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1 Introduction

Compact oriented surfaces, without boundary, are among
the most classical objects in geometry. Their topological
classification has been completely achieved for quite a long
time: such a surface must be equivalent to one, and precisely
one, of the types Σg, where Σ0 is the sphere, Σ1 is the torus
and, for g ≥ 2, Σg is the connected sum of g copies of the
torus Σ1. The integer g is called the genus of Σg. (See figure
1 for an example of Σ2.)

Despite being a classical object, there are spaces natu-
rally associated to Σg, whose geometry and topology is un-
known and which lie on the edge of current mathematical re-
search. One instance of such spaces are the so-called charac-
ter varieties of Σg, also known as spaces of surface group repre-
sentations. These are natural objects to consider, occurring
in several areas of geometry, topology and even physics.

The study of character varieties is a motivation for in-
troducing Higgs bundles over compact Riemann surfaces and
their moduli spaces, the main subject of the present article.
Higgs bundles and their moduli were introduced by Nigel
Hitchin in the outstanding paper [17] almost thirty years
ago. It is truly amazing the research that has been carried
out based on that paper. However, the topology of moduli
spaces of Higgs bundles on Riemann surfaces is far from be-

ing understood.
The aim of this article is to give an overview of the prob-

lem of studying the connected components of moduli spaces
of Higgs bundles and of character varieties. Half of the arti-
cle deals with the definition of character varieties, of Higgs
bundles and with the relation between them. The goal is
that the reader acquires a feeling of this exciting area of
mathematics, also of the problems we address and (hope-
fully) of some techniques to handle them. The interested
reader may find more details in the references.

Although we introduce Higgs bundles as a motivation
for the study of character varieties, we stress the fact that
they play a crucial role in many other different areas in-
cluding gauge theory, Kähler and hyperkähler geometry, in-
tegrable systems, mirror symmetry, Langlands duality and
more. We do not touch any of these topics.

2 Two moduli spaces

2.1 Representations and character varieties

Let us start with a fixed closed oriented surface Σg. Assume
that g ≥ 2. The fundamental group of Σg is a finitely gen-
erated group, with 2g generators, such that the product of
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Figure 1.—Genus 2 surface

their commutators is trivial:

𝜋𝜋1(Σg) = ⟨a1, b1, … , ag, bg ∶
g

∏
i=1

[ai, bi] = 1⟩.

Let G be a connected real semisimple Lie group, which
we assume admits a complexification Gℂ. Consider the set
Hom(𝜋𝜋1(Σg),G) of all group homomorphisms from 𝜋𝜋1(Σg)
to G. Such a homomorphism 𝜌𝜌 ∶ 𝜋𝜋1(Σg) → G is also called
a representation of 𝜋𝜋1(Σg) in G. The name comes from the
fact that G is often a linear Lie group, acting naturally on a
vector space, so yielding a representation of 𝜋𝜋1(Σg) on that
vector space. Any representation is determined by its values
on the 2g generators, so Hom(𝜋𝜋1(Σg),G) is contained in G2g

as the subset of those 2g-tuples (A1, B1, … ,Ag, Bg) satisfying
the equation ∏g

i=1[Ai, Bi] = 1. So we take the induced topol-
ogy on Hom(𝜋𝜋1(Σg),G), which coincides with the compact-
open topology, hence does not depend on the choice of the
generators of 𝜋𝜋1(Σg).

It is natural to consider two representations equiva-
lent when they lie in the same orbit of the G-action on
Hom(𝜋𝜋1(Σg),G) by conjugation: g ⋅ 𝜌𝜌 = g𝜌𝜌g−1. Indeed if 𝜌𝜌
and 𝜌𝜌′ are in the same orbit under this action, and if G acts
on a vector space 𝕍𝕍 through a linear representation, say 𝛼𝛼,
then the difference between the representations 𝛼𝛼 𝛼 𝜌𝜌 and
𝛼𝛼 𝛼 𝜌𝜌′ of 𝜋𝜋1(Σg) in 𝕍𝕍 is just given by a change of basis. Hence
we are interested on the quotient space Hom(𝜋𝜋1(Σg),G)/G.
However, it may not be Hausdorff due to the existence of
non-closed orbits whose closures intersect. A way to solve
this is to take only reductive representations, meaning the

ones that become a sum of irreducible representations when
composed with the adjoint representation of G on its Lie al-
gebra 𝔤𝔤, i.e., with Ad ∶ G → GL(𝔤𝔤). In any case, reductive
representations are dense in Hom(𝜋𝜋1(Σg),G). Denote the
space of such representations by Homred(𝜋𝜋1(Σg),G).

Definition 1.— The G-character variety of Σg is the quo-
tient space

ℛ(G) = Homred(𝜋𝜋1(Σg),G)/G.

One natural question is about the existence of discrete
invariants of such classes of representations. Indeed we
can define them in an easy way. Take a class [𝜌𝜌] in
ℛ(G) and choose a representative 𝜌𝜌 ∶ 𝜋𝜋1(Σg) → G. Let
(A1, B1, … ,Ag, Bg) ∈ G2g be the images through 𝜌𝜌 of
the generators of 𝜋𝜋1(Σg). Consider the universal covering
p ∶ G̃ → G, whose kernel is isomorphic to 𝜋𝜋1(G), the funda-
mental group of G. Choose a lift ( ̃A1, ̃B1, … , ̃Ag, ̃Bg) ∈ G̃2g

of (A1, B1, … ,Ag, Bg) under p and define the element

c([𝜌𝜌]) =
g

∏
i=1

[ ̃Ai, ̃Bi] ∈ 𝜋𝜋1(G). (1)

This c([𝜌𝜌]) ∈ 𝜋𝜋1(G) is an invariant of the class [𝜌𝜌]. It does
not depend on the choices made because 𝜋𝜋1(G) is contained
in the centre of G̃.

Given c ∈ 𝜋𝜋1(G), denote by ℛc(G) the subspace of ℛ(G)
whose invariant defined by (1) is c. Each ℛc(G) is a union of
connected components of ℛ, and we have a disjoint union
ℛ(G) = ⨆c∈𝜋𝜋1(G) ℛc(G).
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2.2 Higgs bundles and their moduli spaces

We defined character varieties in a purely topological con-
text. In contrast, to introduce Higgs bundles we have to
impose a Riemann surface structure on Σg. So let X be a
compact Riemann surface of genus g ≥ 2, whose underly-
ing 2-dimensional manifold is the surface Σg. Hence X is a
complex manifold of (complex) dimension 1. It will be fixed
throughout.

The definition of Higgs bundles on X requires some ba-
sic knowledge of holomorphic algebraic geometry, which we
provide next. We emphasise that these are not the rigorous
definitions (which can be found in [15, 23, 25]).

A holomorphic vector bundle V of rank n on X is a family
of vector spaces Vx, for each x ∈ X , varying holomorphi-
cally with the point x. Each of these vector spaces Vx, called
the fibre of V at x, is non-canonically biholomorphic to ℂn.
Moreover, V is required to be locally trivial, that is, for ev-
ery point x ∈ X , there is an open neighbourhood Ux of x
such that V restricted toUx is biholomorphic to the product
Ux × ℂn. The trivial vector bundle over X is just the carte-
sian productX ×ℂn (hence the name “locally trivial” above).
When n = 1 we say that V is a line bundle.

Any operation over vector spaces, such as tensor prod-
uct, direct sum or duality, can be extended to the vector bun-
dle setting. In particular if we consider the wedge product
and have a rankn vector bundleV , we construct the line bun-
dle ⋀n V , whose fibres are biholomorphic to the top wedge
power of the fibres of V . This is called the determinant of V .

A section of a vector bundle V over X is a holomorphic
map s ∶ X → V such that s(x) ∈ Vx. The vector space of
sections of V is denoted by H0(X ,V ).

If G is a complex Lie group, a holomorphic principal
G-bundle or, for short, G-bundle, E is a family of (non-
canonical) copies of the group Gx ≃ G, for each x ∈ X ,
varying holomorphically with the point x. Again, E is re-
quired to be locally trivial, that is, every point x ∈ X has
an open neighbourhoodUx such that E restricted toUx is bi-
holomorphic to the product Ux ×G. The trivialG-bundle on
X is again the product X × G.

If G acts on some vector space 𝕍𝕍 and if E is a G-bundle,
then there is a canonical way to construct a vector bundle,
with fibres isomorphic to 𝕍𝕍 , out of the action G → GL(𝕍𝕍 )
and of E. Denote this vector bundle by E(𝕍𝕍 ).

Now we pass to some definitions of Lie theory, which
again are not given in complete detail. These may be found
for instance in [6]. Let H ⊆ G be a maximal compact sub-
group ofG andHℂ ⊆ Gℂ be its complexification. If 𝔥𝔥ℂ ⊆ 𝔤𝔤ℂ

are the corresponding Lie algebras, there is a Cartan decom-
position

𝔤𝔤ℂ = 𝔥𝔥ℂ ⊕ 𝔪𝔪ℂ, (2)

where 𝔪𝔪ℂ is a complex vector space. An example of (2)

is the fact that any complex square matrix can be uniquely
written as a sum of a symmetric and a skew-symmetric ma-
trix. Now, the adjoint representation Ad ∶ Gℂ → GL(𝔤𝔤ℂ)
induces a representation of Hℂ on 𝔪𝔪ℂ. So, if E is an Hℂ-
bundle over X , let E(𝔪𝔪ℂ) be the vector bundle associated to
E and to the action ofHℂ on 𝔪𝔪ℂ, as explained in the preced-
ing paragraph.

Let K = T∗X be the canonical line bundle of X . By def-
inition this is the holomorphic cotangent bundle of X , that
is, the dual of its tangent bundle.

Definition 2.— A G-Higgs bundle over X is a pair (E, 𝜑𝜑)
where E is a (holomorphic) Hℂ-bundle and 𝜑𝜑 is a section of
E(𝔪𝔪ℂ) ⊗ K, called the Higgs field.

We now give some examples of G-Higgs bundles (E, 𝜑𝜑).
Whenever Hℂ acts in ℂn in a standard way, we take the cor-
responding vector bundle associated to E.

Examples 1.—

1. If G is compact, a G-Higgs bundle is simply a (holo-
morphic) Gℂ-bundle, hence 𝜑𝜑 𝜑 0.

2. If G is complex with maximal compact H, then Hℂ =
G and also 𝔪𝔪ℂ = 𝔤𝔤. Thus a G-Higgs bundle is a pair
(E, 𝜑𝜑) where E is a G-bundle and 𝜑𝜑 ∈ H0(X , E(𝔤𝔤) ⊗K)
where E(𝔤𝔤) denotes the adjoint bundle of E, obtained
from E under the adjoint action Ad ∶ G → GL(𝔤𝔤). As
an example, an SL(n,C)-Higgs bundle is a pair (V , 𝜑𝜑)
with V a holomorphic rank n vector bundle with triv-
ial determinant and 𝜑𝜑 ∈ H0(X ,End0(V ) ⊗ K), where
End0(V ) denotes the bundle of traceless endomor-
phisms of V ; so we can think of 𝜑𝜑 as a map 𝜑𝜑 ∶ V →
V⊗K (linear on each fibre) such that tr(𝜑𝜑) 𝜑 0. These
are the “original” Higgs bundles, introduced by Nigel
Hitchin in the seminal paper [17].

3. Let G = Sp(2n, ℝ) — the group of automorphisms
of ℝ2n preserving a symplectic form. An Sp(2n, ℝ)-
Higgs bundle is a triple (V , 𝛽𝛽, 𝛽𝛽) whereV is a holomor-
phic rank n vector bundle, and the Higgs field splits
as 𝜑𝜑 = (𝛽𝛽, 𝛽𝛽), with 𝛽𝛽 ∶ V∗ → V ⊗ K such that
𝛽𝛽 t ⊗ IdK = 𝛽𝛽 and likewise for 𝛽𝛽 ∶ V → V∗ ⊗ K.

There is a natural notion of isomorphism between two G-
Higgs bundles over X . Further, these being complex alge-
braic objects, one can construct their moduli spaces; cf. [23].
Roughly speaking, these moduli spaces are algebraic vari-
eties whose points parametrize isomorphism classes of G-
Higgs bundles. Yet, in order to have a nice algebraic struc-
ture on these moduli, we cannot consider all G-Higgs bun-
dles, but only the ones which are called polystable. Since this
point is quite technical, we will not even define the meaning
of this word. Just to give an example, a holomorphic vec-
tor bundle is polystable if it can be written as a direct sum
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of vector bundles (with certain conditions on their degrees)
which are indecomposable, meaning that they cannot be fur-
ther decomposed as direct sums. A polystableG-Higgs bun-
dle behaves in a way which generalises the example of vec-
tor bundles. We can see here a certain parallelism between
the notion of polystability and the notion of reductivity of a
representation presented before Definition 1. Anyway, the
reader just has to keep in mind that polystableG-Higgs bun-
dles are the objects we have to consider in order to construct
a moduli space of G-Higgs bundles on X , having the struc-
ture of an algebraic variety.

Definition 3.— If G is a semisimple Lie group, the mod-
uli space of G-Higgs bundles over the compact Riemann sur-
face X is the variety whose points are given by isomorphism
classes of polystable G-Higgs bundles over X . We denote it
by ℳ(G).

Remark 1.— ℳ(G) is a finite dimensional complex alge-
braic variety. It can be defined more generally for real reduc-
tive Lie groups. Although we are focusing our attention on
semisimple Lie groups, all this theory generalises to real re-
ductive Lie groups, with some slight modifications. In par-
ticular, when G is complex reductive, the complex dimen-
sion of ℳ(G) is

dimℂ(ℳ(G)) = (2g − 2) dimℂ(G) + 2 dimℂ(Z(G)), (3)

where Z(G) is the centre of G. When G is semisimple then
dimℂ(Z(G)) = 0.

As in the case of representations, we can define discrete
invariants of (isomorphism classes of) G-Higgs bundles,
which distinguish them in the C∞ category, but not in the
holomorphic one. Given a G-Higgs bundle (E, 𝜑𝜑), we asso-
ciate to it the topological invariant of the underlying Hℂ-
bundle E. This is well-known [21] to be given by an element

c(E) ∈ 𝜋𝜋1(Hℂ) = 𝜋𝜋1(H) = 𝜋𝜋1(G).

For an element c ∈ 𝜋𝜋1(G), let ℳc(G) be the subspace of
ℳ(G) such that the corresponding G-Higgs bundles have
topological invariant given by c. Again, we have a disjoint
union ℳ(G) = ⨆c∈𝜋𝜋1(G) ℳc(G), and each ℳc(G) is a union
of connected components.

2.3 The correspondence

Although apparently unrelated, the spaces ℛ(G) and ℳ(G)
are tightly connected, by the following fundamental theo-
rem.

Theorem 4 ([17, 24, 8 ).—] If G is semisimple, then there
is a natural correspondence between ℳc(G) and ℛc(G),
which induces a homeomorphism ℳc(G) ≅ ℛc(G), for any

c ∈ 𝜋𝜋1(G). This correspondence comes from the fact that a
G-Higgs bundle over X is polystable if and only if it corre-
sponds to a reductive representation of 𝜋𝜋1(Σg) in G.

Remarks 1.—

1. This theorem is known as the non-abelian Hodge corre-
spondence, since it generalises usual Hodge theory ob-
tained when G = ℂ∗. In fact, the moduli space of
ℂ∗-Higgs bundles (with fixed topological type d ∈ ℤ)
is isomorphic to the cotangent bundle to the Jacobian
variety Jac(X) of X . This cotangent bundle is trivial,
so the moduli space is Jac(X) × ℂg. The Jacobian vari-
ety of a compact Riemann surface is one of the most
classical objects in algebraic geometry [15]. Topologi-
cally, it is a 2g-dimensional real torus (S1)2g, hence

ℳd(ℂ∗) ≅ Jac(X) × ℝ2g ≅ (S1 × ℝ)2g ≅ (ℂ∗)2g.

In particular, dimℂ(ℳ(ℂ∗)) = 2g as in formula 3.
On the other hand, since ℂ∗ is abelian, ℛd(ℂ∗) =
(ℂ∗)2g, so we see here explicitly an homeomorphism
ℳd(ℂ∗) ≅ ℛd(ℂ∗). Note that ℂ∗ is reductive but not
semisimple. However, although Theorem 4 is stated
for semisimple groups, there is a similar result which
holds, more generally, for reductive groups.

2. Theorem 4 generalises the Narasimhan and Seshadri
Theorem [19], which implies that ℛ0(SU(n)) is home-
omorphic to ℳ0(SU(n)). This theorem was then gen-
eralised in [21] for any compact connected group. In
these cases Higgs bundles are not really into the pic-
ture, because the groups in question are compact.

3. Recall also that in order to define Higgs bundles, we
had to consider a Riemann surface structure X on
Σg. The structure of ℳc(G) as an algebraic variety de-
pends on this choice, but Theorem 4 shows that its
topological structure is independent of it.

4. Although the spaces are homeomorphic, their geo-
metric structures tend to be very different. For exam-
ple ℳc(G) has always the complex structure coming
from the one of X whereas, if G is real, ℛc(G) is not a
complex variety.

2.4 The Hitchin equations and their relation
with Higgs bundles and representations

There is a third space ℋc(G), homeomorphic to ℳc(G), very
important on its own and also fundamental in the proof
of the theorem. This space ℋc(G) is the space of equiv-
alence classes of solutions to the so-called Hitchin equa-
tions. These are partial differential equations on the infinite-
dimensional space of connections on a fixed C∞ vector (or
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principal) bundle, coming from the Yang-Mills equations [1,
17]. We roughly explain it in a few lines, referring to [15, 25]
for basic definitions of differential geometry, such as con-
nection or curvature.

Given a G-Higgs bundle (E, 𝜑𝜑𝜑, denote the C∞-objects
underlying E and 𝜑𝜑 by the same symbols. Then the Higgs
field may be viewed as a (1, 0𝜑-form on X with values in
E(𝔪𝔪ℂ𝜑: 𝜑𝜑 𝜑 𝜑1,0(X , E(𝔪𝔪ℂ𝜑𝜑. Let H ⊆ G be a maximal com-
pact subgroup, so that its Lie algebra 𝔥𝔥 is a compact form of
𝔤𝔤. Given aC∞ reduction of structure group h of E toH (thus
h is a metric in E), let Fh be the curvature of the unique H-
connection compatible with the holomorphic structure on
E. Let also 𝜏𝜏h be the involution on 𝜑1,0(X , E(𝔪𝔪ℂ𝜑𝜑 given by
the compact conjugation on 𝔤𝔤ℂ (which determines its com-
pact form), and which is given fibrewise by the metric h. It
is a fundamental result that (E, 𝜑𝜑𝜑 is polystable if and only
if there is a metric h of E that satisfies the Hitchin equation

Fh − [𝜑𝜑, 𝜏𝜏h(𝜑𝜑𝜑𝜑 𝜑 0. (4)

This so-called Hitchin-Kobayshi correspondence yields a
homeomorphism ℋc(G𝜑 ≅ ℳc(G𝜑, first proved for G 𝜑
SL(2, ℂ𝜑 by Hitchin in [17]. A proof in full generality can be
found in [8]. The Hitchin-Kobayshi correspondence com-
prises half of the proof of Theorem 4. The other half, also
done in [17], yields a homeomorphism ℛc(G𝜑 ≅ ℋc(G𝜑 and
relies on theorems of Donaldson and Corlette.

The proof of Theorem 4 involves deep existence results
of solutions of partial differential equations on manifolds.
Hence it is not at all clear which polystable G-Higgs bun-
dle corresponds to a given reductive representation 𝜌𝜌 and
vice-versa. It would be very interesting to find a way to see
explicitly the correspondence of Theorem 4.

Remark 2.— A natural question is to ask if the terminol-
ogy Higgs bundles somehow reveals some relation with the
Higgs boson or with the Higgs field in the standard model
of particle physics (the name Higgs is in both cases after
the theoretical physicist Peter Higgs). The author’s lack of
competence to answer this question in a satisfactory way, is
solved by referring to Remark 7.1 in [26], where some indi-
cations are provided by E. Witten, using the Hitchin equa-
tions (4).

3 Their topology

The spaces ℛc(G𝜑 and ℳc(G𝜑 are hence topologically equal.
In the next sections we give some ideas on how to study their
topology. We do it on the side of ℳc(G𝜑, since there we have
the powerful tools of complex algebraic geometry at our dis-
posal.

3.1 The Hitchin functional

It is known that the moduli space ofG-Higgs bundles ℳc(G𝜑
ought to have an extremely rich topology. However, its
Poincaré polynomial — which encodes the dimensions of
the compactly supported cohomology groups of ℳc(G𝜑 —
has been computed only for some low rank cases for the
group SL(n, ℂ𝜑 and with topological type d 𝜑 ℤ coprime
with n, so that the moduli ℳd(SL(n, ℂ𝜑𝜑 is smooth; cf. [17,
13, 19]. The key tool is the following real functional, which
we define here for linear groups:

Definition 5.— The Hitchin functional on ℳc(G𝜑 is the
real function f ∶ ℳc(G𝜑 → ℝ defined as

f (E, 𝜑𝜑𝜑 𝜑 𝜑𝜑𝜑𝜑2
L2 𝜑 ∫X

tr(𝜑𝜑𝜑𝜑∗𝜑𝜔𝜔,

where 𝜑𝜑∗ is the adjoint of 𝜑𝜑 with respect to h (the metric that
solves the Hitchin equations (4)) and 𝜔𝜔 is the volume form
on X .

3.2 The smooth case and Morse theory

The functional f is proper [17]. In fact, in the few cases
where ℳc(G𝜑 is smooth, f is a perfect Morse-Bott function,
so the Poincaré polynomial can, in theory, be computed us-
ing Morse theory and by studying the topology of the criti-
cal subvarieties of f . The identification of these subvarieties
uses the crucial fact that the moduli spaces ℳc(G𝜑 carry a
non-trivial ℂ∗-action by multiplication on the Higgs field,

𝜆𝜆 𝜆 (E, 𝜑𝜑𝜑 𝜑 (E, 𝜆𝜆𝜑𝜑𝜑. (5)

The critical subvarieties of f coincide with the subvarieties
of fixed points under this ℂ∗-action. The problem is that
these subvarieties also have in general a very intricate topol-
ogy, whose complete study is quite difficult. This is the basic
reason why only a few low rank cases have been successfully
addressed, even in the smooth case.

On the other hand, recent developments [10, 9, 22] were
achieved on the study of ℳc(SL(n, ℂ𝜑𝜑, which seem to con-
firm some fascinating conjectures [16].

3.3 Connected components

In general, however, ℳc(G𝜑 are singular spaces so the
Morse theory picture breaks down. The topology of ℳc(G𝜑
is hence basically unknown, with the honourable exception
of the most basic topological invariant: the number of con-
nected components.

Actually, the properness of f is enough to draw conclu-
sions on the components of these moduli spaces. Since f is
bounded below and proper, it attains a minimum on every
component. The number of components of ℳc(G𝜑 is thus
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bounded above by the number of components of the subva-
rieties 𝒩𝒩c(G) ⊂ ℳc(G) of local minima of f .

The idea pioneered by Hitchin in [17, 18] to study the con-
nected components of ℳc(G) is to identify the minimum
subvarieties 𝒩𝒩c(G), among the fixed points of the ℂ∗-action
(5), study the components of 𝒩𝒩c(G) and then see what we
can conclude about the components of ℳc(G). This proce-
dure has been extensively studied for many families of real
semisimple Lie groupsG [14, 3, 4, 20, 7, 11, 5, 12]. In the next
section we describe some results in this direction.

4 Components and real forms

4.1 Compact Lie groups

When the group G is compact, we are really in the world
of (holomorphic) Gℂ-bundles. Then it is known for a long
time that ℳc(G) is non-empty and connected for any c ∈
𝜋𝜋1(G) (see [21]).

4.2 Complex Lie groups

The same conclusion remains true for complex Lie groups.
The most general form of the following connectedness the-
orem has been proved recently in [12].

Theorem 6 ([12 ).—] Let G be a complex reductive con-
nected Lie group. Then ℳc(G) is non-empty and connected
for every c ∈ 𝜋𝜋1(G).

This theorem is even valid for non-connected groups. There
we proved that the only local minima of f are the Higgs bun-
dles with 𝜑𝜑 𝜑 0. Hence the subvarieties of local minima are
moduli spaces of H-Higgs bundles, where H ⊂ G is a max-
imal compact subgroup. Then Theorem 6 follows from the
previous subsection.

These techniques generalise to the real case but become
much more complicated. Indeed, if the group is real, then
this story is completely different, as we will see in the re-
maining part of the article.

4.3 Split real forms

Assume thatG is a split real form ofGℂ. Roughly, this means
that G is the maximally non-compact real form of Gℂ (cf. [6]).
Examples are G = SL(n, ℝ) and G = Sp(2n, ℝ).

Theorem 7 ([18 ).—] For G a split real form, there is at
least one c ∈ 𝜋𝜋1(G) such that ℳc(G) is disconnected and
has a connected component of ℳc(G) isomorphic to a vec-
tor space.

The contractible component of ℳc(G) mentioned in the the-
orem is called the Hitchin component. It carries relevant in-
formation about geometric structures on the surface X it-
self. For example, it is isomorphic to Teichmüller space

when G = SL(2, ℝ) [18]. Theorems 7 and 4 prove the ex-
istence of a Hitchin component in ℛc(G), being an inter-
esting question to characterise the representations in it.

4.4 Hermitian type groups

A different kind of phenomena occurs if G is a real non-
compact group of hermitian type. One possible definition of
such groups is that they are characterised by the fact that
the centre of their maximal compact subgroup contains a
circle. For instance Sp(2n, ℝ) is a group of hermitian type
since a maximal compact is U(n), whose centre is U(1). The
symplectic group Sp(2n, ℝ) is especially interesting because
is the only one, up to finite covering, that is simultaneously
split and hermitian.

In this hermitian case, there is a new phenomena con-
cerning the non-emptiness of ℳc(G). Indeed, the free part
of 𝜋𝜋1(G) is isomorphic to ℤ, giving rise to an integer d.
There is a bound for |d|, called the Milnor-Wood inequal-
ity, above which ℳd(G) is empty (see [4, 2]). Moreover,
for some groups of hermitian type, ℳd(G) is disconnected
when |d| is maximal. This is the case ofG = Sp(2n, ℝ), stud-
ied by García-Prada, Gothen and Mundet i Riera in [7]:

Theorem 8 ([7 ).—]The moduli space ℳd(Sp(2n, ℝ)) is
non-empty if and only if |d| ≤ n(g − 1). Moreover, if n ≥ 3,
ℳn(g−1)(Sp(2n, ℝ)) has 3×22g non-empty connected compo-
nents.

Recall from subsection 2.2 that Sp(2n, ℝ)-Higgs bundles are
given by a triple (V , 𝛽𝛽, 𝛽𝛽). The distinctive feature of the case
d = n(g − 1) is that 𝛽𝛽 𝛾 V → V∗ ⊗K is an isomorphism pre-
cisely for that value of d (the case d = −n(g−1) is similar but
it is 𝛽𝛽 that becomes an isomorphism). This uncovers 2×22g

hidden components. A further analysis, using the Hitchin
functional as before, proves the existence of the remaining
22g components, which are the Hitchin ones mentioned in
the preceding subsection (recall that Sp(2n, ℝ) is also split).

In general further difficulties arise for the study of com-
ponents for non-maximal and non-zero d. In the known
cases, the non-maximal subspaces are connected for each
fixed topological type. We expect that the same holds true
in general, but a potential proof of this conjecture seems out
of reach at the moment.

4.5 Other real forms

The components of ℳc(G), hence also of ℛc(G), have been
studied for many families of groups, not necessarily split
or hermitian; see for instance [11]. Until recently, no exam-
ples were known of real groups, neither split nor hermitian,
for which ℳc(G) is disconnected. However, by considering
the group SO0(p, q) — the identity component of the group
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of automorphisms of ℝp+q preserving an orthogonal struc-
ture with signature (p, q) — we recently realised that there
exist many different local minima of f . This panoply of lo-
cal minima may potentially give rise to new components
of ℳc(SO0(p, q)) whose geometric structure differs from all
the known cases. This is still work in progress. Again,
it would be very interesting to characterise the representa-
tions lying in these new components of ℳc(SO0(p, q)).
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