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Figure 1: A simple graph on 5 vertices and 4 edges (left); to define a function 𝑓𝑓 on a discrete realisation of the graph
we specify the values at the vertices – this also gives rise naturally to difference operators (centre); one may instead
identify each edge 𝑒𝑒𝑖𝑖 with an interval [0, ℓ𝑖𝑖] ⊂ ℝ (or a halfline [0, +∞)), and “glue together” the intervals at their
endpoints in the right way, to form a metric graph (right). Here a path between two points 𝑥𝑥 and 𝑦𝑦 is marked in
red.
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Figure 2: The Cheeger cut of a graph with 20 vertices.

1 INTRODUCTION: TWO COMPLEMENTARY
TYPES OF GRAPHS

Probably everyone has at least an intuitive notion of
what a graph is: a collection of vertices, or nodes,
joined by edges. Most mathematicians, perhaps even
some nonmathematicians, probably have some idea
of the role that graphs play in modelling phenomena
as diverse as fine structures such as crystals and car
bon nanostructures, social networks, the PageRank
algorithm, data processing and machine learning, …,
but may not be so familiar with the details.

Generally speaking, at amathematical level, we are
interested in some process taking place on the graph,
such as described by a difference or differential equa
tion. The mathematics behind such equations com
bines ideas from graph theory (obviously), linear al
gebra, functional analysis and the theory of differ
ential equations, operator theory, and mathematical
physics; yet many of the details seem to be largely un
known to the wider mathematical community. As a
test: do you know what quantum graphs are?

Our goal here is to give somewhat uneven intro
duction to analysis on graphs: we first describe, in
hopefully accessible terms, what this is: how to de
fine functions and difference and differential opera

tors on graphs, and study them – and in particular
what are quantum graphs. Our starting point is that
there are (at least) two natural, somewhat parallel, no
tions of graphs: discrete and metric graphs; the for
mer give rise to difference operators, the latter to dif
ferential operators. We will first discuss the construc
tion of these graphs, and then introduce prototypical
difference and differential operators, principally reali
sations of the Laplacian, on each.

But our second goal is to highlight some of the
parallels between the two kinds of graphs: indeed,
one speaks of Laplacians in both the discrete and the
metric case, nomenclature which is justified for var
ious reasons, as we shall see. Finally, we will turn
to quantum graphs, which in simple terms are metric
graphs equipped with differential operators. We will
describe a number of areas of current interest, espe
cially within (parts of ) themathematical physics com
munity. The list of topics we have selected is some
what idiosyncratic; we include a brief mention of, and
references to the literature for, a variety of others. The
reader interested in discoveringmore is referred to the
book [BK13], considered a standard reference in the
area, the recent survey paper [BK20], the elementary
introduction [Ber17], and the somewhat older volume
[EKKST08], which contains a large number of still
useful review articles.

1

We give a gentle introduction to analysis on graphs. We focus on the construction of prototypical difference operators on dis-
crete graphs, differential operators on metric graphs, and the parallels between the two. The latter lead naturally to quantum 
graphs, metric graphs on which a Schrödinger-type differential operator acts, for which we finish by discussing a number of 
recent applications and ongoing areas of investigation. These are drawn mostly, but not exclusively, from mathematical physics.
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1.1 DISCRETE GRAPHS

In the case of discrete graphs we are more interested
in the vertices and consider the edges as relations be
tween the vertices, without necessarily having any
direct physical meaning. More formally, a discrete
graph 𝖦𝖦 is a pair (𝖵𝖵𝖵 𝖵𝖵𝖵, where the vertex set 𝖵𝖵 is
any countable (in practice usually finite) set and each
edge 𝖾𝖾 in the edge set 𝖵𝖵 may be regarded as a pair of
vertices, that is, 𝖵𝖵 may be identified with a subset of
𝖵𝖵𝖵𝖵𝖵. Already herewehave a further decision tomake:
whether to treat the edges 𝖾𝖾 𝖾 (𝖾𝖾𝖵 𝖾𝖾𝖵, 𝖾𝖾𝖵 𝖾𝖾 𝗏 𝖵𝖵 as
ordered or unordered pairs; we speak of directed edges
(also called bonds in some circles) and undirected edges,
respectively. In the case of directed edges 𝖾𝖾 𝖾 (𝖾𝖾𝖵 𝖾𝖾𝖵,
wemay distinguish between the initial vertex 𝖾𝖾 and the
terminal vertex 𝖾𝖾.

Many social networks may be modelled in this
framework; for example, Facebook is a network in
which each person (or entity) represents a vertex,
and being (Facebook) friends corresponds to an undi
rected edge between the two vertices. Twitter, on the
other hand, is directed, if one considers the edge (𝖾𝖾𝖵 𝖾𝖾𝖵
to mean 𝖾𝖾 is a follower of 𝖾𝖾 — as is the internet itself
with links being edges between the pages represented
by vertices. More generally, any model of a network
in which there is no natural distance between vertices,
nor physical bond linking them, is likely to fit into the
framework of discrete graphs. This is of course a con
siderable simplification; for example, one may assign
a weight function to the edges of a discrete graph to
give a notion of the proximity of the respective ver
tices.

To do any sort of analysis, of course we need to
define functions on our graph. In the case of discrete
graphs, this is easy: if functions live on the vertices,
then the space of all functions may be identified with
ℝ|𝖵𝖵| or ℂ|𝖵𝖵|. Some care must be taken if the vertex
set 𝖵𝖵 is infinite; it becomes natural to work with ℓ𝑝𝑝
spaces.

1.2 METRIC GRAPHS

Metric graphs, on the other hand, focus attention on
the edges, and are thus more suited to modelling
actual physical networks, or fine ramified structures
such as nanostructures. We will write 𝒢𝒢 𝖾 (𝒢𝒢 𝖵 𝒢𝖵
for a metric graph, where now each edge 𝑒𝑒 𝗏 𝒢 is
identified with a closed interval which may be finite,
of some given length ℓ(𝑒𝑒𝖵 𝑒 𝑒, i.e. 𝑒𝑒 𝑒 𝑒𝑒𝖵 ℓ(𝑒𝑒𝖵𝑒 𝑒 ℝ,
or a halfline, 𝑒𝑒𝖵 +∞𝖵. Care must obviously be taken

with the latter, so here we will restrict ourselves to
compact intervals.

In order to encode the topological structure of the
graph, or equivalently to create ametric, one identifies
all interval endpoints which correspond to a given ver
tex. While intuitively this is very simple, formally it
is somewhat fiddly and may be done in a number of
ways: for example:

• identify equivalence classes of endpoints, or

• define the underlying metric directly by declar
ing that the distance between two different in
terval endpoints corresponding to the same ver
tex is zero, thus allowing the construction paths
between any two points on different edges, or
alternatively

• work directly at the level of continuous func
tions.

For more details we refer to [BK13, Section 1.3],
[Mug19] and [KKLM20, Section 2].

At any rate, this gives rise naturally to a metric
space; the distance between two given points is the
(Euclidean) distance of the shortest path between
them. Technically the metric is a pseudometric, as it
may take the value +∞ if there is no path between a
given pair of points, but it becomes a metric if and
only if the graph is connected.

When it comes to defining spaces of functions,
metric graphs are, unsurprisingly, more interesting
than their discrete counterparts, albeit not yet at the
level of 𝐿𝐿𝑝𝑝spaces: we may simply define, for a graph
𝒢𝒢 𝖾 (𝒢𝒢 𝖵 𝒢𝖵 with a finite edge set 𝒢 ,

𝐿𝐿𝑝𝑝(𝒢𝒢 𝖵 𝖾 ⨁
𝑒𝑒𝗏𝒢

𝐿𝐿𝑝𝑝(𝑒𝑒𝖵 𝑒 ⨁
𝑒𝑒𝗏𝒢

𝐿𝐿𝑝𝑝(𝑒𝖵 ℓ(𝑒𝑒𝖵𝖵

(each edge being prototypically equipped with
Lebesgue measure on the interval 𝑒𝑒𝖵 ℓ(𝑒𝑒𝖵𝑒); indeed,
𝐿𝐿𝑝𝑝functions will never see the vertices as the latter
form a set of measure zero. Correspondingly, to in
tegrate a function over the graph we integrate over
each edge and sum the result. The structure of the
graph is only encoded at the level of continuous func
tions: 𝐶𝐶(𝒢𝒢 𝖵 will consist of those functions which are
continuous on every edge, such that their values at all
endpointsmeeting at a vertex should agree. These are
of course exactly the functions which are continuous
with respect to the metric.

To define differentiable functions becomes more
challenging because of the issue of defining the deriva
tive across the vertices; instead, it becomes more nat
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[1] This condition is sometimes loosely called a flow in equals flow out condition, although this expression must 
obviously be interpreted with care, depending on the kind of flow one is imagining.
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Figure 1: A simple graph on 5 vertices and 4 edges (left); to define a function 𝑓𝑓 on a discrete realisation of the graph
we specify the values at the vertices – this also gives rise naturally to difference operators (centre); one may instead
identify each edge 𝑒𝑒𝑖𝑖 with an interval [0, ℓ𝑖𝑖] ⊂ ℝ (or a halfline [0, +∞)), and “glue together” the intervals at their
endpoints in the right way, to form a metric graph (right). Here a path between two points 𝑥𝑥 and 𝑦𝑦 is marked in
red.

X

X

Figure 2: The Cheeger cut of a graph with 20 vertices.

1 INTRODUCTION: TWO COMPLEMENTARY
TYPES OF GRAPHS

Probably everyone has at least an intuitive notion of
what a graph is: a collection of vertices, or nodes,
joined by edges. Most mathematicians, perhaps even
some nonmathematicians, probably have some idea
of the role that graphs play in modelling phenomena
as diverse as fine structures such as crystals and car
bon nanostructures, social networks, the PageRank
algorithm, data processing and machine learning, …,
but may not be so familiar with the details.

Generally speaking, at amathematical level, we are
interested in some process taking place on the graph,
such as described by a difference or differential equa
tion. The mathematics behind such equations com
bines ideas from graph theory (obviously), linear al
gebra, functional analysis and the theory of differ
ential equations, operator theory, and mathematical
physics; yet many of the details seem to be largely un
known to the wider mathematical community. As a
test: do you know what quantum graphs are?

Our goal here is to give somewhat uneven intro
duction to analysis on graphs: we first describe, in
hopefully accessible terms, what this is: how to de
fine functions and difference and differential opera

tors on graphs, and study them – and in particular
what are quantum graphs. Our starting point is that
there are (at least) two natural, somewhat parallel, no
tions of graphs: discrete and metric graphs; the for
mer give rise to difference operators, the latter to dif
ferential operators. We will first discuss the construc
tion of these graphs, and then introduce prototypical
difference and differential operators, principally reali
sations of the Laplacian, on each.

But our second goal is to highlight some of the
parallels between the two kinds of graphs: indeed,
one speaks of Laplacians in both the discrete and the
metric case, nomenclature which is justified for var
ious reasons, as we shall see. Finally, we will turn
to quantum graphs, which in simple terms are metric
graphs equipped with differential operators. We will
describe a number of areas of current interest, espe
cially within (parts of ) themathematical physics com
munity. The list of topics we have selected is some
what idiosyncratic; we include a brief mention of, and
references to the literature for, a variety of others. The
reader interested in discoveringmore is referred to the
book [BK13], considered a standard reference in the
area, the recent survey paper [BK20], the elementary
introduction [Ber17], and the somewhat older volume
[EKKST08], which contains a large number of still
useful review articles.

1

Figure 1. A simple graph on 5 vertices and 4 edges (left); to define a function f on a discrete 
realisation of the graph we specify the values at the vertices — this also gives rise naturally to 
difference operators (centre); one may instead identify each edge ei with an interval [0,𝓁i] ⊂ ℝ$ 
(or a half-line [0,+∞)), and glue together the intervals at their endpoints in the right way, to form 
a metric graph (right). Here a path between two points x and y is marked in red.

ural to speak of vertex conditions which the functions
should satisfy (such as continuity at the vertices, as
imposed in 𝐶𝐶𝐶𝐶𝐶 𝐶). Two of the most natural such
conditions to satisfy are the Dirichlet, or zero, condi
tion, and the Kirchhoff condition, where the sum of
inwardpointing derivatives at a vertex equals zero.[1]

In practice, one usually works with Sobolev
spaces of weakly differentiable functions; for exam
ple, 𝐻𝐻1𝐶𝐶𝐶 𝐶 is defined as those functions which are
edgewise 𝐿𝐿2integrable with edgewise 𝐿𝐿2integrable
weak derivative, and which are continuous across the
vertices. This makes sense since by standard Sobolev
embedding theorems onedimensional 𝐻𝐻1functions
are continuous and thus, up to choosing the correct
representative, defined pointwise.

Three final observations are in order: firstly, thus
defined, our graphs are not considered to be embed
ded in Euclidean space; there is no curvature of the
edges or angle between them. Secondly, by labelling
one vertex of an edge 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝐶𝑒𝑒𝐶𝑒 as 𝑒 and the other
as 𝑒𝐶𝑒𝑒𝐶 𝑒 𝑒, we are implicitly (or explicitly) imposing
an orientation. However, for many practical purposes
this orientation is irrelevant; the differential operators
we shall define in the sequel are independent of this
choice up to unitary equivalence. Thirdly, in the case
of metric graphs it is easy to allow multiple edges be
tween vertices, as well as loops (edges which begin
and end at the same vertex); in the case of discrete
graphs this is a bit more complicated and we will tac
itly assume that our graphs are free of such features,
even thoughmost of what we discuss will remain true
even with multiple parallel edges and loops.

2 DIFFERENCE AND DIFFERENTIAL
OPERATORS

We see immediately that on discrete graphs, since the
functions are identifiable with vectors, difference op
erators (or more generally matrices) will arise; while
on metric graphs we may define (ordinary) differen
tial expressions on the edges. In the latter case the
point of interest becomes specifying the vertex condi
tions, or equivalently the domain of definition of the
differential operator; a metric graph is essentially a
smooth onedimensional manifold with isolated sin
gularities (the vertices). In both cases we will illus
trate this via a prototypical operator, the Laplacian;
note that here, in both cases, our edges will be undi
rected.

Let us start with metric graphs, as here we are
closer to the traditional Laplacian from the theory of
PDEs. In fact, we start with the differential expres
sion −𝑓𝑓 ″ on each edge. It is natural to impose conti
nuity at all vertices, as this is essentially the minimal
requirement for the functions to see the graph. Addi
tionally imposing the Kirchhoff condition, which we
may write as

∑
𝑒𝑒 adjacent to 𝑣𝑣

𝜕𝜕𝑓𝑓
𝜕𝜕𝜕𝜕

𝐶𝑣𝑣𝐶 𝑣 𝑒𝑒

that is, the sum of the derivatives of 𝑓𝑓 at the endpoint
of each edge 𝑒𝑒 directed into the vertex 𝑣𝑣, gives rise to
the Laplacian with vertex conditions variously known
as standard, natural, continuityKirchhoff, and even
NeumannKirchhoff (if the vertex has degree one, i.e.,
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only one edge attached, then this reduces to the Neu
mann condition. Roughly speaking, in many ways
the Laplacianwith standard conditions behaves some
what like the Neumann Laplacian on domains, or
the LaplaceBeltrami operator on manifolds without
boundary). For the Dirichlet condition at a vertex
𝑣𝑣, instead of the Kirchhoff condition we require that
𝑓𝑓𝑓𝑣𝑣𝑓 𝑓 𝑓.

If the graph 𝒢𝒢 has finite total length, then such
operators are selfadjoint, semibounded from below,
and have compact resolvent; thus they behave exactly
like Laplacians or Schrödinger operators on bounded
domains and manifolds. Generalisations, such as
adding a potential to each edge, are easy to incorpo
rate in this framework.

All this is perhaps more naturally seen at the
level of forms/weak solutions: the associated positive,
symmetric sesquilinear form reads

𝑎𝑎𝑓𝑓𝑓 𝑎 𝑎𝑎𝑓 𝑓 ∫𝒢𝒢
𝑓𝑓 ′ ⋅ 𝑎𝑎′ d𝑥𝑥

with form domain exactly 𝐻𝐻1𝑓𝒢𝒢 𝑓 in the case of the
standard Laplacian; if Dirichlet conditions are im
posed at one or more vertices then the functions
should additionally take on the value 𝑓 there. (All
this is a short exercise in integration by parts.) The
eigenvalues and eigenfunctions of the Laplacian ad
mit the usual minmax variational characterisation;
for example, the smallest eigenvalue can be obtained
by minimising 𝑎𝑎𝑓𝑓𝑓 𝑎 𝑓𝑓 𝑓 among all 𝑓𝑓 𝑓 𝐻𝐻1𝑓𝒢𝒢 𝑓 whose
𝐿𝐿2norm is 1.

On discrete graphs, the (discrete or combinatorial)
Laplacian is defined purely in terms of the graph struc
ture. We suppose 𝖦𝖦 𝑓 𝑓𝖦𝖦𝑎 𝖦𝖦𝑓 to be a discrete graph
with finite vertex set 𝖦𝖦 𝑓 𝖵𝖵𝖵1𝑎 … 𝑎 𝖵𝖵𝑛𝑛} and finite edge
set 𝖦𝖦 𝑓 𝖵𝖤𝖤1𝑎 … 𝑎 𝖤𝖤𝑚𝑚}. We take as a starting point the
following matrices:

• the adjacency matrix, the symmetric matrix
whose 𝑓𝑖𝑖𝑎 𝑖𝑖𝑓entry is 1 if 𝖵𝖵𝑖𝑖 and 𝖵𝖵𝑖𝑖 share an edge,
or 𝑓 otherwise (in the case of directed edges this
matrix can still be defined but will no longer be
symmetric);

• the degree matrix, the diagonal matrix whose
𝑓𝑖𝑖𝑎 𝑖𝑖𝑓entry is the degree of 𝖵𝖵𝑖𝑖, i.e., the number
of edges emanating from 𝖵𝖵𝑖𝑖.

The (discrete) Laplacian is the difference operator cor
responding to the symmetric, positive semidefinite
matrix 𝐿𝐿 𝐿𝑓 𝐿𝐿 𝐿 𝐿𝐿. For example, for the graph de
picted in Figure 1, with the order of vertices as speci

fied there, the Laplacian would be

𝐿𝐿 𝑓

⎛
⎜
⎜
⎜
⎜
⎝

1 𝐿1 𝑓 𝑓 𝑓
𝐿1 3 𝐿1 𝐿1 𝑓
𝑓 𝐿1 1 𝑓 𝑓
𝑓 𝐿1 𝑓 2 𝐿1
𝑓 𝑓 𝑓 𝐿1 1

⎞
⎟
⎟
⎟
⎟
⎠

.

The fact that this is a plausible discrete version of the
Laplacian may be recognised in (at least) two ways:

• vectors 𝑥𝑥 satisfying 𝐿𝐿𝑥𝑥 𝑓 𝑓 have the mean value
property, as can be checked with the above exam
ple: since the sum of each row of 𝐿𝐿 is zero, the
value of 𝑥𝑥 at a vertex is equal to the sum of the
values at the surrounding vertices – just as har
monic functions inℝ𝑑𝑑 , solutions ofΔ𝑓𝑓 𝑓 𝑓, sat
isfy the (continuous) mean value property;

• at the level of forms: 𝐿𝐿 is associated with the
positive, symmetric sesquilinear form

𝑎𝑎𝑓𝑥𝑥𝑎 𝑎𝑎𝑓 𝑓 ∑
𝖤𝖤𝑓𝖦𝖦

𝑓ℐ 𝑇𝑇 𝑥𝑥𝑓𝑓𝖤𝖤𝑓𝑓ℐ 𝑇𝑇 𝑎𝑎𝑓𝑓𝖤𝖤𝑓𝑎

where ℐ 𝑓 ℝ𝑛𝑛𝑛𝑚𝑚 is the socalled (signed) inci-
dence matrix encoding which vertices are the ter
minal and initial endpoints of which edges; in
fact 𝐿𝐿 may also be represented as 𝐿𝐿 𝑓 ℐ ℐ 𝑇𝑇 ,
and we may intuitively think of ℐ as a discrete
counterpart of the divergence operator.

A word of caution: there is a common, normalised
variant, namely

𝐿𝐿norm 𝐿𝑓 Id 𝐿𝐿𝐿𝐿1/2𝐿𝐿𝐿𝐿𝐿1/2

(that is, we normalise the operator by the degree of
the vertices); its |𝖦𝖦| eigenvalues (counting multiplic
ities) always lie in the interval [𝑓𝑎 2]. The standard
reference on the topic is [Chu97]; see also [Mug14,
Chapter 2] for the construction of all these matrices
as well as their directed counterparts.

A strong mathematical parallel between the stan
dard Laplacian on a metric graph and the normalised
Laplacian on the corresponding discrete graph was
established by von Below in 1985 [Bel85]. Namely,
if all the edges of the metric graph have length 1,
and we denote by 𝜆𝜆𝑘𝑘 the ordered eigenvalues of the
standard Laplacian, then, up to certain special cases
(corresponding to the normalised Laplacian eigenval
ues 𝑓 and 2) the eigenvalues of 𝐿𝐿norm are given by
1 𝐿 cos𝑓√𝜆𝜆𝑘𝑘𝑓; the values of the eigenvectors corre
spond to the values of the eigenfunctions at the ver
tices. Thus, at least for this special class of equilateral
metric graphs, the standard Laplacian as a differential
operator is essentially determined by the corresponding
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discrete (normalised) Laplacian. Such connections
between discrete and continuous versions have natu
rally been explored further over the last 30odd years;
see [LP16] and the references therein.

2.1 SO WHAT ARE QUANTUM GRAPHS?

We can now finally answer the first question posed in
the title. By a quantum graph we understand a met
ric graph on which acts a differential operator, most
often (but not necessarily) some kind of Schrödinger
operator orHamiltonian [Ber17, BK13]; of course this
includes various realisations of the Laplacian.

While differential operators onmetric graphs have
been studied for a long time— theywere actively stud
ied in the 1980s, often under the name 𝑐𝑐2-networks
(e.g., [Bel85, Nic87]), and there are applications go
ing back much further [RS53] — the name quantum
graph is generally considered [Ber17] to trace back to
the article Quantum Chaos on Graphs [KS97] from
1997, possibly as a contraction of the title.

3 A CORNUCOPIA OF APPLICATIONS

We finish with a discussion of some current topics of
interest in the community, as an answer to the sec
ond question posed in the title: we wish to give some
idea of the variety of problems and applications which
arise in the context of quantum graphs. One may
broadly and imperfectly group the applications into
models where it is intrinsically sensible to consider
ramified structures (atomic or crystalline structures,
honeycombs, ramified traps,…) and those where the
graph represents a toymodel used to studymathemat
ical or quantum physical phenomena: graphs are sim
ple onedimensional objects which often display com
plex behaviour typical of higherdimensional prob
lems.

In the following list no claim is made to complete
ness, either in the list of topics or in the references
given, which largely reflect the author’s personal taste
and prejudices. Where possible we have tried to pro
vide some of the most recent references available to
act as a starting point for a further literature search.

In keepingwith these prejudices, aswell as the gen
eral focus of the quantum graph community, we will
mostly be interested in differential operators such as
the Laplacian and Schrödinger operators, and their
spectra. This is natural since by the spectral theorem

the spectrum completely determines such selfadjoint
operators.

3.1 APPROXIMATION OF, OR BY,
HIGHERDIMENSIONAL OBJECTS

There are two senses in which graphs, be they dis
crete or metric, can be related to higherdimensional
domains or manifolds: one can consider a (metric)
graph as the limit of a sequence of thin branching do
mains (shrinking tubes, or fattened graphs), or one can
try and approximate a domain ormanifold as the limit
of as sequence of graphs. In the latter case one usually
takes discrete graphs as the approximating objects, as
a kind of discretisation of the domain or manifold.

Needless to say, there is an extensive literature on
both. The latter is sometimes used to extend results
from discrete graphs to manifolds (as in [LLPO15],
see also Section 3.3). The former provides a justifica
tion for using quantum graphs to study phenomena
like waveguides, be they acoustic, quantum or elec
tromagnetic, thin superconducting structures and so
on; here we will follow, and refer to, [BK13, Sec
tion 7.5]. Another standard reference for shrinking
tubes is the review paper [Gri08] contained in the vol
ume [EKKST08]. Typical questions include whether
the solutions of differential equations in the thin do
mains converge to the solution of some differential
equation on the graph, and if so, what vertex condi
tions the problem in the limit satisfies. (More tech
nically, we are interested in convergence of the resol
vents of the operators in various norms, as well as of
the operator eigenvalues and eigenfunctions.)

The precise results depend very much on the na
ture of the approximation, but in perhaps the sim
plest and most important case of Schrödinger opera
tors inNeumann tubes (thin perfectly insulated tubes)
shrinking uniformly, one does at least have conver
gence of the eigenvalues to the eigenvalues, in the cor
rect order, of the Schrödinger operator on the graph
with standard vertex conditions, and where the elec
tric potential is, roughly speaking, the restriction of
the potential on the thin domain to the graph it con
tains. Work is still ongoing to establish other kinds
of convergence, in particular under different kinds of
domain convergence.

In this case the limit object, the quantum graph
with its Schrödinger operator, forgets many geomet
ric features of the domains, such as angles between
branches, curvature of edges and so on. If one al
lows the Neumann tubes to shrink in a wilder, non
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uniform fashion, then one may obtain more interest
ing limit quantum graphs, including where the op
erators satisfy other vertex conditions than the stan
dard/Kirchhoff ones.

3.2 SPECTRAL GEOMETRY

We have seen that discrete Laplacians may be defined
directly in terms of the structure (topology) of a dis
crete graph, and that at least at the spectral level this
can be transferred to equilateral metric graphs via von
Below’s formula. Can we say something about (non
equilateral) metric graphs, where we have to contend
with both the topology and the edge length?

In the case of domains and manifolds a group
of questions revolves around understanding how the
eigenvalues and eigenfunctions depend on the geom
etry of the underlying domain or manifold. The clas
sical example is the theorem of FaberKrahn from the
1920s, based on an earlier conjecture of LordRayleigh,
that among all domains of given volume the ball is
the one whose first Dirichlet Laplacian eigenvalue is
smallest. This is an analytic translation of the geomet
ric isoperimetric inequality, that the ball minimises
surface area for given volume; the first (nonzero)
eigenvalue is of particular interest because it controls
the rate of heat loss in the heat equation, the lowest fre
quency of the object, and so on. We refer to [Pay67]
for a (classical) introduction and [Hen06, Hen17] for
more modern surveys of the area of shape optimisation
and spectral theory. The corresponding inverse prob
lem, determining the domain/manifold based on the
spectrum of a differential operator on it, corresponds
to the question made famous by Mark Kac, “can one
hear the shape of a drum?”; see [LR15].

On metric graphs the equivalent of the theorem
of FaberKrahn states that the smallest nonzero eigen
value of the Laplacianwith standard vertex conditions
isminimisedwhen the graph is an interval of the same
length; this theorem first appeared around 30 years
ago [Nic87]. It turns out that graphs are far more
amenable to this kind of analysis than domains; see
[BL17, BKKM19, KKMM16]. A surprisingly subtle
question is which (geometric or topological) proper
ties of a graph are sufficient to bound its eigenvalues
and which are not. For example, fixing the diame
ter 𝐷𝐷 (length of the longest path within the graph)
alone places no control on the smallest nonzero stan
dard Laplacian eigenvalue: it may be arbitrarily large
or small [KKMM16]; however, if we restrict to trees,
graphs without cycles, then it cannot exceed 𝜋𝜋2/𝐷𝐷2,

the corresponding eigenvalue of an interval of length
𝐷𝐷.

Work has also been done on isospectral graphs,
quantum graphs which are different but have the
same Laplacian spectra. On graphs the problem can
be given a new twist since one has more chance of de
scribing the corresponding eigenfunctions: one con
siders the socalled nodal count, the number of nodal
domains, which are by definition the connected com
ponents of the set where the eigenfunction is nonzero.
See [BK13, Section 7.1].

3.3 CLUSTERING AND PARTITIONS

A major preoccupation in applied graph theory is to
detect the presence of clusters in a (usually discrete)
graph. One might ask whether a given social network
such as Facebook tends to be divided into groups of
hig hly interconnected individuals with few links be
tween the groups, thus creating the infamous echo
chambers. Alternatively, one might wish to identify,
say, weaknesses in a road network or an electricity
grid: if the power lines here go down, does half the
country lose power?

There are various ways to measure this. One natu
ral way is the notion of Cheeger constants and Cheeger
cuts borrowed from geometric analysis, originally in
troduced for manifolds. Say we wish to cut the graph
𝖦𝖦 into two pieces 𝑆𝑆 and 𝑆𝑆𝑐𝑐 = 𝖦𝖦 𝖦 𝑆𝑆, which we do by
cutting through edges. Then for each possible cut we
look at the ratio

|𝜕𝜕𝑆𝑆|
min{|𝑆𝑆|𝑆 |𝑆𝑆𝑐𝑐|}

of edges cut |𝜕𝜕𝑆𝑆| to the smaller of the two sets 𝑆𝑆 e 𝑆𝑆𝑐𝑐,
as measured by the number of vertices in the set.

The infimum of this quotient over all possible cuts
is the Cheeger constant; the smaller the constant, the
easier it is to cut the graph into two (the traditional
image for this is the dumbbell manifold, cut through
its thin handle).

Figure 2 gives an example on graphs: on this graph
of 20 vertices, there is a way to make just two cuts
to separate the graph into two groups of 10 vertices
each, labelled as blue and red; this is in fact the opti
mal cut. One might imagine a social network where
the vertices represent users; the blue users tend only
to have friends with other blue users, while the red
users likewise stay amongst themselves. In this case
the Cheeger constant will be 2/ min{10𝑆 10} = 1/5,
which may be considered small (the number has no
absolute meaning but should be viewed in conjunc
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tion with the total number of vertices and edges).

One can also consider higher order Cheeger con
stants, which partition the graph into more than two
pieces, and in fact estimating these constants, in par
ticular in terms of Laplacian eigenvalues, is one in
stance where results were first proved on discrete
graphs and then transferred to manifolds [LLPO15].
Cheeger constants have also been introduced on met
ric graphs, with the numerator remaining the same
and the denominator becoming the total length (sum
of edge lengths) of each piece [KM16, Nic87].

The Cheeger constant corresponds to the first
eigenvalue of the socalled 1Laplacian, i.e., the 𝑝𝑝
Laplacian when 𝑝𝑝 𝑝 1; the eigenvector/eigenfunction
has two nodal domains which correspond to the
Cheeger cut. This operator is singular, its eigenval
ues lack the easy𝐿𝐿𝑝𝑝variational characterisation of the
𝑝𝑝Laplacian eigenvalues, and actually calculating the
constant of a large graph becomes a computationally
hard problem.

Thus one can use the (2)Laplacian (say, with
standard vertex conditions) as a natural proxy, as its
variational structure makes determining the eigenval
ues and eigenfunctions much easier, both analytically
and computationally. Ideally one would use the nodal
domains of the 𝑘𝑘th eigenvalue as an “optimal” parti
tion into 𝑘𝑘 pieces, but in general there is no simple re
lationship between the number of nodal domains of
an eigenfunction and its number in the sequence. A
natural alternative is to consider spectral minimal par-
titions, whereby one looks to minimise a functional of
the eigenvalues over all partitions; prototypically this
problem might take the form

inf
𝒫𝒫

max
𝑖𝑖𝑝1𝑖𝑖𝑖𝑘𝑘

𝜆𝜆1(Ω𝑖𝑖)𝑖

where the infimum is taken over all partitions𝒫𝒫 of the
object (domain, graph, …) into 𝑘𝑘 pieces Ω1𝑖 𝑖 𝑖 Ω𝑘𝑘,
and 𝜆𝜆1(Ω𝑖𝑖) is the first nontrivial eigenvalue of a suit
able Laplacian onΩ𝑖𝑖; one could equally take a 𝑝𝑝norm
of the eigenvalues in place of the∞norm. Such prob

lems were originally considered, and have been stud
ied intensively, on domains and some manifolds; see
[Hen17, Chapter 10] for a survey.

On metric graphs this topic is new: the first sys
tematic study of spectral minimal partitions was un
dertaken in [KKLM20]. As is the case for spectral ge
ometry, and actually for many problems considered
here, one can say far more on metric graphs than on
domains. Here, far more functionals can be mean
ingfully defined on the former than the latter, includ
ing more exotic combinations of eigenvalues (such
as maxmin rather than minmax problems). Under
standing how these optimal partitions differ andwhat
they reveal about the structure of the graph will be a
topic of interest in the next few years.

3.4 NONLINEAR SCHRÖDINGER EQUATIONS

Until now we have always considered linear differ
ential operators, as has historically usually been the
case on metric graphs. There is, however, a notable
family of exceptions, first considered just a few years
ago [AST15a]. This principally involves studying ex
istence, or nonexistence, of certain solutions of sta
tionary nonlinear Schrödinger equations on metric
graphs (NLSE for short). A stationaryNLSE typically
takes the form

−Δ𝑢𝑢 𝑢 𝑢𝑢(𝑢𝑢) 𝑝 𝜆𝜆𝑢𝑢𝑖 (1)

where in place of the usual potential term 𝑉𝑉 𝑢𝑢 a non
linearity 𝑢𝑢(𝑢𝑢) is introduced; here, as in the literature,
we will consider the prototypical power nonlinearity
𝑢𝑢(𝑢𝑢) 𝑝 𝑓𝑢𝑢𝑓𝑝𝑝−1𝑢𝑢. These equations, a bedrock of the
Calculus of Variations literature, are most commonly
studied in 𝑑𝑑dimensional space, see [Caz03] for an
introduction, but a number of applications, such as
BoseEinstein condensates in traps or optical fibres
[AST15a], make it reasonable to consider NLSE in
ramified structures, that is, on metric graphs, most
commonly and naturally with standard vertex condi
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Figure 1: A simple graph on 5 vertices and 4 edges (left); to define a function 𝑓𝑓 on a discrete realisation of the graph
we specify the values at the vertices – this also gives rise naturally to difference operators (centre); one may instead
identify each edge 𝑒𝑒𝑖𝑖 with an interval [0, ℓ𝑖𝑖] ⊂ ℝ (or a halfline [0, +∞)), and “glue together” the intervals at their
endpoints in the right way, to form a metric graph (right). Here a path between two points 𝑥𝑥 and 𝑦𝑦 is marked in
red.

X

X

Figure 2: The Cheeger cut of a graph with 20 vertices.

1 INTRODUCTION: TWO COMPLEMENTARY
TYPES OF GRAPHS

Probably everyone has at least an intuitive notion of
what a graph is: a collection of vertices, or nodes,
joined by edges. Most mathematicians, perhaps even
some nonmathematicians, probably have some idea
of the role that graphs play in modelling phenomena
as diverse as fine structures such as crystals and car
bon nanostructures, social networks, the PageRank
algorithm, data processing and machine learning, …,
but may not be so familiar with the details.

Generally speaking, at amathematical level, we are
interested in some process taking place on the graph,
such as described by a difference or differential equa
tion. The mathematics behind such equations com
bines ideas from graph theory (obviously), linear al
gebra, functional analysis and the theory of differ
ential equations, operator theory, and mathematical
physics; yet many of the details seem to be largely un
known to the wider mathematical community. As a
test: do you know what quantum graphs are?

Our goal here is to give somewhat uneven intro
duction to analysis on graphs: we first describe, in
hopefully accessible terms, what this is: how to de
fine functions and difference and differential opera

tors on graphs, and study them – and in particular
what are quantum graphs. Our starting point is that
there are (at least) two natural, somewhat parallel, no
tions of graphs: discrete and metric graphs; the for
mer give rise to difference operators, the latter to dif
ferential operators. We will first discuss the construc
tion of these graphs, and then introduce prototypical
difference and differential operators, principally reali
sations of the Laplacian, on each.

But our second goal is to highlight some of the
parallels between the two kinds of graphs: indeed,
one speaks of Laplacians in both the discrete and the
metric case, nomenclature which is justified for var
ious reasons, as we shall see. Finally, we will turn
to quantum graphs, which in simple terms are metric
graphs equipped with differential operators. We will
describe a number of areas of current interest, espe
cially within (parts of ) themathematical physics com
munity. The list of topics we have selected is some
what idiosyncratic; we include a brief mention of, and
references to the literature for, a variety of others. The
reader interested in discoveringmore is referred to the
book [BK13], considered a standard reference in the
area, the recent survey paper [BK20], the elementary
introduction [Ber17], and the somewhat older volume
[EKKST08], which contains a large number of still
useful review articles.

1

Figure 2. The Cheeger cut of a graph whith 20 vertices.
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tions. Ofmost interest are the ground states, minimis
ers of the energy functional for which 1 is the Euler
Lagrange equation:

𝐸𝐸𝐸𝐸𝐸𝐸 𝐸 1
2

‖𝐸𝐸′‖2
2 − 1

𝑝𝑝
‖𝐸𝐸‖𝑝𝑝

𝑝𝑝,

where ‖ ⋅ ‖2 and ‖ ⋅ ‖𝑝𝑝 are, respectively, the 𝐿𝐿2 and
𝐿𝐿𝑝𝑝norms, here on some graph 𝒢𝒢 . Here one usu
ally considers unbounded graphs, with a finite num
ber of edges but where some of them are halflines
(𝒢𝒢 𝐸 ℝ itself is a prototype, being two halflines
glued together at the origin), as well as the subcritical
case 2 < 𝑝𝑝 < 𝑝, which guarantees the Sobolev embed
ding 𝐻𝐻1 ↪ 𝐿𝐿𝑝𝑝 in dimension 1.

It turns out that the existence or nonexistence of
ground states on such graphs depends heavily on the
topology of the graph, as shown in a series of land
mark papers [AST15a, AST15b, AST16, AST17]. Fur
ther research, including into stability of solutions and
standing waves, other types of metric graphs, other
restrictions on the parameters, and other equations
is ongoing; see, for example, [DST20, Hof19, NP20]
and the references therein.

3.5 FINAL REMARKS

The above list excludes a huge and growing num
ber of topics from various areas of mathematics.
We could mention quantum chaos (the presumable
source of the name quantum graph, as discussed in
Section 2.1; see also [BK13, Chapter 6]), as well as
various other applications in mathematical physics
such as scattering and inverse scattering, the Bethe
Sommerfeld property on the gap structure of the spec
trum of periodic objects [ET17], Anderson localisa
tion [DFS, DS19], the spectra of graphene and car
bon nanotubes, BoseEinstein condensates, and the
quantumHall effect. Differential equations on metric
graphs also feature in other areas ofmathematics as di
verse as neural networks andmodels of population dy
namics [DLPZ20, SCA14]. Surveys of many of these
and further applications in mathematical physics may
be found in [BK20], [BK13, Chapter 7] and the collec
tion [EKKST08].
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