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1 General considerations

Fluid dynamics [1, 2, 3] represents one of the very few fields
where, in the framework of classical physics, a full compre-
hension of the problem is still far from being achieved, and
therefore constitutes a vast subject for ongoing and future
research. Even if relativistic [4] and quantum [5] hydro-
dynamics have their own importance, the laws of classical
physics and of continuum mechanics are implemented in
almost the entirety of hydrodynamic investigations.

The analytical approach faces the obstacles of non-
linearity and non-locality of the problem, and typically of
non-ideality of the initial and boundary conditions or of
the forcing terms. The computational approach is nowa-
days very common, but numerical simulations of fluid flows
usually have to deal with the very huge number of ac-
tive—and non-trivially interacting—degrees of freedom to
be described. Experiments can only reproduce part of the
interesting problems, and heavily rely on the (Bertrand-
Vaschy-Buckingham) 𝜋𝜋 theorem [6, 7, 8] for the appropriate
geometric scaling and the introduction of nondimensional
numbers. Among these latter, the best renowned is the one
associated with Osborne Reynolds’ famous experiment [9]:

Reynolds number = Re ≡ LU
𝜈𝜈

.

Here, L and U are characteristic length and speed scales of

the flow under consideration, and the kinematic viscosity
is defined as the ratio between dynamic viscosity and mass
density: 𝜈𝜈 ≡ 𝜈𝜈𝜈𝜈𝜈.

Two main descriptions of the analytical problem are pos-
sible [10]. One is Lagrangian: a small region of fluid (par-
ticle or parcel) is ideally identified, isolated and followed
along its evolution. All its properties are thus represented
by physical quantities which are only functions of time, and
obey ordinary differential equations. The other is Eulerian,
where partial differential equations are derived for fields de-
pending on space and time. The two descriptions are com-
plementary and both relevant, and related by the fundamen-
tal statement that the velocity of a fluid particle equals by
definition the local and instantaneous velocity field:

̇x(t) = u(x(t), t). (1)

The equation for the fluid velocity is due to Claude-Louis-
Marie-Henri Navier [11] and George Gabriel Stokes [12],
and in its incompressible form—when free from thermal ef-
fects—reads:

𝜕𝜕u
𝜕𝜕t

+ u ⋅ ∇u = −
∇p
𝜈𝜈

+ 𝜈𝜈∇2u, (2)

endowed with appropriate initial and (Dirichlet/Neu-
mann/Robin) boundary conditions, and possibly modified
with the appearance of a forcing term on the right-hand
side.
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Here p(x, t) is the pressure field, and is the source of
non-locality of the problem. Indeed, the continuity equa-
tion for incompressible flows reads as a solenoidality prop-
erty, ∇ ⋅ u = 0, and pressure is required to satisfy a Pois-
son equation. Therefore, even if (2) is in principle evalu-
ated locally at one single point, actually it contains a term
which represents a contribution coming from a spatial inte-
gral on the whole domain, as the propagation velocity of any
disturbance is infinite. Despite this difficulty, incompress-
ibity is a scheme widely used for the simplifications it brings
about, and is usually abandoned only when compressibility
effects cannot be neglected, most notably because the veloc-
ities into play are not negligible with respect to the sound
speed [13]. In this latter case, the mass density varies. Also
thermal effects can come into play and modify the param-
eters, in which case also the evolution of the temperature
field must be taken into account, along with a suitable equa-
tion of state. Even more problematically, also viscosity can
be different from a constant, and then the fluid under con-
sideration is dubbed as non-Newtonian and described by a
different equation.

Apart from the incompressible scheme, common simpli-
fications in the resolution process hold if the flow is paral-
lel (only pointing in one same direction always and every-
where), or plane (independent of at least one direction), or
potential (i.e. irrotational: ∇×u = 0). Other intrinsic prop-
erties of (2) are its non-linearity and its time irreversibility
(with energy dissipation), due to the second term on the left
and on the right-hand sides respectively. Three main ana-
logues of the Navier-Stokes equation are worth mentioning:
the Burgers one [14], where the pressure term is dropped
and which gives rise to compressibility shocks; the Euler
one [15], where the viscous contribution is neglected lead-
ing to finite-time singularities, and which is often an excel-
lent approximation of the problem in the bulk of the fluid
but requires matching asymptotic techniques developed by
Ludwig Prandtl [16] to be extended to boundary layers near
walls; and the Stokes one, where the left-hand side of (2) is
negligible and which describes creeping flows. Dropping
only one term on left-hand side is also common: the first,
when one looks for steady solutions of the full equation; the
second, when linearizing around a mean flow with small-
amplitude fluctuations.

When Re grows past a certain threshold, the flow loses
its laminar character, undergoes a series of transitions and
becomes fully turbulent [17, 18, 19, 20, 21]. Fluid turbulence
is a problem of paramount importance and difficulty (some-
times referred to as “the last mystery of classical physics”),
as admitted by Richard Feynman and underlined by two fa-
mous historical quotes. One is from Peter Bradshaw [22]:
“Turbulence was probably invented by the devil on the sev-
enth day of creation, when the Good Lord wasn’t looking”.

An older one, “I am an old man now, and when I die and go
to heaven there are two matters on which I hope for enlight-
enment. One is quantum electrodynamics, and the other
is the turbulent motion of fluids. And about the former I
am rather optimistic”, is attributed to Horace Lamb, even
if a very similar version—with relativity as the former mat-
ter—was reportedly pronounced by Werner Heisenberg.

It is absolutely astonishing to note the degree of uncer-
tainty related to turbulent flows, for instance in comparison
to the one typical of astronomy. Not unusual are calcula-
tions of the trajectory of a poorly-known asteroid for many
decades to come, and safe conclusions that it will barely
miss an impact with the Earth in more than one century,
even if all we know about it comes from few possible mea-
surements from such a far distance. On the other hand, in
principle we can measure as much information as we want
in our low atmosphere, but weather forecast is limited to
very few days, with the practical impossibility of specifying
the exact hour and location of some kind of precipitation or
disruption.

Turbulent flows can simply be seen as general solu-
tions of the Navier-Stokes equation (2) lacking any prop-
erty of regularity characteristic of laminar flows. Turbu-
lence is a phenomenon very far from equilibrium, with
typically no small parameter in which to expand around
a known state. Turbulent velocity fields greatly enhance
mixing and dispersion, and are intermittent and usually er-
godic. They are self-organized and made up of coherent
structures, the so-called eddies, but they are chaotic [23].
Therefore—despite being far from random—they cannot
be described deterministically, and a statistical approach
is common [24, 25, 26, 27, 28], with the turbulent quan-
tities (or often their deviations from the mean) consid-
ered as stochastic variables. This implies that also many
tools of statistical mechanics are employed, along with sev-
eral techniques borrowed from theoretical physics, such
as renormalization-group formalism, diagrammatic repre-
sentation, path-integral formulation, second-quantization
algorithm, non-linear Schrödinger and Ginzburg-Landau
equations [29, 30].

Without entering the details of this field, we leave the
interested reader to the vast literature on the subject, and
we only point out the enormous difference in phenomenol-
ogy between two-dimensional and three-dimensional tur-
bulence (see [31, 32] and bibliographical references therein).

The number of mathematical tools employed in the
analytic investigation of fluid mechanics is immense [33,
34], which justifies the fact that this subject is often
studied in centers of applied mathematics. They range
from the most common ones—SO-d decomposition [35],
Fourier/Laplace/Legendre transforms—to more sophisti-
cated counterparts, among which we just mention a few
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here: functional analysis and Furutsu-Novikov-Donsker
theorem [36, 37, 38], multifractals, multiplicative model, re-
fined large-deviation theory, steepest-descent method, Lya-
punov exponents and Cramér function, telegraph-noise
model and degenerate perturbation theory [39], (time-
ordered) matrix exponentials and Cayley-Hamilton theo-
rem [40], Hermitianization [41], Ornstein-Uhlenbeck pro-
cess [42], multiple-scale technique [43], variational formu-
lation, adjoint method, continued fractions and Heun equa-
tion [44].

Of course, describing the velocity field is the principal
objective in fluid mechanics. However, there are a lot of re-
lated problems which deserve the same attention and impor-
tance, also because they may appear easier for some aspects
but harder for others. First of all, one should mention trans-
port phenomena.

From a Lagrangian perspective, one can think of re-
placing a fluid particle with a tracer one, i.e., a particle
which has the same exact properties of the fluid replaced
(and therefore evolves in the same way and does not alter
the effects on the surrounding fluid) but that simply acts
as a marker and can be followed individually in its evo-
lution. More complex cases arise when these inclusions
are inertial particles—the subject of the next section—or
polymers. These latter denote particles with an internal
structure, which can be described by different models (e.g.
Oldroyd-B, FENE-P, etc. [45, 46]) and produce non-trivial
feedbacks on the carrier fluid, the most important of which
is probably the drag reduction that can be achieved in oil
ducts with efficiency improvement of even 80% by simply
adding a few parts per million in mass.

From the Eulerian viewpoint, the transported quantity
is a field. This latter can be a scalar or a vector, and may
be passive or active depending on whether it has a feedback
on the advecting velocity—by appearing as a source term on
the right-hand side of (2) and thus fully coupling the system.
Passive-scalar advection [47], e.g., for the concentration
field of a tracer, is a paradigmatic case because, despite the
linearity and locality of the problem, many aspects are rem-
iniscent of the kinetic-energy cascade picture [48, 49, 50, 51,
52, 53, 54, 55]. In the realm of active-vector turbulence, mag-
netohydrodynamics still constitutes a formidable problem
[56].

Large-Eddy Simulations (les) consist in a computa-
tional resolution of these problems, different from the
Reynolds-Averaged (rans) and Direct (dns) Numerical
counterparts [57] in the sense that a coarse-graining proce-
dure is implemented [58, 59], whose analytical foundations
are still being studied. The basic difficulty relies on a closure
problem, due to the fact that any filtering operation aimed
at focusing on the sole large scales does not commute with
the non-linear multiplicative term in (2), thus requiring a

suitable parameterization of the small scales which cannot
just be neglected [60, 61].

Back to the investigation of the velocity field itself,
the different types of instabilities [62] represent a huge re-
search theme. Among them, we can mention those named
as Rayleigh-Bénard (fluid cooled from above and heated
from below), Taylor-Couette (fluid between two counter-
rotating cylinders), Kelvin-Helmholtz (fluid with internal
layers moving in relative shear) and Von Kármán-Strouhal
(fluid in the wake of an obstacle with vortex street).

Finally, control theory [63] plays a crucial role. By means
of studies of structural sensitivity, the aim is to identify
which changes in the boundary conditions or in the forcing
terms are the most suitable to obtain some desirable or de-
sired result (such as the reduction of the aerodynamic drag
on cars or of acoustic noise on airplanes), in the sense that
they maximize the kinetic-energy gain or engage/delay some
transition.

1.1 Inertial particles

Particles that have a different mass density (𝜎𝜎) with respect
to the surrounding fluid, and whose size—let us say radius
R in the range 𝜇𝜇m ÷ mm—is small but not tiny, cannot sim-
ply be described as point tracers and have a finite relative
inertia. Their trajectory thus deviates from the underlying
fluid one, which can lead to preferential concentration and
even clustering. Common examples are droplets in gases,
bubbles in liquids and aerosols in fluids. Let us consider
the simplest realistic model, where the particles are spheri-
cal and isolated, or belonging to a very dilute suspension, in
order to neglect any interaction with boundaries and other
particles, and to take into account their feedback on the flow
in an effective simplified fashion.

Equation (1) now becomes a second-order dynamical sys-
tem of the Langevin type (Itô or Stratonovich) for the parti-
cle position x(t) and velocity v(t), because Newton’s law can
be recast as [64, 65]:

⎧⎪
⎪
⎨
⎪
⎪⎩

̇x(t) = v(t)

̇v(t) = 𝛽𝛽 d
dt
u(x(t), t) − v(t) − u(x(t), t)

𝜏𝜏

+
√2𝜅𝜅

𝜏𝜏
𝜼𝜼(t) + (1 − 𝛽𝛽)g .

(3)

The four terms on the right-hand side of the equation for
the acceleration represent the four basic components of the
force acting on the particle. The first is proportional to the
non-dimensional coefficient

𝛽𝛽 𝛽
3𝜌𝜌

𝜌𝜌 + 2𝜎𝜎
∈ [0, 3] (4)

and expresses the added-mass effect, i.e. the fact that any
motion of the particle implies a movement of fluid around
it: this contribution vanishes for very heavy particles (𝜎𝜎 𝜎
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𝜌𝜌 𝜌 𝜌𝜌 𝜌 0) and is maximum for very light ones (𝜎𝜎 𝜎 𝜌𝜌 𝜌
𝜌𝜌 𝜌 3), because there all inertia lies in the particle or in the
fluid, respectively; for tracers (𝜎𝜎 𝜎 𝜌𝜌 𝜌 𝜌𝜌 𝜎 1) of course
this acceleration is the same as if a fluid particle were there.1

The second is the linear viscous drag for small relative slip
velocity, it means that the particle relaxes towards the lo-
cal and instantaneous flow configuration with a typical re-
sponse time 𝜏𝜏 𝜏 R2/3𝜈𝜈𝜌𝜌 (→ 0 for tracers and → ∞ for bal-
listic objects), from which the Stokes number—a measure
of the inertia-driven delay—can be constructed:

St 𝜏 𝜏𝜏
L/U

. (5)

The third takes thermal noise into account via the Brownian
diffusivity 𝜅𝜅, coupled through the standard vectorial white
noise 𝜼𝜼𝜼t), and gives rise to the Péclet number:

Pe 𝜏 LU
𝜅𝜅

. (6)

The fourth represents buoyancy, parallel to gravity accelera-
tion g for heavy particles (𝜌𝜌 𝛽 1) and anti-parallel for light
ones (𝜌𝜌 𝛽 1), and leads to the definition of the Froude num-
ber:

Fr 𝜏 U

√Lg
. (7)

Some corrective terms have been neglected in (3), namely
those due to Basset–Boussinesq (time integration for mem-
ory effects), Faxén (spatial expansion for finite particle size),
Oseen (non-linearity for finite relative slip velocity) and
Saffman (side lift in case of rotation).

From (3), one derives the generalized Fokker-Planck
equation for the phase-space density p𝜼x, v, t), which serves
as a basis to compute the quantities of physical rele-
vance. Typically, in the presence of a localized particle
source—such as a chimney for pollutants in the atmosphere,
or a syringe for powders in microchannels—one is inter-
ested in the temporal evolution of the physical-space con-
centration. If no source is present, the most important
quantities are the particle transport properties, such as: the
average terminal velocity (or more precisely its deviation
with respect to the asymptotic bare value in still fluids) de-
scribing how even a zero-mean flow can modify the sedi-
mentation process and Stokes’ drift; and the effective eddy
diffusivity, whose value also tells one whether, in the frame
of reference moving according to the ballistic component,
the diffusion process is standard or anomalous. All this
information can be obtained from p, either by simply in-
tegrating on the velocity degree-of-freedom, or by dealing
with this latter in some appropriate way in order to obtain
advection-diffusion-like equations known as auxiliary cell
problem [66].

It is known that these phenomena critically depend
on the interplay of several control quantities, i.e., the full
details of both flow and particles contribute to establish
whether, e.g., the activation of a fluid velocity field increases
or decreases the settling of a suspended particle. Among
the key factors is the list of non-dimensional numbers 𝜌𝜌 (4),
St (5), Pe (6) and Fr (7), to which we must add a few others.
Most importantly, the compressibility degree (an analogue
of the Mach number)

𝒫𝒫 𝜏
⟨𝜼∇ ⋅ u)2⟩
⟨||∇u||2⟩

∈ [0, 1] , (8)

where the average can be on the space-time periodicity, or
on the statistical ensemble for random flows. Then, the
space dimension d, where only the two- and three- dimen-
sional cases can be investigated if the flow is incompressible,
but also d 𝜎 1 if 𝒫𝒫 𝒫 0.

Also the geometric and temporal details of the flow are
extremely relevant, and to fix the ideas let us focus on two
examples. First, a laminar 2D incompressible flow with a
cellular structure,

u 𝜎 U (
sin𝜼2𝜋𝜋kx1/L) cos 2𝜋𝜋[x2/L + sin𝜼𝜔𝜔t)]

−k cos𝜼2𝜋𝜋kx1/L) sin 2𝜋𝜋[x2/L + sin𝜼𝜔𝜔t)] ) ,

where k is the vertical-to-horizontal aspect ratio, and 𝜔𝜔 is
the angular frequency of synchronous vertical oscillation of
the cells. Second, a zero-mean, stationary, homogeneous,
isotropic, Gaussian random flow, with two-point correla-
tion

⟨ui𝜼x, t)uj𝜼0, 0)⟩𝜎 U2fij𝜼𝒫𝒫 )e−x2/2L2e−t2/2T2
cos𝜼𝜔𝜔t)

(the tensorial structure fij simply enforces the desired com-
pressibility degree); here, T is the characteristic life time
of turbulent vortices and 𝜔𝜔 is an angular frequency which
takes into account the presence of recirculation— i.e., areas
with negatively-correlated velocity—that lead to the defini-
tion of two additional non-dimensional numbers:

Kubo number 𝜎 Ku 𝜏 T
L/U

, (9)

Strouhal number 𝜎 Sr 𝜏 𝜔𝜔
2𝜋𝜋U/L

. (10)

It can be shown that also the parameters 𝒫𝒫 (8), Ku (9), Sr
(10), along with d and k, have a huge impact on the transport
properties, not only directly, but indirectly too, by changing
or even reversing the direct role of other parameters.
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The CIM, in partnership with the Portuguese Mathematical Society (SPM)  https://www.spm.pt/ and the Science Museum of the 
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