , 𝜇𝜇) satisfies the non-uniform specification
property if there exists 𝛿𝛿 𝜀 0 so that for 𝜇𝜇-a.e. x and every
0 < 𝜀𝜀 < 𝛿𝛿 there exists p(x, n, 𝜀𝜀) ∈ 𝜀 satisfying:

(i) lim𝜀𝜀𝜀0 lim supn𝜀∞
1
n
p(x, n, 𝜀𝜀) = 0

(ii) given x1, … , xk in afull 𝜇𝜇-measure set and positive in-
tegers n1, … , nk, if pi ≥ p(xi, ni, 𝜀𝜀) then there exists
z that 𝜀𝜀-shadows the orbits of each xi during ni iter-
ates with a time lag of p(xi, ni, 𝜀𝜀) in between f ni(xi) and
xi+1; that is, z ∈ B(x1, n1, 𝜀𝜀) and

f n1+p1+⋯+ni−1+pi−1(z) ∈ B(xi, ni, 𝜀𝜀)

for every 2 ≤ i ≤ k.

We say a continuousmap f onM satisfies the gluing orbit
property if for any 𝜀𝜀 𝜀 0 there exists an integerN = N(𝜀𝜀) ≥
1 so that for any points x1, x2, … , xk ∈ M and positive in-
tegers n1, … , nk, there are p1, … , pk ≤ N(𝜀𝜀) and x ∈ M so
that d(f j(x), f j(x1)) ≤ 𝜀𝜀 for every 0 ≤ j ≤ n1 and

d(f j+n1+p1+⋯+ni−1+pi−1(x) , f j(xi)) ≤ 𝜀𝜀

for every 2 ≤ i ≤ k and 0 ≤ j ≤ ni. The latter property is
satisfied e.g. by irrational rotations, which are far fromhav-
ing anymixing property and it is sometimes referred also as
a transitive specification property [8, 34]. Similar flavored
notions of linkability and closeability were introduced by
Gelfert and Kwietniak [14]. We refer the reader to [17] and
references therein for a more exhaustive description of the
state of the art.

5.2 Continuous-time dynamics

In opposition to the discrete-time setting, the mixing prop-
erties of continuous-time dynamical systems are harder to
analyze. For instance, while for uniformly hyperbolic dif-
feomorphisms every Hölder continuous potential admits a
unique equilibrium state, which is a Gibbs measure and
mixes exponentially fast, not all hyperbolic flows have ex-
ponential mixing (see e.g. [5]). Moreover, not all hyperbolic
flows have the specification property, which is an indicator
that a suitable notion should be more flexible to hold for a
larger class of dynamics. Recall a continuous flow (Xt)t∈ℝ
has the specification property on Λ ⊂ M if for any 𝜖𝜖 𝜀 0 there
exists a T = T(𝜖𝜖) 𝜀 0 such that: given any finite colection 𝜏𝜏
of intervals Ii = [ai, bi] (i = 1…m) of the real line satisfying
ai+1 − bi ≥ T(𝜖𝜖) for every i and every map P ∶ ⋃Ii∈𝜏𝜏 Ii → Λ
such that Xt2(P(t1)) = Xt1(P(t2)) for any t1, t2 ∈ Ii there ex-
ists x ∈ Λ so that d(Xt(x), P(t)) < 𝜖𝜖 for all t ∈ ⋃i Ii.

In continuous-time setting the shadowing property of
the finite pieces of orbits should reflect the speed at which
different points travel in their trajectories. For that reason
let ℛ be the set of all increasing homeomorphisms 𝜏𝜏∶ 𝜏 →
𝜏 so that 𝜏𝜏(0) = 0 and, given 𝜀𝜀 𝜀 0, set

ℛ(𝜀𝜀)={𝜏𝜏∈ℛ∶|
𝜏𝜏(t)−𝜏𝜏(s)

t − s
−1| < 𝜀𝜀, s ≠ t∈𝜏}. (1)

We say that a continuous flow (Xt)t has the reparametrized
gluing property if for any 𝜀𝜀 𝜀 0 there exists K = K(𝜀𝜀) ∈

3
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ℝ+ such that for any points x0, x1, … , xk ∈ M and times
t0, t1, … , tk ≥ 0 there are p0, p1, … , pk−1 ≤ K(𝜀𝜀𝜀, a
reparametrization 𝜏𝜏 ∈ 𝜏(𝜀𝜀𝜀 and a point y ∈ M so that

d(X𝜏𝜏𝜏t)(y𝜀𝜀,Xt(x0𝜀𝜀 < 𝜀𝜀 𝜀t ∈ [0, t0]

and

d(X𝜏𝜏𝜏t+∑i−1
j=0 pj+tj)(y𝜀,Xt(xi𝜀𝜀 < 𝜀𝜀 𝜀t ∈ [0, ti]

for every 1 ≤ i ≤ k. If, in addition, the point y
can be chosen periodic we say that (Xt𝜀t satisfies the pe-
riodic reparametrized gluing orbit property. Criteria for
(semi)flows to satisfy gluing orbit properties can be found
in [8, 10].

6 Specification and gluing orbit
properties: some consequences

In this section we shall focus on the analysis of continuous-
time dynamics (since proofs are technically more demand-
ing and results are in many cases harder to find in the liter-
ature) and on the comparison between continuous and dis-
crete time dynamics.

6.1 Topological aspects

The space of homeomorphisms are often described in terms
of topological classes, where we say that the homeomor-
phisms f and g are topologically conjugate if there exists a
homeomorphism h so that f ∘ h = h ∘ g. Hence, the dy-
namics of homeomorphisms in the same topological class
is the same up to a continuous change of coordinates. Sim-
ilarly, flows are usually classified up to topological equiv-
alence, that is, homeomorphisms that preserve orbits and
their orientation but not necessarily the speed of the trajec-
tories. If, on the one hand, it is not hard to check that the
specification and the gluing orbit property are topological
invariants, on the other hand topological equivalence may
fail to preserve the gluing orbit properties for flows since
thesemay affect the kindof reparametrizations that are con-
sidered at the shadowing process.

The strong contrast between discrete and continuous
time dynamics is also present in the relation between shad-
owing and specification. While topologically mixing ex-
pansive continuous maps on compact metric spaces with
shadowing property satisfy the specification property, this
may not hold even for very simple Anosov flows. Moreover,
minimal flows on 𝕋𝕋 2 satisfy gluing orbit properties but fail
to be topologically mixing. See [1, 8] for more details. Nev-
ertheless, flows with the reparametrized gluing orbit prop-
erty satisfy some ‘weak mixing’ conditions [8]. More pre-
cisely:

Theorem 1.— If (Xt𝜀t satisfies the reparametrized glu-
ing orbit property then (Xt𝜀t has positive lower frequency
𝜏𝜏(B1,B2𝜀 of visits to balls B1,B2 of radius 𝜀𝜀 given by

lim inf
t→+∞

1
t
Leb({s ∈ [0, t] ∶ B1 ∩ X−s(B2𝜀 ≠ ∅}𝜀

is strictly positive. Moreover, for all balls B1,B2 of radius 𝜀𝜀
centered at points with closed orbits there existsC > 0 such
that 𝜏𝜏(B1,B2𝜀 ≥ C𝜀𝜀.

We also note that if the flow (Xt𝜀t is expansive then the
topological entropy is bounded by the exponential growth
rate of periodic orbits, a result which also holds in the con-
text of semigroups of expanding maps (cf. [8, 12]).

6.2 Space of invariant measures

The push-forward f♯ acting on the space of probability mea-
sures in M is defined by (f♯𝜇𝜇𝜀(A𝜀 = 𝜇𝜇(f−1(A𝜀𝜀 for every
A ∈ ℬ. This map inherits some of the the topological char-
acteristics of the original dynamics. First, if f has a specifi-
cation property then so does f♯ and these are equivalent in
the context of continuous interval maps (see e.g. [21]). Sec-
ond, the simplex of invariant measures for maps with spec-
ification is the Poulsen simplex (see [25, 17]). Given a con-
tinuous flow (Xt𝜀t wedenote by ℳ1((Xt𝜀t𝜀 the space of (Xt𝜀t-
invariant probabilities. In [8] one could recover part of the
“richness” for the simplex of invariant probability measures
for dynamics with gluing orbit properties. More precisely,

Theorem 2.— If (Xt𝜀t satisfies theperiodic reparametrized
gluing orbit property then periodic measures are dense in
ℳ1((Xt𝜀t𝜀, and the set of ergodic measures forms a residual
subset of ℳ1((Xt𝜀t𝜀.

As continuous flows with shadowing and a dense set of
periodic orbits satisfy the reparametrized gluing orbit prop-
erty (cf. [7]) we obtain the following consequence:

Corollary 3.— Assume (Xt𝜀t is a continuous and volume
preserving flow. If (Xt𝜀t satisfies the periodic shadowing
property and the periodic points are dense in M then pe-
riodic measures are dense in ℳ1((Xt𝜀t𝜀.

6.3 Large deviations.

In the early nineties, L.-S. Young [35] addressed the ques-
tion of the velocity of convergence of ergodic averages on
Birkhoff’s ergodic theorem in the case of Gibbs measures.
Here, given a potential 𝜙𝜙 ∶ M → ℝ and a probability 𝜇𝜇,
we say that 𝜇𝜇 is weak Gibbs with respect to 𝜙𝜙, with constant
P𝜇𝜇 ∈ ℝ, if for any 𝜀𝜀 > 0 there exists Kt(𝜀𝜀𝜀 (depending only
on 𝜀𝜀 and on the time t) so that limt→∞

1
t

logKt(𝜀𝜀𝜀 = 0 and

1
Kt(𝜀𝜀𝜀

≤
𝜇𝜇(B(x, t, 𝜀𝜀𝜀𝜀

exp [ ∫ t
0 𝜙𝜙(Xs(x𝜀𝜀ds − tP𝜇𝜇]

≤ Kt(𝜀𝜀𝜀

4
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for 𝜇𝜇-almost every x ∈ M and every t ≥ 0. A continuous
observable 𝜓𝜓 𝜓 M → ℝ is called of tempered variation if
there is 𝛿𝛿 𝛿 0 such that limt→∞

1
t
𝛾𝛾𝛾𝜓𝜓𝛾 t𝛾 𝛿𝛿𝛿 𝛿 0, where

𝛾𝛾𝛾𝜓𝜓𝛾 t𝛾 𝛿𝛿𝛿𝛿 𝛿𝛿𝛿
y∈B(x,t,𝛿𝛿𝛿 |∫

t

0
𝜓𝜓𝛾Xs𝛾x𝛿𝛿 − 𝜓𝜓𝛾Xs𝛾y𝛿𝛿ds|.

Gluingorbit propertieswerefirst introduced in [10]with the
motivation of obtaining large deviations principles for all
hyperbolic flows:

Theorem 4.— Assume the semiflow 𝛾Xt𝛿t≥0 satisfies the
gluing orbit property, 𝜙𝜙 is a bounded potential with tem-
pered variation and 𝜇𝜇 is a weak Gibbs probability with re-
spect to𝜙𝜙. If a < b and𝜓𝜓 𝜓 M → ℝ is a boundedobservable
with tempered variation then

lim inf
t→∞

1
t

log 𝜇𝜇(
1
t ∫

t

0
𝜓𝜓 𝜓 Xs𝛾⋅𝛿ds ∈ 𝛾a𝛾 b𝛿)

≥ − inf {P𝜇𝜇 − h𝜈𝜈𝛾X1𝛿 − ∫ 𝜙𝜙 d𝜈𝜈}𝛾

where the infimum is taken over all 𝛾Xt𝛿t-invariant proba-
bility measures 𝜈𝜈 so that ∫ 𝜓𝜓 d𝜈𝜈 ∈ 𝛾a𝛾 b𝛿. If, in addition, M
is compact and 𝜓𝜓 𝜓 M → ℝ is continuous then

lim 𝛿𝛿𝛿
t→∞

1
t

log 𝜇𝜇(
1
t ∫

t

0
𝜓𝜓 𝜓 Xs𝛾⋅𝛿ds ∈ [a𝛾 b])

≤ − inf {P𝜇𝜇 − h𝜈𝜈𝛾X1𝛿 − ∫ 𝜙𝜙 d𝜈𝜈}𝛾

where the infimum is taken over all 𝛾Xt𝛿t-invariant proba-
bility measures 𝜈𝜈 so that ∫ 𝜓𝜓 d𝜈𝜈 ∈ [a𝛾 b].

A surprising connection between large derivations and
multifractal analysis (cf. Subsection 6.4 below) allows to
use the large deviations estimates to study the size of the
level sets and irregular set in the multifractal decomposi-
tion [9].

6.4 Some other aspects

For shortness, in what follows we give a more direct and in-
formal presentation of other important characterizations of
dynamics with some gluing orbit property and their use as
an important tool.

A characterization for uniform hyperbolicity

The relation between specification, gluing and uniform hy-
perbolicity among smooth dynamics is well understood. If
the specification propertyholds in aC1-open neighborhood
of diffeomorphisms or vector fields then these are Anosov
[23, 4]. Similarly any C1-open subset of diffeomorphisms
(resp. vector fields) with the gluing orbit property is formed
by transitiveAnosov diffeomorphisms (resp. Anosov flows)
[34, 10]. So, from the C1-robust viewpoint, uniform hyper-
bolicity, specification and the gluing orbit properties coin-
cide. The picture is radically different beyond the scope of

uniform hyperbolicity. Indeed, specification is rare even
among partially hyperbolic diffeomorphisms [27, 28].

Thermodynamic formalism

Bowen [11] proved that expansive homeomorphisms with
specification have a unique equilibrium state with respect
to all continuous potentials with tempered variation. More
recently, Climenhaga and Thompson extended Bowen’s ap-
proach to deal with dynamical systems where the set of
points with obstructions to either specification or expan-
siveness do not carry full topological pressure (we refer the
reader to [13] for a precise formulation and applications).
More recently, Pavlov [19] showed that expansivemaps with
non-uniform specificationmay havemore than one equilib-
rium state.

Multifractal formalism

The general idea of multifractal analysis, that can be traced
back to Besicovitch, is to decompose the phase space in sub-
sets of points which have a similar dynamical behavior and
to describe the size of each of such subsets from the dimen-
sional or topological viewpoint. Given a continuous map f
onM and 𝜙𝜙 𝜓 M → ℝ continuous, decompose

M 𝛿 ⋃
𝛼𝛼∈𝛼

M𝛼𝛼 ∪ I𝜙𝜙𝛾f 𝛿

where M𝛼𝛼 𝛿 {x ∈ M 𝜓 limn
1
n
Sn𝜙𝜙𝛾x𝛿 𝛿 𝛼𝛼𝛼 are level sets of

convergence for Birkhoff averages and the irregular set I𝜙𝜙𝛾f 𝛿
is the set of points for which the Birkhoff averages for 𝜙𝜙 do
not converge. The irregular set for continuous observables
and maps with specification is either empty or carries full
topological entropy. Moreover, the topological pressure of
level sets can be characterized by the supremum for invari-
ant measures supported on them (see [31] and references
therein). A much harder situation is to describe the topo-
logical entropy of saturated sets. Given a subset K ⊂ ℳ1𝛾f 𝛿
of f -invariant probability measures, a saturated set in M is
the subset GK ⊂ M of points x ∈ M whose accumulation
points VT𝛾x𝛿, in the weak∗ topology, of the empirical mea-
sures

ℰn𝛾x𝛿 𝜓𝛿 1
n

n−1

∑
i=0

𝛿𝛿Ti(x𝛿

coincides with the prescribed subset K of invariant proba-
bility measures. Saturated sets can be used to describe con-
vergence properties of Birkhoff averages with respect to ev-
ery continuous observable. Clearly VT𝛾x𝛿 is a singleton if
and only if the Birkhoff averages of every continuous ob-
servable are convergent at x. Some extensions of the origi-
nal notion of specification can be used to estimate the topo-
logical pressure of saturated sets for some non-uniformly
hyperbolic maps [20, 29, 30].
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7 A final invitation: some open questions

The use of topological methods in ergodic theory is nowa-
days a very active area of research. We will finish this short
article with some open questions as an invitation for the
reader to explore the underlying ideas presented here.

1. The relation between specification and the gluing orbit
property is still not fully understood. Given the previous
discussion it is natural to ask whether there exists a Baire
residual subset ℛ of the space of C1-diffeomorphisms with
the gluing orbit property so that every topologically mixing
diffeomorphism f ∈ ℛ satisfies the specification property.

2. Regarding the thermodynamic formalism of maps dis-
playing some weak form of specification, it is natural to ask
if an expansive map f with the gluing orbit property has a
unique equilibrium state for every regular (e.g. Hölder con-
tinuous) potential. Are the related transfer operators quasi-
compact on the Banach space of Hölder continuous observ-
ables? See [5] for definition of transfer operators. Simi-
lar question can be posed for flows with the reparametrized
gluing orbit property.

3. The non-wandering set of a uniformly hyperbolic diffeo-
morphism can be decomposed in a finite number of pieces
on which the dynamics acts as a subshift of finite type and
each piece, up to an iterate of the dynamics, satisfies the
specification property. On the converse direction, if f is a
continuous expansive map with the gluing orbit property
does there existN ≥ 1 and a disjoint unionM = ⋃1≤i≤N Λi

of compact sets so that f (Λi) = Λi+1 for all 1 ≤ i ≤ N (with
the convention that ΛN+1 = Λ1) and the iterate fN ∶ Λi →
Λi has the specification property? If so, which extra infor-
mation can be given on each of the ‘basic’ pieces Λi?

4. The relation between specification and uniform hyper-
bolicity is well established (recall Subsection 6.4). However,
much less is known on the relation between these topolog-
ical concepts with the measure theoretical notions of non-
uniform specification. Assume 𝒰𝒰 is a C1 open set of tran-
sitive diffeomorphisms on M so that all g-invariant mea-
sures satisfy the non-uniform specification property, for all
g ∈ 𝒰𝒰. Is 𝒰𝒰 formed by maps with some gluing orbit prop-
erty? We believe the C1-robustness assumption should be
crucial above.

5. The multifractal analysis of time averages for flows
is much harder than for maps even when assuming the
reparametrized gluing orbit property. In comparison with
the discrete time setting, the difficulty relies on the fact that
the reparametrization depends on the points that are being
shadowed. Nevertheless we expect that if (Xt)t is a continu-
ous flow with the reparametrized gluing orbit property and
the Birkhoff irregular set of a continuous potential is non-
empty then it should carry full topological entropy.

6. Geometric Lorenz attractors are among the simpler
flows where regular orbits accumulate on singular orbits
(see e.g. [2]). The coexistence of singular and regular
orbits brings much complexity to the dynamics and im-
ply, in particular, the absence of weak forms of shadow-
ing for most geometric Lorenz attractors [16, 3]. In view of
some criteria for non-uniform specification properties [10]
it is natural to ask whether geometric Lorenz attractors en-
joy a reparametrized gluing orbit property with respect to
reparametrizationswith a logarithmic singularityat the ori-
gin. This can be thought as a step in the direction of estab-
lishing a thermodynamic formalism for geometric Lorenz
attractors.

7. Finally, the underlying ideas of the property of specifi-
cation are expected to be applied in far more general sit-
uations. This property was proved to hold for C0 semi-
groups on Banach spaces, including solutions of the hyper-
bolic heat equation and Black-Scholes equation (see e.g. [6]
and references therein). Since most results addressed here
require compactness as a crucial ingredient it is a challenge
to understand up to which extent the ideas arising from
multifractal formalism can extend to the context of partial
differential equations and/or operators on infinite dimen-
sional ambient spaces.

Acknowledgments:

The author is deeply grateful to the anonymous referee for
helpful comments on a previous version of the manuscript.
This work was partially supported by CNPq-Brazil.

References

[1] N. Aoki, Topological dynamics, in: Topics in Gen-
eral Topology, in: North-Holland Math. Library, vol.
41, Amsterdam, 1989.

[2] V. Araújo and M. Pacífico, Three-dimensional flows,
Ergeb. Math. Grenz 3, Springer, Heidelberg, 2010.

[3] A. Arbieto, J.E. Reis, and R. Ribeiro On various types of
shadowing for geometric Lorenz flows, Rocky Mountain J.
Math. 45:4 (2015), 1067–1090.

[4] A. Arbieto, L. Senos and T. Sodero, The specification
property for flows from the robust and generic viewpoint, J.
Differential Equations 253 (2012), 1893–1909.

[5] V. Baladi. Positive transfer operators and decay of cor-
relations. Advanced Series in Nonlinear Dynamics:
Volume 16, 2000.

[6] S. Bartoll, F. Martínez-Giménez, A. Peris and F. Ro-
denas, The specification property for C0-semigroups,
Preprint ArXiv 2016.

6



Bulletin #37 October 2016 47 

[7] M. Bessa, M. J. Torres and P. Varandas, On periodic or-
bits, shadowing and strong transitivity of continuous flows,
Preprint 2016.

[8] T. Bomfim, M. J. Torres and P. Varandas, Topological
features of flows with the reparametrized gluing orbit prop-
erty, Preprint 2016.

[9] T. Bomfim and P. Varandas, Multifractal analysis for
weak Gibbs measures: from large deviations to irregular
sets, Ergod. Th. & Dynam. Sys. (to appear)

[10] T. Bomfim and P. Varandas, The gluing orbit prop-
erty, uniform hyperbolicity and large deviation principles
for semiflows, Preprint ArXiv:1507.03905

[11] R. Bowen, Some systems with unique equilibrium states,
Math. Syst. Theory 8 (1974), 193–202.

[12] M. Carvalho, F. Rodrigues and P.Varandas. Semigroups
of expanding maps, Preprint ArXiv:1601.04275.

[13] V. Climenhaga and D. Thompson Equilibrium states
beyond specification and the Bowen property, J. London
Math. Soc. 87 (2013), 401–427.

[14] K. Gelfert and D. Kwietniak, On density of ergodic mea-
sures and generic points, Ergod. Th. Dynam. Sys. (to ap-
pear).

[15] J. Li and X. D. Ye, Recent development of chaos theory
in topological dynamics, Acta Math. Sinica, 32:1 (2016)
83–114.

[16] M. Komuro, Lorenz attractors do not have the pseudo-
orbit tracing property, J. Math. Soc. Japan, 37 (1985)
489–514.

[17] D. Kwietniak, M. Lacka, P. Oprocha. A panorama of
specification-like properties and their consequences, Dy-
namics and Numbers, Contemporary Mathematics,
vol. 669 (2016) 155–186.

[18] K. Oliveira and X.Tian. Non-uniform hyperbolicity and
non-uniform specification, Trans. Amer. Math. Soc., 365
(2013), 4371–4392.

[19] R. Pavlov On intrinsic ergodicity and weakenings of the
specification property. Adv. Math., 295 (2016) 250–270.

[20] C. Pfister, W. Sullivan, On the topological entropy of sat-
urated sets, Ergod. Th. Dynam. Sys. 27 (2007) 929–956.

[21] F. Rodrigues and P. Varandas, Specification properties
for group actions and thermodynamics of expanding semi-
groups, J. Math. Phys. 57, (2016) 052704

[22] D. Ruelle, Statistical mechanics on a compact set with ℤp

action satisfying expansiveness and specification, Trans.
Amer. Math. Soc., 185 (1973) 237–251.

[23] K. Sakai, N. Sumi and K. Yamamoto. Diffeomorphisms
satisfying the specification property, Proc. Amer. Math.
Soc., 138 (2009), 315–321.

[24] M. Shub. Global stability of dynamical systems, Springer
Verlag, (1987).

[25] K. Sigmund. On dynamical systems with the specification
property, Trans. Amer. Math. Soc. 190 (1974), 285–299.

[26] S. Smale. Differentiable dynamical systems, Bull. Amer.
Math. Soc., 73 (1967) 747–817.

[27] N. Sumi, P. Varandas and K.Yamamoto, Partial hyper-
bolicity and specification, Proc. Amer. Math. Soc. 144:3
(2016) 1161–1170.

[28] N. Sumi, P. Varandas and K.Yamamoto, Partial hyper-
bolicity and specification for flows, Dynam. Sys, 30:4,
(2015) 501–524.

[29] F. Takens and E. Verbitski, Multifractal analysis of local
entropies for expansive homeomorphisms with specification,
Comm. Math. Phys., 203 (1999) 593–612.

[30] X. Tian and P. Varandas, Topological entropy of level sets
of empirical measures for non-uniformly expanding maps
Preprint 2016.

[31] D. Thompson, The irregular set for maps with the specifi-
cation property has full topological pressure, Dynam. Sys.
25(1), 2010, 25–51.

[32] P. Varandas, Non-uniform specification and large devia-
tions for weak Gibbs measures, J. Statist. Phys., 146 (2012),
330–358.

[33] P. Walters, An introduction to ergodic theory,
Springer-Verlag, New York, 1982.

[34] W. Sun and X. Tian, Diffeomorphisms with various
C1-stable properties. Acta Mathematica Scientia 32B:2
(2012) 552–558.

[35] L.-S. Young, Some large deviation results for dynami-
cal systems, Trans. Amer. Math. Soc., 318(2) (1990),
525–543.

7


