SOLID N-TWISTED M®BIUS STRIPS AS

REAL ALGEBRAIC SURFACES

by Stephan Klaus*

We construct explicit polynomials p in three real variables x, y and z such that the associated affine variety

pigl(O) gives a small tubular neighborhood of the n-twisted M&bius strips. The degree ofpn is given by 4+2n.

We give visualizations up to twisting number n=6 using the free software surfer of the open source

platform Imaginary.

1 INTRODUCTION

It is a well-known fact from differential topology (e.g.,
see [1], chapter 1, §4) that for a smooth function f :

R™ — R and a regular value y € R, the level set
M := f~!(p)is a smooth (m — 1)-dimensional hypersur-
face. Moreover, M has no boundary and is orientable. In
case that M is compact and connected, it separates R” in
two regions, the inside and the outside, by the generalized
Jordan-Brouwer separation theorem ([1], chapter 2, §5).

Hence, it is not possible to construct the Mdbius strip
as a smooth level set in this way as it has a 1-dimensional
boundary and as it is non-orientable.

However, in [2] we have given polynomials of degree
6, 8 and 10 such that the visualization of the level sets
£71(0) (using the surfer-software [5] of the open source
platform Imaginary) give Mdbius strips with 1, 2 and 3
twists, respectively.

This apparent contradiction can be easily explained:
These surfaces are not Mdbius strips on the nose but
thickened versions, i.e. boundaries of small tubular
neighborhoods. We call them solid Mdbius strips. Our
method of construction (by rotation with twisting) will be
explained in the next section. We remark that a simi-
lar method was used in [3] to construct the solid trefoil
knot with a polynomial of order 14. An overview over
these and other constructions of interesting surfaces can
be found in [4].

The reason that we come back to the construction
of Mabius strips is that we will present here a simplified
construction which works for any number of twists and
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gives an explicit polynomial, whereas the method in [2]
was ad-hoc in the degrees considered.

As a last remark we mention a theorem of Whitney
[6]: For any closed subset A C R™ there exists a smooth
function f : R™ — Rsuch that A := f~1(0). Of course,
in general 0 is then not a regular value of f.
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2 ROTATION WITH n-TWISTING

We start with an affine real algebraic curve given as the
level set of a polynomial f(t, z) € R[t, z] for the value 0.

2 2
ft,2) = <5> + (5) ~1
a b
is an ellipse with semiaxes0 <a < land 0 < b < 1. We
denote the eccentricity (with a < b) as the geometrically

In our case,

relevant parameter by

»2— a2
b

and we are mainly interested in big eccentricity, e.g.
e~ 1.

Now, rotation with twisting denotes a mixture of
two rotation motions. The first movement concerns the
t-axis which we let rotate around the z-axis such that it
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spans the (x, y)-plane:

x = Ct,
y =51,

C :=cos¢
S :=sing

Here, ¢ denotes the angle between the - and the x-axis.
Note that C?+.5? = 1. At the same time we impose a sec-
ond rotation ("twisting’) within the (¢, z)-plane around a
center at (1,0) with angle y:

' —1l=cit—1)+sz
zZ=—s@t—1)+ecz

Here, ¢ = cos(y), s := sin(y) and ¢?> + s> = 1. This
variable transformation leads to the master equation

fle@—=1)+sz,—s(t—1)+¢cz)=0

where both rotation motions are coupled as an n-twisted
rotation, i.e.
n
y==¢
2
because a twist is a half rotation.
In our case of an ellipse we get (after multiplication
2b2

with a“b” in order to get rid of denominators)

a’b?* = B (c(t = 1) + s2)* + a*(=s(t — 1) + cz)?
= c2(B2(t — 1)? + a*2%) + 2es(b* — )t — D)z+
+52(a*(t — 1)* + b*2°).

3 ELIMINATION OF THE ROTATION AND TWISTING
VARIABLES

Now we need to eliminate the variables C, S, ¢, s and ¢
from the master equation in the section above in order
to get a single equation p(x, y,z) = 0. At a first glance
one could think that this is not possible with a polyno-
mial p because of the transcendental functions cos and
sin. However, with the de Moivre formula

exp(¢i)" = exp(ngi) = exp(Lyi) = exp(y/i)2
we get for the real and the imaginary parts:
pa(C,S) =R({(C+iS)")=C" - <;> C" 8%+

+<n>C"_4S4 =2 =52
4

_ <i’l> Cn_3S3
3

with homogeneous polynomials p, and g, of order n. Be-
cause of ¢* + s? = 1 we obtain

2= %(1 +p,(C,S), 5= %(1 = Pu(C. 5)).
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Now we use C = x/t and S = y/t and we insert the ex-
pressions for cz, 2¢s and s? into our master equation. Us-
ing the homogeneity of p, and g, we multiply the equa-
tion with ¢". This yields

%(l” + p,(x, y))(bz(t - 1)2 + a2z2)+
+q,(x, )(B* — a®)(t — 1)z+
+%(r” — p, (5, V)@t = 1)* + b*2%) — a®b*1" = 0.

()

Hence we have eliminated the rotation and twisting vari-
ables C, S, c and s. The last step is the algebraic elimina-
tion of the variable 7. (Of course, we could just replace ¢
by v/x2 + y? but this would not give a polynomial equa-
tion.)

4 ELIMINATION OF THE VARIABLE ¢

This last step can be achieved in a more general con-
text. Suppose we have given a polynomial g(x, y, z,1) €
R[x, y,z,t] and a polynomial h(x, y,z) € R[x,y, z] and
we want to eliminate 7 from the system

g(x,y,2,t)=0
h(x,y,z) =t

We are in particular interested in the case of h(x, y, z) =
x? + y*. The algebraic elimination can be achieved by
splitting g in even and odd powers of t:

g(x7 Y, Z, t) = gO(x’ Y, zZ, tz) + tgl(-x’ Y, Z, t2)

Then from g = 0 we get g, = —1g, and squaring this
equations yields

gO(xa Y, z, h(x’ Y, Z))2 = h(xa Y, Z)gl(x9 Y, z, h(x’ Y, Z))2

which is the final solution of our elimination problem
above.

In order to apply this procedure to equation (x), we
sort the terms according to powers of 7. From the struc-
ture of the equation with its 4 terms, there appear only
the powers "2, 1" " 2, t' = tand 1° = 1, and (%) is
equivalent to the equation in figure 1.

The matrix-like shape with 4 rows reflects the origin
of each entry in the bracket from one the 4 terms of ().
Of course, we use here the abbreviations p, = p,(x, )
and ¢, = q,(x, y). A further simplification with

A=ad+b=b0+¢), B:=b-d=b-¢),

D :=a*h?* = b4€,

where e denotes the eccentricity and e := 1—e? (i.e.,e 0



1 2

tn+2 ( %bz +5a )
w1l —b? —a? )
+H (S0P +dD +3@+6°2%) =)

) 1 .0 12
+ ( >pub —3Pnd )

24N 20n

+ ( —p, b 4,0 — a)z +p,a° )
+1 ( %p,,(bz + 2% —q,(b* — )z —%pn(GZ + b2z%) ) Figure 1
=0

is a thin ellipse and ¢ = 1 gives a round torus), yields:

Apea _ gt (é(l +22) - D)" + Epnt2

~B(p, = 4,2t + 5 p,(1 = z’)— Bg,z=0
Now, in order to apply the above method of 7-
elimination, we have to distinguish the two cases of even

and odd twisting numbers n.

4.1  EVEN TWISTING NUMBER 1 = 2m
By sorting the odd t-powers to the right side we get from
(%) that

(%(1 +1°+2%) —D)t"+ gpn(l +1*—z%) - Bg,z =

= t[At" + B(p, — q,2)].

Thus we have proved the following result by applying

t-elimination:

TrEOREM 1.— For an even twisting number n = 2m, the
n-twisted solid Mabius strip is given as an affine real al-
gebraic surface for the following polynomial equation in
x, y and z of degree 4 + 2n:

[(%(1 +x 4y +2%) - D) (x> + )"+
2

gpn(l + x? +y2 - z2) —Bqnz]

= (x* + YH[AGE + y)" + B(p, — q,2)]%.

4.2  ODD TWISTING NUMBER /1 = 2m + |

By sorting the odd r-powers to the right side we get from
(%) that

—Arth gp,,(l +1*—2%) — Bg,z =

-

Thus we have proved the following result by applying

(147 +2%) - D) "'+ B(p, - q,,z)] )

t-elimination:

TueoreM 2.— For an odd twisting number n = 2m + 1,
the n-twisted solid Mobius strip is given as an affine real
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algebraic surface for the following polynomial equation
in x, y and z of degree 4 + 2n:
2

[—A(x2 +y7)" !+ gpn(l +x7 4y - 2%) - Bqnz] =

=(x*+)7)| - <%(l+x2+y2+zz) —D> o+ yH)"+

2
+B(p, - qnz)] :

5 VISUALIZATION FOR SMALL VALUES OF 1

The first three cases n = 1, 2 or 3 were already considered
in our paper [2] with more clumsy computations. Our
new general formula recovers our former results.

5.1 TWwISTING NUMBER 1 =

Our formula also works in the untwisted case n = 0.
Then we have p, = 1 and ¢, = 0 and we get the fol-
lowing polynomial equation of order 4:

2
[%(1+x2+y2+z2)—D+g(1+x2+y2—z2)]
= (x* +)y)[A + B~

This gives not only the usual torus, but also for small a a
surface of shape of a solid (finite) cylinder barrel and for
small b a surface of shape of a solid annulus. See figure 2

(surfer code included).

5.2 TWISTING NUMBER # = |

This is the classical M6bius strip. We have m = 0, p; = x,
g, = y and we get the following polynomial equation of
order 6:

[—A(x2+y2) + gx(1+x2+y2—zz) —Byz]2
= (x2+y2)[—§(1+x2+y2+zz)+D+B(x—yz)]2.

See figure 3 (surfer code included).

Note the small term ¢® % 0.0001. The reason for this
modification is that the polynomial (x) was constructed
by multiplication of the preceding equation with #".
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Figure 2

-l

(0.5%(@™2+b"2)*(1+x"2+y"2+2"2)-a"2*b"2+0.5%(b"2-a"2)
*(14x2+y"2-2"2)) " 2-4*b " 4+ (x " 2+y"2)

This adds the z-axis as a singular 1-dimensional set to
the smooth 2-dimensional level let. Because this intro-
duces a numerically critical behavior in a small neighbor-
hood of the z-axis, the surfer software produces a ghost
image there. Note that this effect becomes more domi-
nant with larger twisting numbers n. Now, the small
extra term allows a smoothing of the level set. With the
right sign of ¢, the smoothing eliminates the z-axis as a
singular set.

5.3 TWISTING NUMBER n = 2

Thus we have m = 1, p, = x* — y%, ¢, = 2xy and we get
the following polynomial equation of order 8:

[(%(1 +x? 4y +2%) - D)(x2 +7)+
B 2
E(xz—yz)(1+x2+y2—zz) —2Bxyz] =

= (x2 + yz) [A(x2 + y2) + B(x2 -y - 2xyz)]2.

Figure &4

Figure 3

(-(@"2+b"2)*(x"2+y"2)+0.5 ((0.5%(a"2+b"2)
*(b"2-a"2)*x*(1+x 2+y"2-2"2) *(1+x"2+y"2+2"2)-a"2*b"2)
-(b"2-a"2)*y*z)"2-(x"2+y"2) *(x"2+y"2)+0.5%(b"2-a"2)
*(-0.5%(a™2+b"2) *(x"2-y"2)*(1+x™2+y"2-2"2)
*(14x"2+y"2+2"2)+a"2*b "2 -2*%(b"2-a"2)*x*y*z)"2
+(b"2-a"2)*(x-y*z))"2 -(x"2+y"2)*((a™2+b™2)
+c"5%0.0001 *(x™2+y"2)+(b"2-a"2)
*(x"2-y"2-2%x*y*z))"2
+c"7*0.0001

See figure 4 (surfer code included).

5.4 TWISTING NUMBER 1 = 3

Thus we have m = 1, p; = x> — 3x)?, ¢; = 3x°y — y* and
we get the following polynomial equation of order 10:

[— AP+ )+ g(x3 —3xy?) (1 4+ x>+ )2 = 22)-
B(3x*y - )z =
= (x*+)%) [— (%(1 +x? 4y + 2%) —D)(x2+y2)+
B(x = 3xy = (3x%y - y3)z)]2.

See figure 5 (surfer code included).

5.5 TWISTING NUMBER 1 = 4

Thus we have m = 2, p, = x* — 6x%* + ), ¢, =

3x’y — 3x)’ and we get the following polynomial



Figure 5 Figure 6 Figure7

(-(@"2+b"2)*(x"2+y"2)"2+0.5 ((0.5%(a™2+b™2) (-(@"2+b"2)
*(b"2-a"2)*(x"3-3xy"2) *(1+x"2+y"2+2"2)-a"2*b"2) *(x"2+y"2)"3+0.5
*(14x2+y"2-2"2) *(x"2+y"2)"2+0.5 *(b"2-a"2)
-(b"2-a"2)*(3x"2y-y"3)*2)"2 *(b"2-a"2) *(x"5-10x"3y"2+5xy"4)
-(x™2+y"2)*(-(0.5*(a"2+b™2) *(x 4-6x"2y " 2+y"4) *(1+x"2+y"2-2"2)-(b"2-a"2)
*(1+x"2+y"2+2"2)-a"2*b"2) *(1+x"2+y"2-2"2)-3 *(5x"4y-10x"2y"3+y"5)*2)"2
*(x"2+y"2)+(b"2-a"2) *(b"2-a"2) -(x"2+y"2)*(-(0.5%(a"2+b"2)
*(x"3-3x*y"2 *(x"2-y"2)*x*y*z)"2 *(1+x 2+y"2+2"2)-a"2*b"2)
-(3*x"2*y-y"3)*z))"2 -(x"2+y™2)*((a”2+b"2) *(x"2+y"2)"2+(b"2-a"2)
+c"9*0.0001 *(x"2+y"2)"2+(b"2-a"2) *(x"5-10x"3y"2+5xy" 4

*(X 4-6*x"2*y " 2+y" 4-3 -(5x™4y-10x"2y"3+y"5)*2))"2

*(x"3*y-x*y"3)*z))"2 +c™13*0.0001

+c"9*0.0001

equation of order 12: equation of order 14:
[(%(1+x2+y2+z2) —D)(x2+y2)2+ [—A(x2+y2)3+
g<x4 — 632 + ) (1452 + )7 = 22) +g(x5 —10x%y* + 5xy*) (1 + x* + y* — 2%)—
2
-3B(x*y - xy3)z]2 = —Bqnz] =
() A e = () [ (A0 e ) D) (s
B(x* = 6x%y2 + y* = 3(xPy — xy3)z)]2. +B(x* — 10x°y* + 5xy* — (5x*y — 10x%)° + ys)z)]z.
See figure 6 (surfer code included). See figure 7 (surfer code included).
5.6 TWISTING NUMBER 1 = 5 5.7 TWISTING NUMBER 1 = 6

Thus we have m = 2, p; = x> — 10x>y? + 5x)*, g5 = Thus we have m = 3, p, = x® — 15x*)? + 15x%y* — )5,
5x*y—10x*y* + y° and we get the following polynomial ¢4 = 6x°y — 20x%y* + 6x)° and we get the following
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Figure 8

polynomial equation of order 16:
[(%(1 +x3 4y +27) - D)(x2 + y2)3+
+£(x6 — 15x*y? + 15x%y* — y6) (1 + x>+ — zz)—
2 2
—B(6x5y - 20x3y3 + 6xy5)z] =
= (x2 + y2) [A(x2 + y2)3 + B(x6 — 15x*y? 4+ 15x%y*—
—y° - (6x5y —20x%y* + 6xy5)z)]2.

See figure 8 (surfer code included).

Note that for a twisting number larger than 6 the z-
axis as a singular set is a numerically very unstable re-
gion such that a necessary correction strongly deforms
the whole surface. Already for n = 6 the deformation of
the surface is quite strong.
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