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Introduction

Additive Number Theory is the study of subsets of Z or
Zp (the set of the integers modulo p). Let m ≥ 2 and
A1, . . . , Am ⊆ Z (or Zp). We denote by A1 + · · · + Am

the subset of Z (or Zp)

A1 + · · ·+Am := {a1 + · · ·+am | ai ∈ Ai, i = 1, . . . ,m}.

The set A1 + · · · + Am is called the the sumset of
A1, . . . , Am.

Following Nathanson [16], in a direct problem in Ad-
ditive Theory we establish properties on the sumset
A1 + · · ·+Am when properties of A1, . . . , Am are known.
In an inverse problem in Additive Theory we study the
structure of sets A1, . . . , Am whose sumset has prescri-
bed properties, for example, the structure of sets whose
sumset has small cardinality.

Some direct problems in Additive Theory have recen-
tly been approached by using tools of Linear Alge-
bra. This happened after years of using additive re-
sults in Linear Algebra (sometimes reproved with this
purpose)[12, 13, 14, 15, 18].

The linear algebraic approach of Additive Number The-
ory is based on the use of the degrees of invariant poly-
nomials of (diagonal) linear operators as estimators for
the cardinality of parts of their spectrum. To illustrate
it we need to introduce some terminology and notation.

We denote by N0 the set of nonnegative integers. We use
p to mean the characteristic of the field F, in the case
F has finite characteristic, and ∞ if F has characteris-
tic zero (we assume the usual conventions on the symbol
∞). If A is a set, |A| denotes the cardinality of A. If f is
a linear operator on the finite dimensional vector space
V over F, we use σ(f) for the spectrum of f (meaning
either the family or the set of the roots of the charac-
teristic polynomial of f , in the algebraic closure of F).

We use Pf to mean the minimal polynomial of f (that
is, the monic polynomial of minimal degree satisfied by
f). We say that f is diagonal or of simple structure if,
for some basis of V , the matrix of f is diagonal.

Let v ∈ V . The subspace spanned by the images of v
under the powers of f is called the f -cyclic subspace of
v and denoted Cf (v), i.e.,

Cf (v) = 〈f j(v) | j ∈ N0〉.

The identity operator on V is denoted by IV .

The following theorems are basic tools for the next sec-
tions.

Theorem 1 If f is a diagonal linear operator on V , the
degree of the minimal polynomial of f is equal to the
cardinality of its spectrum, i.e.

deg(Pf ) = |σ(f)|.

Theorem 2 The degree of the minimal polynomial of f
is the maximum of the dimensions of the f-cyclic subs-
paces of the vectors of V , i.e.,

deg(Pf ) = max
v∈V

dim Cf (v).

From the Cauchy-Davenport the-
orem to the Erdös-Heilbronn con-
jecture

Let p be a prime number. The following theorem was
proved by Cauchy in 1813 [2], and reproved by Daven-
port in 1935 [5].
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Theorem 1 Let A and B be nonempty subsets of Zp.
Then

|A+B| ≥ min{p, |A|+ |B| − 1}.

A new proof for the Cauchy-Davenport theorem was ob-
tained [7] using Linear Algebra. The first step needed to
get this proof is to obtain the linear algebraic translation
of the notion of sumset, i.e., given linear operators f and
g to find a linear operator H such that

σ(H) = σ(f) + σ(g).

Basic Linear Algebra provides that operator, as we can
see in the following theorem.

Theorem 2 Let V and W be nonzero finite dimensional
vector spaces over the field F. Let f be a linear operator
on V and g be a linear operator on W . The spectrum of
the Kronecker sum of f and g,

f ⊗ IW + IV ⊗ g,

is equal to the sumset of the spectra of f and g, i.e.,

σ(f ⊗ IW + IV ⊗ g) = σ(f) + σ(g).

We are now able to state the linear counterpart of the
Cauchy-Davenport theorem.

Theorem 3 (Linear Cauchy-Davenport [7]) Let V
and W be nonzero finite dimensional vector spaces over
F. Let f be a linear operator on V and g a linear opera-
tor on W . Then

degPf⊗IW +IV ⊗g ≥ min{p,degPf + degPg − 1}. (1)

The proof of this theorem was obtained by showing that
for v ∈ V and w ∈W the set

{f ⊗ IW + IV ⊗ g)k(v ⊗ w) |
k = 0, . . . ,min{p,dim Cf (v) + dim Cg(w)− 1} − 1}

is linearly independent. From this fact we get the ine-
quality

dim Cf⊗IW +IV ⊗g(v ⊗ w) ≥
min{p,dim Cf (v) + dim Cg(w)− 1}. (2)

Choosing v ∈ V such that dim Cf (v) = degPf and
w ∈ W such that Cg(w) = degPg (recall Theorem 2)
we have

degPf⊗IW +IV ⊗g ≥ min{p,mindegPf + degPg − 1}.

The Cauchy-Davenport Theorem can now be easily de-
rived. Let A and B be subsets of Zp of cardinalities r

and s respectively. Let f be a diagonal linear opera-
tor on an r-dimensional vector space, V , over Zp, whose
spectrum is A. Let g be a diagonal linear operator on an
s-dimensional vector space, W , over Zp, whose spectrum
is B. Using Theorem 3 and replacing in (1) the degrees
of the minimal polynomials of f , g and f ⊗ IW + IV ⊗ g
(recall Theorems 1 and 2) by the cardinality of their
spectra we get the Cauchy-Davenport Theorem.

The Erdös-Heilbronn conjecture was another (direct) ad-
ditive problem that has been successively fitted in the li-
near algebraic approach. In order to state this conjectu-
re let us introduce some more terminology and notation.
We say m-set to mean a set of cardinality m. Let A be a
nonempty subset of F. We denote by ∧mA the set of the
sums of the elements of the m-subsets of A (we refer to
these sums as “sums of the m-subsets”or “m-restricted
sums”). For instance, if A = {a1, . . . , an} ⊆ F

∧2A = {ai + aj | 1 ≤ i < j ≤ n}.

In 1964 Erdös and Heilbronn [10] made the following
conjecture:

Conjecture Let p be a prime number and let A be a no-
nempty subset of Zp. The set of the sums of the 2-subsets
of A has cardinality at least min{p, 2|A| − 3}, i.e.,

| ∧2 A| ≥ min{p, 2|A| − 3}.

In the linear algebraic approach to this conjecture the
following more general problem was considered: “Let n
be a positive integer. Find a lower bound for the set of
cardinalities of ∧mA when A runs over the set of finite
subsets of F of cardinality n, i.e. find a lower bound for
the set

{| ∧m A| | A ⊆ F and |A| = n}”.

Given a linear operator f we have, now, to find a linear
operator H such that the spectrum of H is the set of
the sums of the m-subsets of the spectrum of f . As be-
fore, this linear operator has already been considered in
Linear Algebra. Let f be a linear operator on V . Consi-
der the linear operator D(f) on ∧mV , the mth exterior
power of V , defined by the equalities [1, Ch. III, p. 129],

D(f)(v1 ∧ · · · ∧ vm) = f(v1) ∧ v2 ∧ · · · ∧ vm +
+v1 ∧ f(v2) ∧ · · · ∧ vm +

+ · · ·+ v1 ∧ v2 ∧ · · · ∧ f(vm),
v1, . . . , vm ∈ V.
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The following theorem is a consequence of the definition
of D(f).

Theorem 4 Let f be a diagonal linear operator on the
finite dimensional vector space V . Then D(f) is diago-
nal and the spectrum of D(f) is the set of the sums of
the m-subsets of σ(f), i.e.,

σ(D(f)) = ∧mσ(f).

To go on with the announced approach to the Erdös-
Heilbronn conjecture, we need to express the image of
the powers of D(f), on certain decomposable exterior
tensors, as linear combinations of a basis of ∧mV (desig-
ned to fit in this problem). For this we introduce some
combinatorial terminology and notation.

A partition of m is a decreasing sequence of nonnegative
integers whose sum is equal to m. We say that a parti-
tion λ has length s (and write s = `(λ)) if the number
of positive terms of λ is s. We denote by Pm,s the set of
partitions of m of length at most s, and by Ps the set of
partitions of length at most s, i.e.,

Ps =
⋃
i∈N

Pi,s.

To each partition of m, λ = (λ1, . . . , λt), we associate
the Young tableau [λ] which consists of m boxes placed
in t rows, all starting in the same column, where the i-th
row of [λ] has λi boxes, i = 1, . . . , t. For instance, the
Young tableau associated with the partition (5, 3, 1) is

Let λ be a partition of m. The (i, j)-hook of [λ] is the
subset of boxes of [λ] consisting of the (i, j)-box of [λ]
(the box in the ith row and jth column of [λ]) together
with the boxes in the same row to the right and the bo-
xes in the same column under it. We denote by Hλ

ij the
(i, j)-hook of [λ] and by hλ

ij the cardinality of Hλ
ij .

Let v ∈ V . The set

{fλm(v) ∧ fλm−1+1(v) ∧ · · · ∧ fλ1+m−1(v) |
λ ∈ Pm, λ1 ≤ dim Cf (v)−m} (3)

is a basis for the mth exterior power of Cf (v). Then it
is possible to express the image of powers of D(f) on
v ∧ f(v) ∧ · · · ∧ fm−1(v) as a linear combination of this
basis. The following theorem gives us that linear combi-
nation.

Theorem 5 ([8])

D(f)t(v ∧ f(v) ∧ · · · ∧ fm−1(v)) =

=
∑

λ∈Pt,m

t!∏
i,j h

λ
ij

fλm(v)∧fλm−1+1(v)∧· · ·∧fλ1+m−1(v).

With this expansion of D(f)t(v ∧ f(v) ∧ · · · ∧ fm−1(v))
as a linear combination of the elements of the basis (3)
it is possible to prove that, if v ∈ V ,

{D(f)t(v ∧ f(v) ∧ · · · ∧ fm−1(v)) |
t = 0, . . . ,min{p,m(dim Cf (v)−m) + 1} − 1}

is a linearly independent set: Using arguments similar
to the ones which have been used to prove the linear
Cauchy-Davenport Theorem, we get what we can call
the Linear Erdös-Heilbronn Theorem.

Theorem 6 ([8]) Let V be a nonzero finite dimensio-
nal vector space over F. Let f be a linear operator on V .
Then

deg(PD(f)) ≥ min{p,m(degPf −m) + 1}.

Let A be a finite nonempty subset of F. Taking f diago-
nal with spectrum A, and using the line of argument pre-
sented after the proof of the Linear Cauchy-Davenport
Theorem, we obtain the following theorem :

Theorem 7 ([8]) Let A be a finite nonempty subset of
F. Then

| ∧m A| ≥ min{p,m(|A| −m) + 1}.

This theorem gave an affirmative answer to the Erdös-
Heilbronn conjecture. In fact, taking m = 2 and F the
field Zp in the previous theorem, we conclude that the
Erdös-Heilbronn conjecture is true.
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Multiplicities and generalized
sums

Let A = {a1, . . . , an} and B be finite nonempty subsets
of F. For c ∈ A+B define νc(A,B), the multiplicity of c
in A+B, as the cardinality

νc(A,B) = |{(a, b) | a ∈ A, b ∈ B, and a+ b = c}|.

We write µi(A,B) (or simply µi) to mean the cardinality
of the set of the c ∈ A+B that have multiplicity greater
than or equal to i, i.e.,

µi(A,B) = |{c ∈ A+B | νc(A,B) ≥ i}| .

Similarly, if c ∈ ∧2A we denote by ν(R)
c (A), the multipli-

city of c in ∧2A, as the cardinality

ν(R)
c (A) = |{(r, s) | 1 ≤ r < s ≤ n, and ar + as = c}|.

The symbol µ(R)
i (A) (or simply µ(R)

i ) indicates the set of
the elements c of ∧2A whose multiplicity is greater than
or equal to i, i.e.,

µ
(R)
i (A) = |{c ∈ A+B | ν(R)

c (A) ≥ i}|.

In 1974, J. M. Pollard [17] established an average the-
orem for the multiplicities in A + B proving that, if
A,B ⊆ Zp, then, for t = 1, 2, , . . . ,min{|A|, |B|}, we have

t∑
i=1

µi ≥ tmin{p, |A|+ |B| − t}. (1)

Extending the arguments used to prove the Cauchy-
Davenport and Erdös-Heilbronn theorems, and using so-
me recent results on Linear Algebraic Control Theory
[19], it was possible to generalize Pollard’s theorem in
the following two different ways:

Theorem 1 Let A and B be finite nonempty subsets of
F. Then, for t = 1, 2, . . . ,min{|A|, |B|}, we have

t∑
i=1

µi ≥ tmin{p, |A|+ |B| − t}.

Theorem 2 Let A ⊆ F and 1 ≤ t ≤ b |A|2 c. Assume that
|A| ≥ 2. Then we have

t∑
i=1

µ
(R)
i ≥ tmin{p, 2(|A| − t)− 1}.

Consider, now, the elementary symmetric polynomial of
degree k in the indeterminates X1, . . . , Xm,

sk(X1, . . . , Xm) =
∑

α∈Qk,m

Xα(1) · · ·Xα(m),

where Qk,m denotes the set of strictly increasing maps
from {1, . . . , k} into {1, . . . ,m}. Let A1, . . . , Am be sub-
sets of F. We denote by sk(A1, . . . , Am) the subset of
F

sk(A1, . . . , Am) = {sk(a1, . . . , am) | ai ∈ Ai, i = 1, . . . ,m}.

This concept generalizes the notion of sumset of
A1, . . . , Am. In fact, s1(A1, . . . , Am) is the sumset of
A1, . . . , Am, i.e.

s1(A1, . . . , Am) = A1 + · · ·+Am.

It is natural to search additive results for these gene-
ralized sumsets. Again, the linear algebraic approach
worked for this generalization.

Let V1, . . . , Vm be nonzero finite dimensional vector spa-
ces over F. Let Ti be a linear operator of Vi, i = 1, . . . ,m.
If α ∈ Qk,m let

δα(T1, . . . , Tm) = S1 ⊗ · · · ⊗ Sm,

where Si = IVi if i 6∈ Imα and Si = Ti if i ∈ Imα. Define

Dk(T1, . . . , Tm) :=
∑

α∈Qk,m

δα(T1, . . . , Tm).

For instance,

D2(T1, T2, T3) = T1⊗T2⊗IV3+T1⊗IV2⊗T3+IV1⊗T2⊗T3.

The key result that allows the above mentioned linear
algebraic approach is the following theorem:

Theorem 3 Let A1, . . . , Am be nonempty finite subsets
of F. Let Ti be a diagonal linear operator on Vi such
that σ(Ti) = Ai, i = 1, . . . ,m. Then Dk(T1, . . . , Tm) is
diagonal and

σ(Dk(T1, . . . , Tm)) = sk(A1, . . . , Am).

Using a variation of the arguments already described (for
the Linear Cauchy-Davenport Theorem) we can prove:

Theorem 4 ([9]) For p large enough we have

degPDk(T1,...,Tm) ≥
⌊

degPT1 + · · ·+ degPTm
−m

k

⌋
+ 1.
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Considering diagonal linear operators Ti in the conditi-
ons of Theorem 3, and the equality (for diagonal linear
operators) between the cardinality of the spectrum and
the degree of the minimal polynomial (Theorem 1), we
obtain, from the previous theorem, the following result:

Theorem 5 ([9]) Let A1, . . . , Am be finite nonempty
subsets of F. For p large enough we have

|sk(A1, . . . , Am)| ≥
⌊
|A1|+ · · ·+ |Am| −m

k

⌋
+ 1.
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Great Moments in XXth Century Mathematics

In this issue we present the answers of two researchers, E. C. Zeeman and Thomas J. Laffey, to the question “If you
had to mention one or two great moments in XXth century mathematics which one(s) would you pick?”.
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