REPRESENTATIONS OF COMMUTATIVE RINGS

VIA THE PRIME SPECTRUM

by Jorge Vitéria™

Given a commutative noetherian ring R we discuss its representations, i.e. its R-modules. The prime spectrum of R

plays a fundamental role, controlling much of the structure of the category of R-modules. We illustrate this in two

instances, surveying a parametrisation of localising subcategories and a parametrisation of flat ring epimorphisms.

1 INTRODUCTION

Representation theory studies actions of rings on abelian
groups or vector spaces. The objects of study are, there-
fore, R-modules, where R is a ring. Here are some ex-
amples of representations.

1. Let (X, +) be an abelian group. Then X admits
a natural Z-action, setting an integer n to act on
x € X by iterating |n| times the operation + on x
if n>0o0ron-xifn<O0.

2. Let V'be a vector space over a field K. The field K
naturally acts on V through the multiplication of
vectors by scalars. This turns Vinto a K-module.
If, furthermore, we choose a linear endomorphism
f: V. — V, then we can define an action of the
polynomial ring K[x] on V setting the action of x"
on a vector v as f"'(v). This yields a K[x]-module
structure on V.

3. Let G be a finite group acting on a K-vector space
V. Then V can be regarded as a KG-module, where
KG is the ring whose elements are formal linear
combinations of elements of G over K (multiplica-
tion is defined by the operation in G). For example,
if G is the (dihedral) group D, of symmetries of a
square and V' = R?, then D, acts naturally on R?.
This turns V into a module over RD,, where the
multiplication extends linearly the composition of
symmetries in D,.

4. Let g be a complex Lie algebra with an action on

a complex vector space V. Then Vis naturally a
module over %(g), the universal enveloping alge-
bra. For example, if g is 8[(2, C), the Lie algebra of
2 X2 matrices with zero trace, then g acts naturally
onV = C2. This action turns Vinto an % (31(2, C))-
module, where % (81(2, C)) can be shown to be iso-
morphic to the ring C(x, y, z)/(xy — yx + 2y, xz —
zx—2z, yz—zy+x) with non-commuting variables
x, y and z.

A traditional aim of representation theory is to classify
all representations of a given ring. This is, in general, a
very difficult, if not impossible, task. One might, how-
ever, try to classify families of modules satisfying com-
mon properties. This macroscopic approach to repre-
sentation theory has been very successful over the past
decades, shifting the focus from individual modules to
collections (or subcategories) of modules, with the help of
category theory and homological algebra.

2 CATEGORIES OF MODULES AND SOME SPECIAL
SUBCATEGORIES

Given a ring R, consider the category Mod(R) whose
objects are all (right) R-modules and whose morphisms
are the R-linear homomorphisms of abelian groups, i.e.
those that preserve the R-action.

Exampre 1.— The category Mod(Z) is (equivalent to)
the category of abelian groups. Similarly, the category
Mod(K) for a field K is (equivalent to) the category of K-
vector spaces. The category Mod(K[x]) is (equivalent to)
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the category whose objects are pairs (V, f), where Visa
K-vector space and f is a K-linear endomorphism of V.
The morphisms in this category between two pairs (V, f)
and (W, g) are those linear maps a: V' — W such that

goa:aof.

In this note, by subcategory of Mod(R) we mean a
strict and full subcategory (see [9] for basic terminology).
This means that a subcategory is completely described by
its collection of objects. We aim to classify some sub-
categories of Mod(R), and the ones we are particularly
interested in are determined by closure conditions. A sub-
category % of Mod(R) is said to be closed under

* (co)products if for any (set-indexed) family of R-
modules lying in %, its (co)product lies in %.

* (co)kernels if for any map of R-modules
f: M — N, we have that the (co)kernel of f
lies in %.

* extensions if for any short exact sequence of R-
modules

00— X —Y —>7—700

if X and Z lie in %, then so does Y.

The following definition sets up the kind of subcate-
gories we will be interested in.

DeriniTION 1.— Let R be a ring. A subcategory I of
Mod(R) is said to be a Serre subcategory if for any short
exact sequence of R-modules

00— X —>Y—>Z7Z—0

X and Z lie in % if and only if Y lies in %. Moreover,
we say that 2 is localising if it is a Serre subcategory
which is closed under coproducts and we say that & is
bireflective if 2 is closed under products and coprod-
ucts, kernels and cokernels.

Exampie 2.— In the category of abelian groups,
Mod(Z), consider the subcategory Tors, formed by all
abelian groups for which every element has finite order,
and the subcategories %, (n > 1), formed by all abelian
groups annihilated by n (i.e. abelian groups for which
the order of every element divides n).

1. Given an abelian group M in Tors, every subgroup
of M and every quotient group of M also lies in
Tors. The same conclusion can easily be reached
for extensions between two groupsin Tors, and for
coproducts of such groups. Therefore, Torsis alo-
calising subcategory of Mod(Z).

32

2. The subcategory Tors is not, however, closed un-
der products. Let M be the product indexed by the
natural numbers of the abelian groups Z/nZ. The
elements of M are the sequences (a,),cy With each
a, being an element in Z/nZ. It is easy to see that
the sequence given by a, = 1 does not have finite
order and, thus, M does not lie in Tors.

3. Itis easy to see that %, is closed under kernels and
cokernels and given any family of abelian groups
annihilated by n, both its product and coproduct
will be annihilated by n. As such, %, is a bireflec-
tive subcategory of Mod(Z). However, the short
exact sequence

l—n

0 ZInZ ZIn*Z ZInZ 0

shows that it is not extension-closed (since Z/n*Z
does not lie in %,). Hence, %, is not a Serre subcat-
egory and, as such, it is also not a localising subcat-

egory.

In this note we will provide a way of classifying all lo-
calising subcategories and all extension-closed bireflec-
tive subcategories of Mod(R), when R is a commutative
noetherian ring. In the remainder of this section, we
want to explain why these subcategories are relevant in
representation theory.

2.1 CATEGORICAL LOCALISATIONS

In order to study the structure of a category such as
Mod(R), one technique is to consider its localisations, or
Serre quotient categories. It follows from [4] that for
any Serre subcategory & of Mod(R), there is an abelian
category Mod(R)/§ and an exact functor

ds: Mod(R) — Mod(R)/S

that sends all objects of & to the zero object and that,
moreover, is universal with respect to this property. It
is then to be expected that by studying the abelian cat-
egory Mod(R)/S together with the associated Serre sub-
category &, one might be able to glue data to the larger
category Mod(R). While this may, in general, still be
quite difficult, the task becomes easier if we require that
& is also closed under coproducts, i.e. if & is localis-
ing. Indeed, given alocalising subcategory & of Mod(R),
both the inclusion functor of §'into Mod(R) and the quo-
tient functor g ¢admit right adjoints ([4]). These adjoints
can then be used to better relate the structures of these
three categories.



ExampLe 3.— Consider again the category Mod(Z) and
the localising subcategory Tors from Example 2. It turns
out that the categorical quotient Mod(Z)/Tors is equiv-
alent to Mod(Q), i.e. the category of Q-vector spaces.
Moreover, the quotient functor gr,.: Mod(Z) —
Mod(Z)/Tors can be shown to be naturally equivalent to
the tensor product —®, Q, and its right adjoint identifies
Mod(Z)/Tors with the torsionfree and divisible abelian
groups.

2.2 RING EPIMORPHISMS

Epimorphisms in the category of (unital) rings are not
just, as one naively could expect, surjective ring homo-
morphisms. In fact, it is an easy exercise to check that
the embeeding of Z into Q is a ring epimorphism or, in
other words, that any ring homomorphism from Q to a
ring C is uniquely determined by the image of the inte-
gers. As it turns out, any ring of fractions of a ring R
(where one formally inverts a suitably selected subset of
R) yields a ring epimorphism from R.

Ring epimorphisms from a ring R are relevant in the
representation theory of R because they correspond bi-
jectively (up to a suitable notion of equivalence) to bire-
flective subcategories of Mod(R) ([5]). Note that any
ring homomorphism f: R — S induces an R-module
structure on any (right) S-module M: just set the action
of r€ Ronm € Mbym-r := mf(r). This defines a
faithful functor

f.: Mod(S) — Mod(R)

which is called restriction of scalars. Moreover, it turns out
that f is an epimorphism if and only if every R-linear
map between S-modules is also S-linear (or, in other
words, f, is full). The assignment can now be defined
by associating to a ring epimorphism f: R — S the
subcategory of Mod(R) obtained as the essential image of
the functor f, (which is naturally equivalent to Mod(.S)).

Classifying bireflective subcategories of Mod(R) then
amounts to classifying families of modules that share the
property of being modules over some epimorphic image of
R (in a compatible way). In this note we restrict our aim
to classifying those bireflective subcategories which are
also extension-closed. This is because the associated ring

epimorphisms exhibit a better homological behaviour
(see [6] for details).

Exampie 4.— Consider yet again the category Mod(2)
and the bireflective subcategories %, (n > 1) from Ex-
ample 2. The ring epimorphism associated to %, turns

out to be f,: Z —> Z/nZ. This is because the abelian
groups admitting a natural Z/nZ-module structure are
precisely those annihilated by n. These bireflective sub-
categories are not, however, extension-closed (see Exam-
ple 2).

Consider now the ring epimorphism f: Z — Q.
The restriction functor f, : Mod(Q) — Mod(Z) is nat-
urally equivalent to the right adjoint of g1, (see Exam-
ple 3). One can then conclude that indeed the essential
image of f, (or, in other words, the bireflective subcate-
gory associated to f) consists of the torsionfree divisible
abelian groups and it is, therefore, extension-closed.

3 THE PRIME SPECTRUM

We turn our focus to the study of commutative noethe-
rian rings. The structure of these rings is rather well-
understood, and a key part of that understanding comes
from their prime ideals. It is therefore not surprising that
prime ideals also play an important role in the classifica-
tion results we aim to survey.

Let R be a commutative ring. Recall that an ideal p
of R is said to be prime if p # R and whenever ab lies
in p for two elements a and b in R, then at least one of
them must lie in p. The set of prime ideals of R is called
the spectrum of R and is denoted by Spec(R). The spec-
trum of R admits a natural partial order induced by in-
clusion of ideals and, moreover, it can also be endowed
with an interesting topology, the Zariski topology, by
declaring the closed subsets to be the ones of the form

V() :={p €Spec(R): I Cp}

for some ideal I of R. It is an easy exercise to check
that this indeed yields a topology. Note that the closed
points of Spec(R) are then precisely the maximal ideals
of R. There is a full characterisation of the topologi-
cal spaces arising as Zariski spectra of commutative rings.
These are precisely the compact spaces which are T;,! and
for which the compact open subsets form a basis for the
topology and are closed under finite intersections ([7]).
These are the so-called spectral spaces.

Exampre 5.— Let us go back to R = Z. The prime ide-
als are precisely those generated by a prime natural num-
ber and, in addition, the zero ideal (because Z is an inte-
gral domain!). Every non-zero prime ideal is maximal,
and thus, we have countably many closed points, and a
point (the zero ideal) whose closure is the whole spec-
trum. The poset of prime ideals can be depicted as in

1 For every pair of distinct points there is an open subset containing one and not the other
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Figure 1: Spec(Z).

Figure 1 where the convention is that an edge represents
an inclusion from the lower row to the upper row.

Given a commutative ring R and a prime ideal p of R, we
define the height of p (denoted by ht(p)) as the largest
integer n for which there is a chain of prime ideals of R
of the form

PoCPIEPE - Cp, =P

The Krull dimension of R (denoted by Kdim(R)) is then
defined to be the supremum of the heights of its prime
ideals, i.e. Kdim(R) := sup{ht(p) : p € Spec(R)}.

We will also restrict ourselves to the class of com-
mutative noetherian rings. Recall that a commutative
ring is said to be noetherian if there are no infinite
strictly ascending chains of ideals. Examples of such
rings are Z or quotients of polynomial rings by any ideal:
KIxy, ..., x, /I (K is a field). It is an easy exercise to check
that the spectrum of a commutative noetherian ring R
is a noetherian space (any ascending chain of open sub-
sets stabilises). It can also be shown that, for every ideal
I of such a ring R, there is a finite set of prime ideals
{p1, .y} such that V(I) = U V(p,). This implies
that the Zariski topology on Spec(R) can be easily recov-
ered from the poset of prime ideals. Moreover, we also
have that the poset of prime ideals over a commutative
noetherian ring satisfies the following theorem.

TueoreM 2.— [8, Theorem 144] Let R be a commuta-
tive noetherian ring. Whenever there are prime ideals
p.t and q such that p C t C q, then there are also in-
finitely many prime ideals 8 such that p C 8 C q.

In particular, any commutative noetherian ring R
which contains a prime ideal which is neither a maximal
nor a minimal prime ideal has the property that Spec(R)
is infinite. As a consequence, if a commutative noethe-
rian ring R has only finitely many prime ideals, then R
must have Krull dimension at most 1.

By definition, the complement of a prime ideal is
closed under multiplication (and contains the unit of the
ring). As such, it is a good candidate for a set of denom-
inators in a ring of fractions. Given a prime ideal pin a
commutative ring R, we may consider the ring of frac-
tions obtained by adding to R formal inverses to the el-
ements in the complement .S = R\ p, and we denote it
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by R,. Moreover, there is a natural ring homomorphism
ws: R — R, sending an element r to the fraction 1.
This ring homomorphism is, in fact, a ring epimorphism
and its associated bireflective subcategory is extension-
closed. The following proposition recalls how Spec(R),
Spec(R/p) and Spec(R,,) are related.

ProrosiTioN 3.— Let R be a commutative noetherian
ring and p a prime ideal of R. Then we have that

1. Spec(R/p) is homeomorphic to the subspace V (p)
of Spec(R);

2. Spec(R,) is homeomorphic to the subspace
A(p) :={q € Spec(R) : q C p} of Spec(R);

3. Kdim(R,) = ht(p) and Kdim(R/p) < Kdim(R) =
ht(p).

Exampre 6.— Let R be again the ring of integers Z, and
let p be the ideal generated by the prime 2. Note that Z
is a ring of Krull dimension 1 and (2) is a prime ideal of
height 1. Then R/p is the field Z/2Z which has a unique
prime ideal: the zero ideal. This fits with the fact that
Spec(Z/2Z) ought to be homeomorphic to the subspace
of Spec(Z) given by V' ((2)) = {(2)}. A similar check can
be done for the localisation of Z at (2). Indeed, the ring
of fractions Z ,, can be described as a subring of Q as

Zp=(5 €Q: ged(b2) = 1)

where gcd denotes de greatest common divisor. The
spectrum of Z 5, is indeed homeomorphic to A((2)) and
consists of two prime ideals: the zero ideal and the max-
imal ideal 27 ).

4  CLASSIFICATION RESULTS

We want to illustrate the idea that for a commutative
noetherian ring R, the structure of Spec(R) controls
much of the representation theory of R, i.e. the struc-
ture of Mod(R). For this purpose we introduce the fol-
lowing notion of support. Given an R-module M, con-
sider the set of primes

Supp(M) = {p € Spec(R): i >0: TorlB(M, k(p)) # 0}
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where k(p) := R,/pR,, is the residue field of R at p and
TorR(—, k(p)) is the i-th derived functor of — ®p k(p).
We refer to [2] for further details.

If M
Supp(M) is easier to calculate: it coincides with
{p € Spec(R): M ®; R, # 0} ([2, Lemma 2.2]). From
a geometric standpoint this is the support of the asso-
ciated coherent sheaf M over Spec(R), i.e. the set of
points p in Spec(R) where the stalk M, , does not vanish.

is a finitely generated R-module,

We can also consider support of subcategories of R-
modules: we define Supp(%), for % a subcategory of
Mod(R), to be the union of Supp(U) where U runs over
all R-modules in %. This provides us with a way to as-
sign a subset of Spec(R) to any subcategory of Mod(R),
and this is the key tool to the classification results we will
discuss next.

4.1 LOCALISING SUBCATEGORIES

The first theorem we want to present is a well-known
classification by support of localising subcategories of
modules over a commutative noetherian ring. Moreover,
it turns out that the subsets of the spectrum that arise as
support of localising subcategories are arbitrary unions
of closed sets. Such subsets are called specialisation-
closed subsets. Equivalently, a subset Vof the spectrum
of a commutative noetherian ring R is specialisation-
closed if for any p in ¥V, any prime q containing p must
also liein V.

It can be shown that a specialisation-closed subset V'
has minimal elements (for the partial order induced by in-
clusion) and that these completely determine V. Indeed,
if Vis specialisation-closed and (p,),¢; is the collection of
the minimal elements of V¥, then V' = U,V (p)).

TueoreMm 4.— [9, Ch.VL{5, §6] For a commutative
noetherian ring R, the assignment of support yields a bi-
jection between

1. localising subcategories of Mod(R);

2. specialisation-closed subsets of Spec(R).

Note that the sends a

specialisation-closed subset V of Spec(R) to the subcate-

inverse assignment

gory of all modules whose support is contained in V.

REemark 1.— It can be shown that for a commutative
noetherian ring R, there is a topology on Spec(R) for
which the open sets are the (Zariski) specialisation-closed
subsets above described. This is called the Hochster dual
topology. For more details on this duality, we refer to

[7].

.41

Recall thatan R-module M is said to be flat if —@ x M
is an exact functor or, equivalently, if the derived func-
tors Tor;'(—, M) are identically zero.

Examrre 7.— Consider again the localising subcategory
Tors of Mod(Z) (see Example 2). We show that
Supp(Tors) = Spec(Z) \ {(0)} (this is specialisation-
closed: it is the set of all maximal ideals of Z).

First observe that Z 5, = Q and, therefore, k({0)) =
Q. Since Q is flat over Z, we have that Tor”(—, Q) = 0
for all i > 1. Hence (0) lies in Supp(M) (for some
abelian group M) if and only if M ®, Q # 0. Observe,
however, that if M is an abelian group where every el-
ement has finite order, M ® , @ = 0. Indeed, if m is
an element of M of order n > 1, then for any ¢ € Q,
we have that m ® ¢ = mn ® f = 0. This shows that
Supp(Tors) C Spec(Z) \ {(0)}.

To prove the converse we show that Supp(Z/pZ) =
{{(p)} for any prime p in Z. Since Z/pZ is finitely gen-
erated, then it is enough to compute Z/pZ ®, Zy for
any prime ¢. Since p is invertible in Z, whenever
p # ¢, a similar argument to the one above shows that
ZIpZ ®7 Z,,, = 0 for all ¢ # p. Finally, it can be shown
that Z/pZ ®; Z,, = k(p) # 0. This proves the claim.

4.2 BXTENSION-CLOSED BIREFLECTIVE SUBCATEGORIES

‘We now turn our attention to extension-closed bireflec-
tive subcategories of Mod(R), where R is commutative
and noetherian as before. As mentioned earlier, the con-
dition of extension-closure imposes some nice homolog-
ical behaviour on the associated ring epimorphism. It
turns out that, in the context of commutative noethe-
rian rings, the extension-closure requirement gives us an
extremely nice homological behaviour: flatness.

TueoreM §.— [1] Let R be a commutative noetherian
ring and let f: R — S be a ring epimorphism. Then
the bireflective subcategory associated to f is extension-
closed if and only if Sis flat as an R-module.

Ring epimorphisms as those in the theorem above are
called flat ring epimorphisms. The theorem is far from
being true outside the commutative noetherian setting.

A classification of extension-closed bireflective sub-
categories therefore amounts to a classification of flat
ring epimorphisms (up to equivalence). Observe more-
over that, given a flat ring epimorphism f: R — S, the
R-modules M for which M ®z .S = 0 form a localising
subcategory of Mod(R) which is supported, by Theorem
4, on a specialisation-closed subset V. This gives us a way
of assigning a specialisation-closed subset in Spec(R) to

December 2019 35



any given equivalence class of flat ring epimorphisms of
R. What are the properties of this assighment?

TueoreM 6.— [1] Let R be a commutative noetherian
ring. Let ¥ be the assignment sending the equivalence
class of a flat ring epimorphism f: R — S to the
support of the subcategory of R-modules M such that
M ® S =0. Then:

1. Yisan injective assighment;

2. The image of ¥ is contained in the set of
specialisation-closed subsets of Spec(R) whose
minimal elements have height at most 1;

3. If Kdim(R) < 1 or if R is regular, then ¥ in-
duces a bijection between flat ring epimorphisms
up to equivalence and specialisation-closed subsets
of Spec(R) whose minimal elements have height at
most 1.

Recall that the commutative noetherian regular rings
are precisely those of finite global dimension. Geomet-
rically, regularity can be interpreted as the smoothness
of the corresponding affine scheme. It is always possi-
ble to describe the image of W, and the assumptions in
point (3) of the theorem can be significantly relaxed -
all of this at the expense of requiring some more tech-
nical tools ([1]). The following corollary characterises
completely the support of extension-closed bireflective
subcategories under the same assumptions as in (3) above.
This follows from the fact that this support will be the
complement of the specialisation-closed subset arising
through .

Cororrary 7.— [1] Let R be a commutative noetherian
ring and suppose that R either has Krull dimension at
most one or is a regular ring. Then the assignment of
support establishes a bijection between

1. extension-closed bireflective subcategories of

Mod(R);

of Spec(R) whose
specialisation-closed and the minimal primes of

2. subsets complement is

the complement have height at most one.

REeMARK 2.— Note that for commutative noetherian
rings of Krull dimension at most one, the assumption
on the height of minimal primes in the specialisation-
closed subsets is automatically fulfilled. Therefore, if
R has Krull dimension at most one, there is a bi-
jection between flat ring epimorphisms up to equiva-
lence (or extension-closed bireflective subcategories) and
specialisation-closed subsets of Spec(R).
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Examrre 8.— We give a complete list of flat ring epi-
Such
ring epimorphisms are classified by specialisation-closed
subsets of Spec(Z), and these are: @, elements of
P(Max(Z)) (the power set of maximal ideals of Z) and
Spec(Z).

morphisms (up to equivalence) starting in Z.

1. Let us consider the first specialisation-closed sub-
set V' = @. The corresponding extension-closed
bireflective subcategory % must be supported on
Spec(Z) \ V = Spec(Z). Therefore, we have % =
Mod(Z) and the associated flat ring epimorphism
(up to equivalence) is the identity on Z.

2. Let V be the set of prime ideals determined by a
subset of prime natural numbers P. The associated
flat ring epimorphism can be checked to be (up to
equivalence) the map

fp: Z — Z[P"

where Z[P~!] can be identified with the subring
of Q consisting of the fractions a/b such that b has
no prime factors which are not in the set P and

fpr) =r/1.

3. Finally, let V' be Spec(Z). Since its complement
is empty, the flat ring epimorphism (up to equiv-
alence) that we are looking for is the trivial one:
f:7Z— 0.

The situation described in the example above is ex-
tremely nice and not at all typical. In this case we were
able to describe all flat ring epimorphisms as rings of frac-
tions, but in general we may need more robust localisa-
tion techniques. This is explored in detail in [1].
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