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In March of 2020, a new direction board of CIM took office and the 
editorial board of the CIM bulletin was renewed. The editorial board is 
committed to continue the efforts of fulfilling the bulletin’s main goals of 
promoting Mathematics and especially mathematical research. 
	 The COVID-19 pandemic conditioned strongly CIM’s usual 
activities, which means that, contrary to previous issues, only one report 
of a scientific meeting supported by CIM is presented in the current 
issue. Nonetheless, we compensate this shortcoming with three articles 
regarding advances on the cutting edge of the discipline. Namely, we 
include an article concerning the topological properties of configuration 
spaces of points; an article considering stochastic processes modelling 
an interacting particle system, whose algebraic structure helps to 
analyse its macroscopic dynamics; and an article with an insightful 
introduction to analysis on graphs and, in particular, quantum graphs.
	 Inserted in the cycle of historical articles, we feature an article 
dedicated to the work and life of António Aniceto Monteiro, focusing, 
in particular, on his modernist essay about General Analysis, from 1939, 
which anticipated Bourbaki’s treaty published in the 1940s.  
	 We present an interview honouring José Basto-Gonçalves, who 
belonged to the first scientific committee of CIM, for his role in 
disseminating and stimulating mathematical research in the University 
of Porto.
	 We also include an interview to André Neves, who was the 
distinguished mathematician invited to deliver this year’s Pedro Nunes’ 
lecture, which is an emblematic initiative of CIM, counting with the 
support of SPM.
	 We recall that the bulletin continues to welcome the submission of 
review, feature, outreach and research articles in Mathematics and its 
applications.

Ana Cristina Moreira Freitas
Faculdade de Economia and  
Centro de Matemática da Universidade do Porto
https://www.fep.up.pt/docentes/amoreira/
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António Monteiro and his Modernist Essay 
by José Francisco Rodrigues*

The 1939 “ensaio sobre os fundamentos da análise 
geral” (Essay on the foundations of General Analysis), 
by the Portuguese mathematician António Aniceto Mon-
teiro (1907–1980), in spite of being awarded an import-
ant prize by the Lisbon Academy of Sciences, has been 
unknown and ignored until its recent rediscover and its 
facsimile publication [AM1939]. The ensaio is a 130 
pages typed monograph that introduces mathematical 
modernism and prepares a turning point in the mathe-
matical activities in Portugal, preceding the creation of the 
Centro de Estudos Matemáticos de Lisboa in 1940, the first 
Portuguese research centre, affiliated with the Faculdade 
de Ciências of the Lisbon University and independently 

*	 Universidade de Lisboa/Ciências/CMAFcIO e Academia das Ciências de Lisboa 
	 jfrodrigues@ciencias.ulisboa.pt

supported by the Instituto para a Alta Cultura, the incipi-
ent national science foundation at the time [Ro].

António Monteiro, Modernist and 
Mathematician

On the occasion of the centenary of his birth, the Portu-
guese Mathematical Society (SPM) published in 2007 a 
remarkable photobiography [AM_Fb2007] and a spe-
cial issue of its Bulletin [AM_B2007] with the proceed-
ings of an International Colloquium at the University of 
Lisbon. In the presentation of his Works [AM_O2008], 
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consisting of eight volumes of about 2800 pages, which 
does not include his 1939 Essay, Jean-Pierre Kahane, 
from the Paris Academy of Sciences, wrote

The works of António A. Monteiro belong to the world history 
of mathematics. They cover a large variety of topics from clas-
sical analysis to topology and from advanced algebra to logic 
in its more modern chapters. Some of them come from cours-
es and synthetic presentations, but the majority of them are 
research papers. They are presented in different styles, occa-
sionally handwritten, and also in different languages. Despite 
their intrinsic value, these works are a testimony of an age 
and of an exceptional life. They were written, in four different 
countries: France, Portugal, Brazil and Argentina. Monteiro 
was the founder of mathematical journals and various math-
ematical institutions, first in Portugal, then in Latin America. 
He had to emigrate from Portugal because of Salazar’s regime 
and was also affected by the military dictatorship in Argenti-
na. His life testifies the link between the struggle for science 
and the struggle for freedom.

Monteiro was born in Moçâmedes (Angola) in 1907, 
the son of a Portuguese colonial army officer, he came 
to Lisbon, already orphan, to attend the Military Col-
lege in 1917 before his graduation in Mathematics in 
1930, at the Faculdade de Ciências, and his departure to 
Paris with a fellowship, where he followed courses at 
the Faculté des Sciences and seminars at the Institut Hen-
ri Poincaré. In 1936, he presented his thesis, Sur l‘addi-

tivité des noyaux de Fredholm, at the University of Paris 
under Maurice Fréchet (1878–1973) [AM_Fb2007] 
and [AM_O2008]. During his stay in Paris, Monteiro 
assumes also his mission of studying “the organization 
of a Centre for Mathematical Studies which would have, 
among others, the objective of achieving the complete 
resurgence of Portuguese mathematical traditions”, and, 
in his correspondence, he even refers to the acquisition 
of books for the Instituto de Matemática [AM_Bc2007].
	 After his return to Lisbon, he refused to sign a com-
pulsory political statement in order to be integrated at the 
University — Monteiro would have said: “I do not accept 
limitations on my intelligence” — and he was thus unable 
to pursue in Portugal the career as a mathematician he 
developed in his exile in 1945 in Brazil and in Argenti-
na from 1950 until his jubilation and removal, also for 
political reasons, from the Universidad Nacional del Sur 
in 1975, in Bahia Blanca, where he had been Professor 
Emeritus since 1972 and where he died in 1980 [Re].
	 Between 1937 and 1943, Monteiro’s scientific and 
academic activity in Lisbon was carried out as a precar-
ious inventor of scientific libraries in Portugal. In spite 
of financial difficulties, he was a major participant of 
the brief decade of the Portuguese Mathematical Move-
ment (1936–1946), which began with the activities of 

Figure 1. Cover of the photobiography [AM_Fb2007] Figure 2. Cover of [AM_Bc2007]
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the Núcleo of Mathematics, Physics and Chemistry at the 
end of 1936, with the founding, by Monteiro, of the 
journal Portugaliae Mathematica in 1937 (Fig.3), with 
the beginning of the Seminário de Análise Geral in 1939, 
the creation of the Centro de Estudos de Matemática de Lis-
boa (CEML), under his scientific direction, the Gazeta de 

Matemática and the Portuguese Mathematical Society, all 
in 1940.
	 His remarkable qualities as researcher and professor 
were first developed in Lisbon with the orientation of 
young mathematicians in the first three years of the ac-
tivity of the CEML, which were marked by the influence 
of the modernist ideas of the 1939’s “Ensaio” and cul-
minating in the visit of Maurice Fréchet in early 1942 
(Fig.4), and the successive departure of the young grant-
ees abroad, including the first two Portuguese disciples 
of Monteiro, Hugo Ribeiro for the ETH in Zurich and 
José Sebastião e Silva for the University of Rome [AM_
B2007].
	 He continued his activities at the Centro de Estudos 
de Matemática do Porto, created in 1942 and affiliated 
with the Faculdade de Ciências of the University of Por-
to, where he had a third disciple, Alfredo Pereira Gomes 
who also began his academic career in France and Brazil, 
and where he was supported by the Junta de Investigação 
Matemática (JIM). This remarkable association was cre-
ated in 1943 and was sponsored by private funds during 
some years. JIM aimed to bring together almost all the 
(few) Portuguese researchers in the country, had as its 
primary objective “to promote the development of math-
ematical research” and played a very important role in 
funding scientific publications, particularly, the journal 
Portugaliae Mathematica, after the government stopped 
the initial financial support. This support to Portugaliae 
Mathematica was accomplished in connection with the 
CEML, and was limited to the first three volumes.

Figure 3. Frontispiece of vol. 1 
of Portugaliae Mathematica.  

Figure 4. M. Fréchet, P. J. da Cunha and A. Monteiro at Faculdade de Ciências de Lisboa in early 1942 ( [AM_Fb2007]).
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	 Between 1945 and 1948, Monteiro was professor of 
Análise Superior at the University of Brazil, now the Uni-
versidade Federal de Rio de Janeiro, where he had a strong in-
fluence on young mathematicians. These include Maurício 
Peixoto, who was his co-author, Maria Laura Lopes, whose 
thesis of 1949 solved a question raised by Monteiro, and 
also Leopoldo Nachbin, who succeeded him in directing 
the series of monographs Notas de Matemática and was 
the author of its No. 4, the influential lectures notes on 
Espaços Vetoriais Topológicos (1948). This series, which 
Monteiro had founded in 1948, was published in Rio 
de Janeiro until 1972 and included in its No. 5 the text 
on Rings of Continuous Functions by Marshal H. Stone. It 
was continued with volume 48 by North-Holland and 
reached in 2008, already with Elsevier, the number 208 
of that well known collection of Mathematics Studies [Ro].
	 Appointed Professor at the Universidad Nacional de 
Cuyo, San Juan, Argentina, in 1950, Monteiro found-
ed the Revista Matemática Cuyana with M. Cotlar and E. 
Zarantonello, in 1955. Although he was invited to the 
University of Buenos Aires, Monteiro, with some of his 
new Argentine disciples, moved in 1957 to the recent-
ly created Universidad Nacional del Sur, in Bahía Blanca, 
where he founded the Mathematical Institute, the Math-
ematical Library, new series of monographs and devel-
oped research on Algebraic Logic and Latices. In 1974 he 
was appointed an honorary member of Unión Matemáti-
ca Argentina, due to his remarkable intellectual influence. 
According to the Argentine mathematician Eduardo Or-
tiz, Monteiro belongs “to an old tradition of Argentin-
ian progressive and independent thought to which the 
country owes some of its most valuable achievements” 
[AM_PM1980].
	 Although he spent a sabbatical year in Europe, during 
1969–1970, visiting several universities in France, Ro-
mania, Belgium, Italy and England, he did not return to 
Lisbon until March 1977, with a scholarship of the Na-
tional Institute of Scientific Research. There he resumed 
his research for about two years at the Centre for Math-
ematics and Fundamental Applications (CMAF), the di-
rect successor of the CEML he had directed thirty seven 
years ago. During this period, he supervised his fourth 
Portuguese disciple, M. Isabel Loureiro, and wrote the 
extensive work Sur les Algèbres de Heyting Symétriques, 
which, in 1979, was awarded the Gulbenkian Prize for 
Science and Technology and was published in Portugaliae 
Mathematica [AM_PM1980], in a volume posthumously 
dedicated to him. In a letter dated June 5, 1978 sent to 
Alfredo Pereira Gomes, his former disciple from Porto, 
then professor at the University of Lisbon, despite his 
state of health, Monteiro wrote “I am really satisfied with 

the results of my scientific activity in Portugal. This is 
mainly due to the Centro de Matemática (CMAF), which 
provided me with free time to study” [AM_PM1980].
	 On his return to Bahía Blanca, where he had residence 
with his family, Monteiro died on 29 October 1980 in 
the country of his second exile. In a letter to his Argen-
tine friend he wrote: “That’s life dear Ortiz. One uses 
and spends oneself on tasks that cannot be finished: and 
yet one begins with enthusiasm and dedication, because 
hopes and certainties are never lost. Sadnesses of Bahia 
Blanca! on the margins of the Napostá; between winds 
and storms in which the earth drowns us, I see Lisbon 
distant - memories of my childhood!” [AM_B2007].

The forerunner 1939’s “Ensaio sobre os 
fundamentos da análise geral”

In the Foreword of his Ensaio Monteiro wrote:

The General Analysis was founded at the beginning of this 
century by Maurice Fréchet, with the aim of generalising the 
differential and integral calculus for those functions where the 
independent variable — and possibly the function itself —are 
elements of any nature (. . .) having as goal the study of the 
correspondences between variables of any nature.

In fact, Fréchet was a pioneer in proposing, in his 1906 
thesis under the guidance of Jacques Hadamard (1865–
1963), an abstract approach to mathematical analysis 
based on general structures: class (L), spaces with con-
vergence; class (E), spaces with écart, i.e., with distance, 
renamed metric spaces by F. Hausdorff, in 1914, as a sub-
class of topological spaces, and class (V), a generalization 
of spaces (E) provided with neighborhoods (voisinages). 
These notions were evolving and Fréchet set out his re-
sults in the influential book Les Espaces Abstraits [F], which 
strongly marked Monteiro‘s early mathematical activity 
and, in particular, his essay. Monteiro shared the view 
of Norbert Wiener (1894–1964), who visited Fréchet 
in Strasburg in 1920 and later wrote about him: “more 
than anyone else who had seen what was implied in the 
new mathematics of curves rather than points (…) One 
of the specific things which attracted me in Fréchet was 
that the spirit of his work [spirit of abstract formalism]”.
	 The 1939 essay clearly reflects the “spirit of abstract 
formalism”, which Monteiro absorbed from Fréchet and 
had anticipated Bourbaki in France, but unfortunately 
has remained unpublished and lost in the archives of the 
Lisbon Academy of Sciences until recently. It consists of 
four chapters: Abstract Set Theory (13 p.); Abstract Al-
gebra (52 p.); Abstract Topology (26 p.) and Abstract 
Analysis or General Analysis (38 p.) and corresponds to 
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a programmatic plan, which was put into practice im-
mediately by himself, with a Course in1939 and in the 
Seminar of General Analysis in 1940 (Fig. 5), already 
within the scope of the recently created Centro de Estudos 
Matemáticos de Lisboa [Ro].
	 In the first chapter, considering the Set Theory as a 
chapter of General Analysis, Monteiro characterized it as 
the theory that “occupies itself with the properties of the 
sets of points that remain invariant in relation to the group 
of biunivocal transformations”, such as Abstract Algebra, 

“one of the most recent chapters of modern mathematics”, 
which deals with the properties “which remain invariant 
in relation to the group of isomorphisms (biunivocal cor-
respondences which respect the operation considered)” 
and, in the third chapter, Topology, also a chapter of the 
General Analysis, as the theory “which studies the prop-
erties of the sets of points which remain invariant in re-
lation to the group of bicontinuous transformations or 
homeomorphisms.” Besides the influence of the French 
school, Monteiro, who had followed the Julia’s seminars 
in Paris since 1933 until 1936 (on Groups and Algebras, 
Hilbert Spaces and Topology), was also well aware of the 
contemporary mathematical developments of the Polish 
and the Russian schools in Set Theory and Topology and 
of the German school in Algebra.
	 Finally in the fourth and main chapter, Monteiro intro-
duced “the notion of algebraic-topological space — which 
we can define as a space where there is simultaneously an 
algebra and a topology”, with the aim of dealing with the 

“study of invariant properties for a topo-isomorphism, 
that is, by a biunivocal correspondence that is simulta-
neously a homomorphism and an isomorphism”, espe-
cially in what he called “analytical spaces”, that is, those 
for which the algebraic operation is continuous. Among 
these, he introduced the perfectly decomposable abeli-
an topological groups, for which he proved “a theorem 

of structure”, which, being “analogous to Banach’s and 
Cantor-Bernstein’s theorems” (about the equivalence of 
two sets with the same power), establishes, in particu-
lar, that if two of those groups “have the same algebraic 
dimension they are topo-isomorphic”. The new notion 
of algebraic dimension is a generalization of the “linear 
dimension of a (vector) space of type (F) recently intro-
duced by Banach” in his classic 1932 book on Théorie des 
opérations linéaires. Culminating a modern synthesis of 
some algebraic-topological structures, including topo-
logical groups, normed rings and Banach spaces, Mon-
teiro generalized the results of his thesis on the additivity 
of Fredholm kernels, obtaining necessary and sufficient 
conditions for the additivity of the resolvents within the 
rings of linear operators in Banach spaces (Fig. 6).
	 The clarity and novelty with which the new abstract 
ideas are described and put into practice by Monteiro in 
his Ensaio is remarkable and it represents a significant 
progress, certainly independent and unknown to the 
collective of mathematicians who, under the name of N. 
Bourbaki, were creating the Éléments de Mathématique 
which would only start publishing a year later in Paris. 
In his autobiography, André Weyl (1906–1998), one 
of the founders and most influential mathematicians of 
this collective, recorded the spirit of the time by writing 
[W, p.114]:

In establishing the tasks to be undertaken by Bourbaki, sig-
nificant progress was made with the adoption of the notion 
of structure, and of the related notion of isomorphism. Retro-
spectively these two concepts seem ordinary and rather short 
on mathematical content, unless the notions of morphism and 
category are added. At the time of our early work these notions 
cast new light upon subjects which were still shrouded in con-
fusion: even the meaning of the term “isomorphism” varied 
from one theory to another. That there were simple structures 
of group, of topological space, etc., and then also more com-
plex structures, from rings to fields, had not to my knowledge 

Figure 5. Announcements of the course and the seminar by A. Monteiro, already at the 
CEML, attached to the Faculdade de Ciências of Lisbon  [AM_Fb2007].
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been said by anyone before Bourbaki, and it was something 
that needed to be said.

That was relevant to be said, and Monteiro also knew it 
and wrote it very clearly not only in the Preface of his 
Ensaio, that he delivered the 4th February 1939 at the 
Academy of Sciences of Lisbon, but also throughout its 
four chapters, which substantial contents coincide in great 
portions with those of the first four issues of Bourbaki’s 
treaty, published in Paris in 1940 and 1942.
	 In fact, if the initial objective of those young math-
ematicians from the École Normale Supérieur of Paris, 
who founded the Bourbaki group in 1935, was to write 
a new course on Differential and Integral Calculus in 
the form of a modern treatise on Mathematical Analysis 
to replace the classical Cours d’analyse of the old French 
school, they evolved into an axiomatic and abstract pre-
sentation of “les structures fondamentales de l‘analyse”. The 
first four fascicules begin the Éléments de Mathéma-
tique: Livre I — Théorie des Ensembles (Fascicule 
de résultats), 1939; Livre II — Algèbre (Structures al-
gèbriques), 1942; Livre III — Topologie Génerale 
(Chap.I, Structures topologiques; Chap.II, Structures 
uniformes), 1940; Livre III — Topologie Génerale 

(Chap.III, Groups topologiques; Chap.IV, Nombres 
réels), 1942.
	 The 45 pages booklet on Set Theory, although dated 
1939, has the printing date of February 1940, and be-
gins by explaining the “mode d‘emploi de ce traité”, which 

“takes the mathematics at the beginning, gives complete 
demonstrations and, in principle, does not suppose any 
particular mathematical knowledge, but only a certain 
habit of mathematical reasoning and a certain power of 
abstraction”. In the English translation of the 1970 pro-
found and enlarged revision of the Set Theory fascicule, 
one can read: “the axiomatic method allows us, when we 
are concerned with complex mathematical objects, to sep-
arate their properties and regroup them around a small 
number of concepts: that is to say, using a word which 
will receive a precise definition later, to classify them ac-
cording to the structures to which they belong.” The sec-
ond book, on Algebra, published in 1942, has about 160 
pages and contains the first chapter of algebraic struc-
tures. It is a synthesis of modern algebra which is con-
sidered as a result “above all of the work of the modern 
German school” and recognizes the 1930 book by van 
der Waerden, also used by Monteiro in his 1939 Ensaio, 
as a source of inspiration.

Figure 6. Pages of the Essay with Monteiro‘s original result [AM1939].
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	 Bourbaki’s third book, dedicated to General Topology, 
is in fact the second to be published in 1940 and con-
sists of two chapters dealing with structures of another 
kind which “give a mathematical sense to the intuitive 
notions of limit, continuity and neighbourhood”. The 
Chapter I, on topological structures, begins with open 
sets, to define topological space, and bases the notion of 
convergence on the concept of filter, obtaining the com-
plete equivalence between neighborhood, open set and 
the topology of convergence. The Chapter II deals with 
uniform structures, which makes it possible to extend 
the structure of the metric spaces introduced by Fréchet 
in 1906, and to generalise to the uniform spaces im-
portant results, in particular of compactness and com-
pleteness. Chapters III and IV of General Topology were 
published in 1942. Chapter III, starting with the defi-
nition of a topological group, develops the theory based 
on filters and their convergences and on the properties of 
uniform structures, and concludes with some topics on 
topological rings and fields. Chapter IV introduces the 
group of the real numbers, proves the usual topological 
properties and basic results on series and on numerical 
functions, ending with an extensive and fairly complete 
twelve-page historical note. Those three chapters are 

more innovative and have a broader scope then the cor-
responding two last chapters od Monteiro’s Ensaio.
	 However, comparing the structure of the four chapters 
and the respective sections of António Monteiro’s essay, 
delivered on February 4, 1939 at the Lisbon Academy of 
Sciences, with the contents of these first four fascicules 
by Bourbaki, which are a work of another dimension and 
with another ambition, we are surprised by the coinci-
dence of their sequencing and even by the overlapping of 
many of their contents. Naturally Monteiro absorbed in 
Paris, during his stay between 1931 and 1936, the new 
ideas and the most recent results of modern mathemat-
ics. Monteiro´s objectives had, in a completely different 
scale and context, some parallelism with the ambitious 
programme of the Bourbaki collective, but he could not 
know either the plans or the contents of the Éléments de 
Mathématiques. However, although Monteiro had never 
been a “bourbakist” or revealed sympathies for the work 
of Bourbaki‘s disciples, we dare to consider that his re-
markable and forgotten Ensaio is, in fact, a forerunner 
of the great project of that collective author, which is also 
characterised by a remarkable modernism and structur-
alism [Ro].
	 The influence of the contents of the Ensaio and its 
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author is notorious. With the intense mathematical re-
search activities with a small group of students during 
only three years at the CEML, in Lisbon, and about one 
year at the CEMP, in Porto, he started together an out-
line of an ephemeral Portuguese School of General To-
pology, which influence extended to Rio de Janeiro. In 
the classic 1955 book General Topology [K], the Ameri-
can mathematician J. L. Kelley, in his Foreword, not only 
thanks Hugo Ribeiro, but also cites in his Bibliography 
three articles by him and two by Monteiro, all published 
in Portugaliae Mathematica between 1940 and 1945, a 
note to the C.R. Acad. Sc. Paris by A. Pereira Gomes and 
the monograph in Portuguese by L. Nachbin on Topo-
logical Vector Spaces, both published in 1948 [Ro].
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Where Lie Algebra meets Probability?!
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One of the biggest challenges in statistical physics is to understand phenomena out of equilibrium. A common 
setting to model non-equilibrium dynamics is to consider stochastic  processes of Markovian type with an 
open boundary acting on the system at different values, thus creating a flux. In these notes, we consider an 
interacting particle system known in the literature as the symmetric simple exclusion process (SSEP) which is 
connected to two reservoirs. We show how the algebraic construction of such Markov jump processes helps in 
analyzing microscopic quantities used to derive macroscopic universal laws. In particular, we will characterize 
through its moments the non-equilibrium stationary measure.

1 INTRODUCTION

Microscopic dynamics of random walks interacting
on a discrete space under some stochastic rules are
known as interacting particle systems (IPS) and were
introduced in the mathematics community by Spitzer
in 1970 (see [14]) but before were widely used by
physicists, see [15]. The idea of introducing such sys­
tems is that, as it often happens in mathematics and
physics, they can be used as toy models to describe
complex stochastic phenomena involving a large num­
ber (typically of the order of the Avogadro’s number)
of interrelated components. Regardless their simple
rules at the microscopic level, IPS are often remark­
ably suitable models capable of capturing the sort
of phenomena one is interested at the macroscopic
level. Mathematically speaking, they are treated as
continuous time Markov processes with a finite or
countable discrete state space. Typically, in the field
of IPS one is interested in deriving the macroscopic
laws of some thermodynamical quantities by means
of a scaling limit procedure. The setting can be de­
scribed as follows. One considers a continuous space,
which is called the macroscopic space. This space is

then discretized by a scaling parameter 𝑛𝑛 and time is
speeded up by a function of 𝑛𝑛. On the discrete space
one considers a microscopic dynamics consisting of
the infinitesimal evolution of particles according to
some stochastic law. The dynamics conserves one
(or more) thermodynamical quantity and its (their)
space/time evolution is the object of our interest. The
mathematical rigorous derivation of the macroscopic
laws for such quantity, which can be a PDE or a
stochastic PDE, depending on whether one is at the
level of the Law of Large Numbers or at the level of
the Central Limit theorem, is a central problem in the
field of IPS. This derivation gives not only validity to
the equations obtained but also some physical motiva­
tion for their study. In these notes we present, as toy
model, the most classical IPS and our aim is, first, ex­
plain how to rewrite the Markovian generator of the
process in terms of the generators of a Lie algebra, this
is a known procedure in the literature. This technique
allows to derive a dual process for our model, whose
dynamics is simpler. It can be used to give relevant in­
formation about our original model; second, explain
how to extract from our random dynamics a solution
to a PDE, describing the space­time evolution of the
density of our model.

1
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2 THE MODEL

To make our presentation simple, we consider as
macroscopic space the interval [0, 1]. Let 𝑛𝑛 be a scal­
ing parameter, we split that continuous space into in­
tervals of size 1/𝑛𝑛.

To an interval of the form [𝑥𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥 we as­
sociate the microscopic position 𝑥𝑥 and then we have
a discrete space which is the microscopic space. Now
we define the random dynamics. Among the simplest
andmost widely studied IPS there is the SSEP, see e.g.
[12], whose dynamics can be described as follows. Af­
ter a certain random time, a particle decides to jump
to a position of the microscopic space. In SSEP, parti­
cles jump among sites under the exclusion rule, namely
each site can accommodate at most one particle, there­
fore, if a particle wants to jump to an occupied site,
that jump is forbidden. Interactions are to nearest­
neighbors (and this is why the process coins the name
simple) and the jump rates to left and right are iden­
tical (symmetric). Our toy model is the SSEP with an
open boundary, namely we attach two reservoirs that
can inject or remove particles from their neighbor po­
sitions. The time between jumps is exponentially dis­
tributed, which guarantees that this process is Marko­
vian, therefore its evolution can be entirely described
via its Markov generator. In the next subsection we
define it rigorously.

2.1 PROBABILISTIC DESCRIPTION

Consider the microscopic space Σ𝑛𝑛 ∶= {1, … , 𝑛𝑛 𝑛 𝑛𝑛,
called bulk, which corresponds to the macroscopic in­
terval [0, 1]. The construction of the SSEP evolving
on Σ𝑛𝑛 is done in the following way. To properly de­
fine the exchange dynamics, for each 𝑥𝑥 𝑥 𝑥𝑛𝑛, we call
𝜂𝜂𝜂𝜂𝜂𝜂 the occupation variable at site 𝑥𝑥: if 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂 
(resp. 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂  ) it means that site 𝑥𝑥 is empty (resp.
occupied). With this restriction, the state space of our
Markov process is Ω𝑛𝑛 ∶= {0, 1}Σ𝑛𝑛 . We denote by
𝜂𝜂 𝜂𝜂 𝑛𝑛 a configuration of particles. To each bond
of the form {𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥𝑥 with 𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥      𝑥, we
associate a Poisson process of parameter 1, that we
denote by 𝑁𝑁𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑡𝑡𝑡. Now we describe the boundary
dynamics. We artificially add the sites 𝑥𝑥 𝑥𝑥  and
𝑥𝑥 𝑥𝑥𝑥  that stand for the left and right reservoirs,
respectively. We associate two independent Poisson
Processes to each bond {0, 1} and {𝑛𝑛 𝑛 𝑛𝑛 𝑛𝑛𝑛 in the
following way: 𝑁𝑁0,1(𝑡𝑡𝑡 (resp. 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡𝑡) with param­

eter 𝛼𝛼𝛼𝛼−𝜃𝜃 (resp. 𝛿𝛿𝛿𝛿−𝜃𝜃) and 𝑁𝑁1,0(𝑡𝑡𝑡 (resp. 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡𝑡)
with parameter 𝛾𝛾𝛾𝛾−𝜃𝜃 (resp. 𝛽𝛽𝛽𝛽−𝜃𝜃). All the Poisson
processes described above are independent, so that
the probability that two of them take the same value
is equal to zero. This means that only one jump oc­
curs whenever there is a possible transition. Before
we proceed, we note that the role of the parameters
𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼    𝛼 𝛼 is to fix the reservoirs’ density/current,
while the role of 𝜃𝜃 𝜃 ℝ is to tune the strength of the
reservoirs’ according to the scale parameter 𝑛𝑛. Taking,
for example, 𝜃𝜃 negative the reservoirs are strong and
for 𝜃𝜃 positive, they are weak and interactions between
the boundary and the bulk is weaker as the value of 𝜃𝜃
increases.

We observe that given the initial configuration of
the system plus the realization of all the Poisson pro­
cesses, it is straightforward to obtain the whole evolu­
tion of the system. The role of the Poisson processes
is to fix the random time between jumps. We show
an example in figure 1 where we consider 𝑛𝑛 𝑛 𝑛: an
initial condition is given namely 𝜂𝜂0 = 𝛿𝛿2, ie the con­
figuration with just a particle at site 2, together with
all the realizations of the Poisson processes.

In figure 2 we exhibit all the configurations that we
obtained from the initial configuration 𝜂𝜂0 = 𝛿𝛿2 and all
the realizations of the Poisson processes given in fig­
ure 1.

Wewarn the reader that belowwe indexed the con­
figurations in terms of the marks of the Poisson pro­
cesses and not in time, since ourMarkov chain evolves
in continuous time.

We denote by 𝜂𝜂𝑥𝑥𝑥𝑥𝑥𝑥𝑥 the configuration obtained
from 𝜂𝜂 by swapping the values 𝜂𝜂𝜂𝜂𝜂𝜂 and 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂  ,
that is 𝜂𝜂𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑧𝑧𝑧𝑧  𝑧𝑧Σ𝑛𝑛⧵{𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧  𝑧𝑧{𝑥𝑥𝑥(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧
1)+𝟏𝟏  {𝑥𝑥𝑥𝑥𝑥(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧. On the other hand, when we see
a mark of a Poisson process from the boundary, for
example, 𝑁𝑁0,1(𝑡𝑡𝑡 (resp. 𝑁𝑁1,0), this means that we in­
ject (resp. remove) a particle at the position 𝑥𝑥 𝑥𝑥 ,
if this site is empty (resp. occupied), otherwise noth­
ing happens. More precisely, 𝜂𝜂1 is the configuration
obtained from 𝜂𝜂 by flipping the occupation variable at
1, that is 𝜂𝜂1(𝑧𝑧𝑧𝑧  𝑧𝑧Σ𝑛𝑛⧵{1}(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧  𝑧𝑧{1}(𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧  𝑧

The exchange dynamics is described by the gener­
ator 𝐿𝐿𝑒𝑒𝑒𝑒, which acts on functions 𝑓𝑓 𝑓𝑓 𝑛𝑛 → ℝ as
𝐿𝐿𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓  ∑𝑛𝑛𝑛𝑛

𝑥𝑥𝑥𝑥 𝐿𝐿𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓 where
𝐿𝐿𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝜂𝜂𝜂 [𝑓𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥𝑥)−  𝑓𝑓𝑓𝑓𝑓𝑓] (2)

and the rates are

𝑐𝑐𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝜂𝜂𝜂𝜂𝜂  𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂  𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂    𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂    𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂
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Figure 1.— An initial configuration and marks of the 
Poisson clocks between each bond.

Figure 3.—Schematic description of dynamics of open SSEP.

Figure 2.—Configurations evolving according to the 
marks of the Poisson processes.

The left reservoir generator acts on functions
𝑓𝑓 𝑓 𝑓𝑛𝑛 → ℝ as

𝐿𝐿ℓ𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 1
𝑛𝑛𝜃𝜃 {𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 [𝑓𝑓𝑓𝑓𝑓1)−  𝑓𝑓𝑓𝑓𝑓𝑓]

and the right reservoir𝐿𝐿𝑟𝑟 is defined analogously, with
1 replaced by 𝑛𝑛𝑛𝑛, 𝛼𝛼 by 𝛿𝛿 and 𝛾𝛾 by 𝛽𝛽. Finally, the open
SSEP dynamics is described by a superposition of the
two dynamics described above, the exchange and the

flip dynamics, so that its full generator is given by

𝐿𝐿SSEP = 𝐿𝐿ℓ + 𝐿𝐿𝑒𝑒𝑒𝑒 + 𝐿𝐿𝑟𝑟. (3)

Observe that the left and right reservoirs at differ­
ent densities (respectively 𝜌𝜌𝑎𝑎 = 𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼 and 𝜌𝜌𝑏𝑏 =
𝛿𝛿𝛿𝛿𝛿𝛿𝛿  𝛿𝛿𝛿) impose a flux of particles throughout the
system. See a picture below for an illustration of the
dynamics just defined.
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2.2 ALGEBRAIC DESCRIPTION

An interesting feature of some IPS is that their gener­
ators can be entirely described by the generators of a
suitable algebra, for our toy model this will be the Lie
algebra 𝔰𝔰𝔰𝔰𝔰𝔰𝔰. More of such constructions were intro­
duced in [10] and further developed in [4]. The Lie
algebra 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 is a 3­dimensional vector space of trace­
less matrices together with the bilinear map [⋅, ⋅] ∶
𝔰𝔰𝔰𝔰𝔰𝔰𝔰 𝔰 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 𝔰 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 called Lie bracket, which is
anti­symmetric, i.e. [𝑥𝑥𝑥 𝑥𝑥] = − [𝑦𝑦𝑦𝑦𝑦 ] and satisfies the
Jacobi identity, i.e. [𝑥𝑥𝑥 [𝑦𝑦𝑦 𝑦𝑦]]+[𝑦𝑦𝑦 [𝑧𝑧𝑧𝑧𝑧 ]]+[𝑧𝑧𝑧 [𝑥𝑥𝑥 𝑥𝑥]] =
0 for all 𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥  𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥. We equip 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 with the ad­
joint map ∗ ∶ 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 𝔰 𝔰𝔰𝔰𝔰𝔰𝔰𝔰, i.e. 𝑥𝑥 𝑥 𝑥𝑥∗ such that
(𝑥𝑥∗)

∗ = 𝑥𝑥 and [𝑥𝑥∗, 𝑦𝑦∗] = [𝑦𝑦𝑦𝑦𝑦 ]∗. Usually a basis for
𝔰𝔰𝔰𝔰𝔰𝔰𝔰 is given by the Pauli matrices,

𝜎𝜎1 = (
0 1
1 0) , 𝜎𝜎2 = (

0 −𝑖𝑖
𝑖𝑖 𝑖 ) , 𝜎𝜎3 = (

1 0
0 −1) ,

which are hermitian and unitary. Such matrices sat­
isfy the following commutator and adjoint relations
[𝜎𝜎𝑗𝑗, 𝜎𝜎𝑗𝑗𝑗𝑗] = 2𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 and 𝜎𝜎∗

𝑗𝑗 = 𝜎𝜎𝑗𝑗 for 𝑗𝑗 𝑗 ℕ (mod 3).
We also introduce the quadratic element called
Casimir (which does not belong to 𝔰𝔰𝔰𝔰𝔰𝔰𝔰) as 𝐶𝐶 𝐶
𝜎𝜎2

1 + 𝜎𝜎2
2 + 𝜎𝜎2

3; it is central, i.e. it commutes with all
the elements of 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 and it is self­adjoint. For our
purpose, it will be more convenient to introduce the
basis of real operators 𝐽𝐽 0, 𝐽𝐽 + and 𝐽𝐽 − which we call
generators of the Lie algebra 𝔰𝔰𝔰𝔰𝔰𝔰𝔰. They are given
by

𝐽𝐽 − ∶=
𝜎𝜎1 − 𝑖𝑖𝑖𝑖2

2
, 𝐽𝐽 + ∶=

𝜎𝜎1 + 𝑖𝑖𝑖𝑖2
2

, 𝐽𝐽 0 ∶=
𝜎𝜎3
2

,

and they satisfy the following commutation and ad­
joint relations [𝐽𝐽 0, 𝐽𝐽 ±] = ±𝐽𝐽 ±, [𝐽𝐽 +, 𝐽𝐽 −] = 2𝐽𝐽 0 and
(𝐽𝐽 0)∗ = 𝐽𝐽 0, (𝐽𝐽 +)∗ = 𝐽𝐽 −. The Casimir element in this
setting is 𝒞𝒞 𝒞𝒞𝒞𝒞𝒞  0)2 + 𝐽𝐽 +𝐽𝐽 − + 𝐽𝐽 −𝐽𝐽 + . Besides the
matrices representation, an equivalent representation
is given by the action on functions 𝑓𝑓 𝑓 {0, 1} → ℝ as

⎧⎪
⎨
⎪⎩

(𝐽𝐽 −𝑓𝑓𝑓𝑓𝑓𝑓𝑥𝑥) = (1 − 𝜂𝜂𝑥𝑥)𝑓𝑓𝑓𝑓𝑓𝑥𝑥 + 1)
(𝐽𝐽 +𝑓𝑓𝑓𝑓𝑓𝑓𝑥𝑥) = 𝜂𝜂𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑥𝑥 − 1)
(𝐽𝐽 0𝑓𝑓𝑓𝑓𝑓𝑓𝑥𝑥) = (𝜂𝜂𝑥𝑥 − 1/2)𝑓𝑓𝑓𝑓𝑓𝑥𝑥)

where we made the convention 𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓𝑓𝑓𝑓𝑓𝑓𝑓  .
The operators above are also known as angular mo­
mentum operators. We now show how to write the
open SSEP dynamics in this context. In particular, it
is verified that the exchange generator defined in (3)
can be written as the tensor product of the Casimir
element. For sites 𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥  we get

𝐿𝐿𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝐽𝐽 +
𝑥𝑥 𝐽𝐽 −

𝑥𝑥𝑥𝑥 + 𝐽𝐽 −
𝑥𝑥 𝐽𝐽 +

𝑥𝑥𝑥𝑥 + 2𝐽𝐽 0
𝑥𝑥 𝐽𝐽 0

𝑥𝑥𝑥𝑥 − 1/2 , (4)

and then summing over Σ𝑛𝑛 we obtain 𝐿𝐿𝑒𝑒𝑒𝑒.
A similar description holds true for the generators

of the boundary reservoirs,

𝐿𝐿ℓ = 1
𝑛𝑛𝜃𝜃 {𝛼𝛼 [𝐽𝐽 −

1 + 𝐽𝐽 0
1 − 1

2] + 𝛾𝛾 [𝐽𝐽 +
1 − 𝐽𝐽 0

1 − 1
2]}

and similarly𝐿𝐿𝑟𝑟 is obtained replacing the algebra gen­
erators acting on site 𝑛𝑛 𝑛𝑛 . Note that above the nota­
tion 𝐽𝐽 𝑎𝑎

𝑥𝑥 for 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    means that the generator is
acting on the occupation variable at site 𝑥𝑥 𝑥 𝑥𝑛𝑛. Why
is this algebraic description useful? In the next sec­
tion we see that, whenever it is possible to describe
a Markov generator using an algebra representation
then a useful property, duality, can be derived.

3 DUALITY FOR MARKOV GENERATORS

The advantage of dealing with a stochastic evolution
lies in the possibility to use probabilistic techniques
which considerably simplify the analysis of the system.
A powerful tool to deal with Markov processes is du-
ality theory, see [13]. This theory allows several sim­
plifications: in a nutshell, one can infer information
on a given process by using a simpler one, its dual.
For our toy model, we will see how to relate the open
SSEPwith a simpler systemwhere the open boundary
is turned into an absorbing boundary. Indeed, dual­
ity in the context of IPS allows “replacing” boundary
reservoirs, modeling birth and death processes, with
absorbing reservoirs which, as time goes to infinity,
will eventually absorb all the particles in the system. It
is due to this simplification that one can study proper­
ties such as the 𝑘𝑘−point correlation function of a non­
equilibrium system using properties of a dual system
consisting of only 𝑘𝑘 dual particles. The link between
these two processes, the original, denoted by 𝜂𝜂𝑡𝑡 and
with state space Ω, and its dual, denoted by ̂𝜂𝜂𝑡𝑡 and
with state space Ω̂, is provided by a set of so­called
duality functions 𝐷𝐷 𝐷𝐷𝐷   Ω̂ → ℝ , i.e. a set of observ­
ables that are functions of both processes and whose
expectations, with respect to the two randomness, sat­
isfy the following relationship for all 𝑡𝑡 𝑡 𝑡

𝔼𝔼𝜂𝜂[𝐷𝐷𝐷𝐷𝐷𝑡𝑡, ̂𝜂𝜂𝜂𝜂𝜂  𝔼̂𝔼 ̂𝜂𝜂[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑡𝑡)] . (5)

Above 𝔼𝔼𝜂𝜂 (resp. 𝔼̂𝔼 ̂𝜂𝜂) is the expectation with respect to
the law of the 𝜂𝜂𝑡𝑡 process initialized at 𝜂𝜂 (resp. the ̂𝜂𝜂𝑡𝑡
process initialized at ̂𝜂𝜂). If the generators of the pro­
cesses are explicit, denoting by ℒ the generator of ̂𝜂𝜂𝑡𝑡
and by ̂ℒ the generator of its dual, ̂𝜂𝜂𝑡𝑡, then a duality
relation with duality function 𝐷𝐷 translates in saying
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that

(ℒ𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷)(𝜂𝜂𝜂 𝜂( ̂ℒ𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷)(̂𝜂𝜂𝜂 𝜂 (6)

In other words, the action ofℒ on the first variable of
𝐷𝐷 is equivalent to the action of ̂ℒ on the second vari­
able of 𝐷𝐷. This is when the algebra comes in. Prov­
ing the above relation knowing just the definition of
the original process 𝜂𝜂𝑡𝑡 by its generator would be very
complicated, however with the algebraic description
of 𝜂𝜂𝑡𝑡 one can have a feeling of what to look for. The
idea is that we can decompose the Markov generator
using the algebra generators as building blocks. This
simplifies the analysis because instead of looking for a
duality function, one looks for an intertwiner function
between two representations of the Lie algebra 𝔰𝔰𝔰𝔰𝔰𝔰𝔰.
Such intertwiner function between the𝐽𝐽 0, 𝐽𝐽 −, 𝐽𝐽 + rep­
resentations yields the duality function. Given the
special features of our toy model, the duality function
will turn out to be product of indicator functions, for
which the direct computation is not hard. Neverthe­
less, for more general dynamics which, for example,
allows more than a particle per site, the duality func­
tion has a more complicated form and the aforemen­
tioned decomposition brings advantages in the proof
of the duality relationship.

3.1 DUALITY FOR OPEN SSEP

In the following result we give all the ingredients to
find a duality relation for our model: it states that,
the open SSEP is dual, via a moment duality function
𝐷𝐷, to a Markov process with the same exclusion dy­
namics inΣ𝑛𝑛 but with only absorbing reservoirs at the
boundary.

THEOREM 1 (DUALITY FOR OPEN SSEP).— For the
open SSEP with generator given in 3, the duality re­
lation in (6) is verified for 𝐷𝐷 𝐷 𝐷𝑛𝑛 × Ω̂𝑛𝑛 → ℝ given
by

𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 𝐷 (𝜌𝜌𝑎𝑎)
̂𝜂𝜂0

∏
𝑥𝑥𝑥𝑥𝑛𝑛

1{𝜂𝜂𝑥𝑥≥ ̂𝜂𝜂𝑥𝑥} (𝜌𝜌𝑏𝑏)
̂𝜂𝜂𝑛𝑛 (7)

where Ω̂𝑛𝑛 ∶= ℕ0 × Ω𝑛𝑛 × ℕ0 and the dual generator
𝐿̂𝐿 𝐿 𝐿̂𝐿ℓ + 𝐿̂𝐿0 + 𝐿̂𝐿𝑟𝑟 acts on functions 𝑓𝑓 𝑓 Ω̂𝑛𝑛 → ℝ as
𝐿̂𝐿𝑒𝑒𝑒𝑒𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓   ∑𝑛𝑛𝑛𝑛

𝑥𝑥𝑥𝑥 𝐿𝐿𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓  in the bulk, where𝐿𝐿𝑥𝑥𝑥𝑥𝑥𝑥𝑥
is as in (2); and

𝐿̂𝐿ℓ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   1
𝑛𝑛𝜃𝜃 (𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼  [𝑓𝑓𝑓𝑓𝑓𝑓 1) − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ]

and analogously for the right reservoir with 𝛼𝛼 𝛼 𝛼𝛼 re­
placed by 𝛽𝛽 𝛽 𝛽𝛽.

For the interested reader, a rigorous proof of this the­
orem (for 𝜃𝜃 𝜃𝜃 ) can be found in [5] and it is not
hard to generalize it for any value of the parameter 𝜃𝜃.

Note that the action in the bulk of the dual generator
has the same dynamics of the original one, while the
boundary generators only absorb particles from sites
1 and 𝑛𝑛 𝑛𝑛 . The plan is to describe the dual process
with another 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 and find the duality function as
intertwiner function of the algebra generators. This
is given by the following representation which act on
the same functions 𝑓𝑓 𝑓 {0,1 } → ℝ as

⎧⎪
⎪
⎨
⎪
⎪⎩

( ̂𝐽𝐽 −𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥)=̂𝜂𝜂  𝑥𝑥𝑓𝑓 𝑓𝑓𝑓𝑓 𝑥𝑥 − 1)
( ̂𝐽𝐽 +𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥)=(1   − ̂𝜂𝜂𝑥𝑥)𝑓𝑓 𝑓𝑓𝑓𝑓 𝑥𝑥 + 1) + (2̂𝜂𝜂 𝑥𝑥 − 1)𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥)

− ̂𝜂𝜂𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 − 1)
( ̂𝐽𝐽 0𝑓𝑓 𝑓𝑓𝑓𝑓𝑓 𝑥𝑥)=(̂𝜂𝜂   𝑥𝑥 − 1/2)𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥) − ̂𝜂𝜂𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 − 1)

where, again, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓𝑓𝑓𝑓𝑓𝑓𝑓  . One can check
that the above generators are a representation for the
Lie algebra 𝔰𝔰𝔰𝔰𝔰𝔰𝔰. Moreover, since the Casimir is irre­
ducible in any representation we can describe the dual
process in the same way as in equation (4). At this
point one can see that

𝑔𝑔𝑔𝑔𝑔𝑥𝑥,̂𝜂𝜂 𝑥𝑥)=
𝜂𝜂𝑥𝑥!

(𝜂𝜂𝑥𝑥 − ̂𝜂𝜂𝑥𝑥)!
Γ(2 − ̂𝜂𝜂𝑥𝑥)1{𝜂𝜂𝑥𝑥≥ ̂𝜂𝜂𝑥𝑥}

satisfy
𝐽𝐽 𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑥𝑥)(𝜂𝜂𝑥𝑥)=  ̂𝐽𝐽 𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑥𝑥,⋅)(̂𝜂𝜂  𝑥𝑥)

for 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   , i.e. 𝑔𝑔𝑔𝑔𝑔𝑥𝑥,̂𝜂𝜂 𝑥𝑥) intertwines two repre­
sentations of the 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 algebra. Note that since both
𝜂𝜂𝑥𝑥,̂𝜂𝜂 𝑥𝑥 ∈ {0,1 } the above function correspond to the
duality function inΩ𝑛𝑛. For the left reservoir generator
(the right is analogous) one has to check that

(𝐿𝐿ℓ𝐷𝐷 (⋅,̂𝜂𝜂 )) (𝜂𝜂𝜂 𝜂 (𝐿̂𝐿ℓ𝐷𝐷 (𝜂𝜂𝜂𝜂 )) (̂𝜂𝜂𝜂𝜂
namely that

𝛼𝛼𝛼𝛼𝛼𝛼𝛼  1)
𝑛𝑛𝜃𝜃 𝜌𝜌 ̂𝜂𝜂0

𝑎𝑎 [1{𝜂𝜂1+1≥ ̂𝜂𝜂1} − 1{𝜂𝜂1≥ ̂𝜂𝜂1}]

−
𝛾𝛾𝛾𝛾1

𝑛𝑛𝜃𝜃 𝜌𝜌 ̂𝜂𝜂0
𝑎𝑎 [1{𝜂𝜂1−1≥ ̂𝜂𝜂1} − 1{𝜂𝜂1≥ ̂𝜂𝜂1}]

=
(𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼 1

𝑛𝑛𝜃𝜃 [𝜌𝜌 ̂𝜂𝜂0+1
𝑎𝑎 1{𝜂𝜂1≥ ̂𝜂𝜂1−1} − 𝜌𝜌 ̂𝜂𝜂0

𝑎𝑎 1{𝜂𝜂1≥ ̂𝜂𝜂1}] ,

which is verified since both 𝜂𝜂1 and ̂𝜂𝜂1 are either 0 or 1.

4 STATIONARY PROBABILITY MEASURE
AND CORRELATIONS VIA DUALITY

The open SSEP is an irreducible continuous time
Markov process with finite state space, therefore, by
a classical theoremwe know that there exists a unique
stationary measure, that we denote by 𝜇𝜇𝑠𝑠𝑠𝑠. When
𝜌𝜌 𝜌 𝜌𝜌𝑎𝑎 = 𝜌𝜌𝑏𝑏 the stationary measure of our pro­
cess is an homogeneous product Bernoulli measure
with parameter 𝜌𝜌. Moreover, this measure is also re­
versible. Nevertheless, when the equality 𝜌𝜌 𝜌 𝜌𝜌𝑎𝑎 = 𝜌𝜌𝑏𝑏
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fails, the invariant measure is no longer of product
form. Heuristically speaking, the density/current at
the reservoirs has a different intensity with respect to
left/right reservoirs intensity and, therefore, there is
an induction of a current flow of particles in the sys­
tem. Take, for example, 𝛼𝛼 𝛼 𝛼𝛼 𝛼 𝛼 and 𝛾𝛾 𝛾 𝛾𝛾 𝛾 𝛾, so
that particles are injected in the system from the right
reservoir and only exit through the left one. Belowwe
explain briefly how to get some information regard­
ing this measure. Without loss of generality, in order
to get information about the stationarymeasure it will
be easier to consider the special case where the reser­
voirs’ rates satisfy 𝛾𝛾 𝛾 𝛾𝛾𝛾𝛾 and 𝛽𝛽𝛽𝛽𝛽𝛽𝛽  . From here
we assume that this is the case. Under these condi­
tions the density of the reservoirs coincide with their
injection rate.

4.1 APPLICATION OF DUALITY

The peculiarity of having a dual process where the
boundary becomes only absorbing relies on the fact
that, even if two extra sites are considered, the to­
tal mass of the dual process can only decrease during
the time evolution. As time increases, the bulk will
become empty and all the dual particles will eventu­
ally stay either on the left or the right reservoirs. In
particular, we now show how duality connects the
moments of the initial process 𝜂𝜂 with the absorption
probabilities of the dual process ̂𝜂𝜂. This is done via
the following formula

𝔼𝔼𝜇𝜇𝑠𝑠𝑠𝑠
[𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷 𝐷

𝑘𝑘

∑
𝑚𝑚𝑚𝑚

𝜌𝜌𝑚𝑚
𝑎𝑎 𝜌𝜌𝑘𝑘𝑘𝑘𝑘

𝑏𝑏 ℙ ̂𝜂𝜂(𝑚𝑚𝑚𝑚  (7)

where 𝑘𝑘 𝑘 ∑𝑛𝑛
𝑥𝑥𝑥𝑥 ̂𝜂𝜂𝑥𝑥 is the total number of dual parti­

cles and ℙ ̂𝜂𝜂(𝑚𝑚𝑚 is the probability that 𝑚𝑚 particles are
absorbed at the left reservoir (and the remaining 𝑘𝑘𝑘𝑘𝑘
go to the right reservoir) starting from the configura­
tion ̂𝜂𝜂. The proof relies on the fact that, as 𝑡𝑡 𝑡 𝑡, all
the dual particles will be at sites 0 or 𝑛𝑛. More details
can be found in [5] and [6]. Indeed,

𝔼𝔼𝜇𝜇𝑠𝑠𝑠𝑠
[𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷 𝐷 𝐷𝐷𝐷

𝑡𝑡𝑡𝑡
𝔼𝔼𝜂𝜂[𝐷𝐷𝐷𝐷𝐷𝑡𝑡, ̂𝜂𝜂𝜂𝜂𝜂

lim
𝑡𝑡𝑡𝑡

𝔼𝔼 ̂𝜂𝜂[𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝑡𝑡)]=  𝔼𝔼 ̂𝜂𝜂𝜌𝜌 ̂𝜂𝜂∞(0)
𝑎𝑎 𝜌𝜌 ̂𝜂𝜂∞(𝑛𝑛𝑛

𝑏𝑏 =

𝑘𝑘

∑
𝑚𝑚𝑚𝑚

𝜌𝜌𝑚𝑚
𝑎𝑎 𝜌𝜌𝑘𝑘𝑘𝑘𝑘

𝑏𝑏 ℙ ̂𝜂𝜂( ̂𝜂𝜂∞(0)=  𝑚𝑚𝑚𝑚𝑚𝑚 ∞(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛     𝑛

Suppose we start with a dual configuration ̂𝜂𝜂 𝜂𝜂𝜂 𝑥𝑥1
+

𝛿𝛿𝑥𝑥2
+… 𝛿𝛿𝑥𝑥𝑘𝑘

, namely we choose to put a dual particle in
each site 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘. In this case equation (7) reads

as

𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 𝐷
𝑘𝑘

∏
𝑖𝑖𝑖𝑖

𝜂𝜂𝑥𝑥𝑖𝑖
,

which is exactly the function of our interest for the ini­
tial process 𝜂𝜂𝑡𝑡. We now show how to find the 2­point
correlation function via the absorption probabilities
of two dual exclusion particles. Note that equation
(7) specialized for 𝑘𝑘 𝑘𝑘  and ̂𝜂𝜂 𝜂𝜂𝜂 𝑥𝑥 + 𝛿𝛿𝑦𝑦 reads

𝔼𝔼𝜇𝜇𝑠𝑠𝑠𝑠
[𝜂𝜂𝑥𝑥𝜂𝜂𝑦𝑦]=  𝜌𝜌2

𝑏𝑏ℙ𝑥𝑥𝑥𝑥𝑥(0)+𝜌𝜌𝑎𝑎𝜌𝜌𝑏𝑏ℙ𝑥𝑥𝑥𝑥𝑥(1)+𝜌𝜌2
𝑎𝑎ℙ𝑥𝑥𝑥𝑥𝑥(2) (8)

where ℙ𝑥𝑥𝑥𝑥𝑥(𝑚𝑚𝑚 for 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚    is the probability that
𝑚𝑚 particles are absorbed on the left reservoir starting
with a particle in 𝑥𝑥 and a particle in 𝑦𝑦. Before going
to the two particles’ problem we show how to solve
the absorption probabilities for just one particle in the
same setting.

4.2 ABSORPTION PROBABILITY FOR ONE DUAL
WALKER: DRUNKARD’S WALK

This is a common exercise in probability, known as
the drunkard’s walk. Recall our dual process, imag­
ine that site 0 is the drunk man’s house and site 𝑛𝑛 is
a dangerous cliff. The man is at site 𝑥𝑥 𝑥 𝑥𝑛𝑛 and he
takes random steps to the left and to the right with
the same probability: what is his chance of escaping
the cliff? The house and the cliff are absorbing sites
in the sense that once he reaches one of them, he will
stay there forever. The jump rates are described by
the dual generator 𝐿̂𝐿SSEP. Let us call 𝑝𝑝𝑥𝑥 ∶= ℙ𝑥𝑥(1) the
probability that he reaches home starting at 𝑥𝑥. Then
obviously 𝑝𝑝0 =1  and 𝑝𝑝𝑛𝑛 =0 . For 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥     𝑥
the probability of jumping right or left is the same,
1/2, while if he is in 1 (resp. 𝑛𝑛𝑛𝑛), goes to 0 (resp. 𝑛𝑛)
with probability 1/(𝑛𝑛𝜃𝜃 + 1) and to 2 (resp. 𝑛𝑛 𝑛 𝑛) with
the complement probability, 𝑛𝑛𝜃𝜃/(𝑛𝑛𝜃𝜃 + 1). Mathemati­
cally we have to solve the following system, which is
found by conditioning on the first possible jump of
the drunk man:

⎧
⎪
⎨
⎪
⎩

𝑝𝑝1 = 1
𝑛𝑛𝜃𝜃+1

+ 𝑛𝑛𝜃𝜃

𝑛𝑛𝜃𝜃+1
𝑝𝑝2

𝑝𝑝𝑥𝑥 = 𝑝𝑝𝑥𝑥𝑥𝑥+𝑝𝑝𝑥𝑥𝑥𝑥
2

for 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥     𝑥
𝑝𝑝𝑛𝑛𝑛𝑛 = 𝑛𝑛𝜃𝜃

𝑛𝑛𝜃𝜃+1
𝑝𝑝𝑛𝑛𝑛𝑛 .

A simple computation shows that last identities can
be rewritten in such a way that 𝑝𝑝𝑥𝑥 = 𝑝𝑝𝑝𝑝𝑝𝑝 is the solu­
tion of (ℬ𝜃𝜃

𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  , where the operator ℬ𝜃𝜃
𝑛𝑛 acts on
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functions 𝑓𝑓 𝑓 𝑓𝑓𝑓 𝑓 𝑓 𝑓𝑓𝑓 𝑓 ℝ as

(ℬ𝜃𝜃
𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 1

2
Δ𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓 for 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥 𝑥𝑥𝑥

(ℬ𝜃𝜃
𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓2(𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑛𝑛2

𝑛𝑛𝜃𝜃 (𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓

(ℬ𝜃𝜃
𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓2(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛2

𝑛𝑛𝜃𝜃 (𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓

From this we know that, for 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥 𝑥𝑥, we
are looking for an harmonic function of the one di­
mensional discrete laplacian. Therefore 𝑝𝑝𝑥𝑥 is a poly­
nomial in 𝑥𝑥, i.e. 𝑝𝑝𝑥𝑥 = 𝐴𝐴𝐴𝐴𝐴  𝐴𝐴, for 𝐴𝐴𝐴 𝐴𝐴 𝐴 ℝ for
𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥 𝑥𝑥.

By using the boundary conditions, we find 𝐴𝐴 𝐴
−1/(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝜃𝜃) and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵      𝜃𝜃)/(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝜃𝜃),
so that, for 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥 𝑥𝑥 we have

𝑝𝑝𝑥𝑥 =−  𝑥𝑥
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝜃𝜃 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝜃𝜃

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛    𝜃𝜃 (9)

We now turn to the absorption probabilities of two
exclusion processes.

4.3 ABSORPTION PROBABILITIES FOR TWO DUAL
WALKERS

The idea is the same as before, we condition on the
first possible jump and we obtain a difference equa­
tionwhich is close to a two dimensional laplacianwith
some boundary conditions. Recall that ℙ𝑥𝑥𝑥𝑥𝑥(𝑚𝑚𝑚, for
𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚    is the probability that 𝑚𝑚 particles are ab­
sorbed on the left boundary starting from the config­
uration with one particle in 𝑥𝑥 and one particle in 𝑦𝑦. To
simplify notation we use 𝑝𝑝𝑥𝑥𝑥𝑥𝑥 ∶= ℙ𝑥𝑥𝑥𝑥𝑥(𝑚𝑚𝑚 and we ne­
glect the dependence on 𝜃𝜃, 𝑛𝑛 and 𝑚𝑚. Conditioning on
the first jump we get the following identities

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝑝𝑝𝑥𝑥𝑥𝑥𝑥 = 1
4
[𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥]

for 1 ≠ 𝑥𝑥 𝑥 𝑥𝑥 𝑥𝑥𝑥  𝑥 𝑥
𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 1

2
[𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥]

for 𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥 𝑥
𝑝𝑝1,𝑦𝑦 = 𝑛𝑛𝜃𝜃

1+3𝑛𝑛𝜃𝜃 [𝑝𝑝2,𝑦𝑦 + 𝑝𝑝1,𝑦𝑦𝑦𝑦 + 𝑝𝑝1,𝑦𝑦𝑦𝑦]
+ 1

1+3𝑛𝑛𝜃𝜃 𝑝𝑝0,𝑦𝑦 for 2 < 𝑦𝑦𝑦𝑦𝑦𝑦𝑦   
𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝑛𝑛𝜃𝜃

1+3𝑛𝑛𝜃𝜃 [𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥]
+ 1

1+3𝑛𝑛𝜃𝜃 𝑝𝑝𝑥𝑥𝑥𝑥𝑥 for 2 < 𝑦𝑦𝑦𝑦𝑦𝑦𝑦   
𝑝𝑝1,𝑛𝑛𝑛𝑛 = 1

2+2𝑛𝑛𝜃𝜃 [𝑝𝑝0,𝑛𝑛𝑛𝑛 + 𝑝𝑝1,𝑛𝑛] 𝑛𝑛𝜃𝜃

2+2𝑛𝑛𝜃𝜃 [𝑝𝑝2,𝑛𝑛𝑛𝑛 + 𝑝𝑝1,𝑛𝑛𝑛𝑛]
𝑝𝑝1,2 = 1

1+𝑛𝑛𝜃𝜃 𝑝𝑝0,2 + 𝑛𝑛𝜃𝜃

1+𝑛𝑛𝜃𝜃 𝑝𝑝1,3

𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1
1+𝑛𝑛𝜃𝜃 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑛𝑛𝜃𝜃

1+𝑛𝑛𝜃𝜃 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛.
(10)

We observe that the above identities do not depend
on the choice of 𝑚𝑚, nevertheless, as we will see below,

the boundary conditions satisfied by 𝑝𝑝𝑥𝑥𝑥𝑥𝑥 do depend
on 𝑚𝑚.

As above, by introducing the operator 𝒪𝒪𝜃𝜃
𝑛𝑛 , that

we define below, we can write the above system in
a concise form. The operator acts on functions 𝑓𝑓 𝑓
{0,⋯,𝑛𝑛𝑛    𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛     ℝ in the following way: for
𝑥𝑥 𝑥 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥 𝑥𝑥 we have

(𝒪𝒪𝜃𝜃
𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓 𝑓 𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓 𝑓𝑓𝑓

+𝑎𝑎 𝑦𝑦𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓  𝑓
− (𝑎𝑎𝑥𝑥𝑥𝑥 + 2 −𝑎𝑎 𝑦𝑦𝑦𝑦)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓

and for 𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥 𝑥𝑥 we have

(𝒪𝒪𝜃𝜃
𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓

+𝑎𝑎 𝑥𝑥𝑥𝑥𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓
− (𝑎𝑎𝑥𝑥𝑥𝑥 +𝑎𝑎 𝑥𝑥𝑥𝑥)𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓𝑓

The coefficients satisfy 𝑎𝑎0 =𝑎𝑎 𝑛𝑛 = 1
𝑛𝑛𝜃𝜃 , otherwise

𝑎𝑎𝑥𝑥 = 1. We know that, conditioning on the fist jump,
𝑝𝑝𝑥𝑥𝑥𝑥𝑥 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  satisfies (𝒪𝒪𝜃𝜃

𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   . The above
equation tells us that we are looking for the harmonic
function of a two dimensional laplacian which is re­
flected if 𝑥𝑥 𝑥 𝑥𝑥 and deformed by a factor that depends
on 𝜃𝜃 if we are close to the boundary. A general solu­
tion for 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚    is of the form 𝑝𝑝𝑥𝑥𝑥𝑥𝑥 = 𝑝𝑝𝑥𝑥𝑥𝑥𝑥(𝑚𝑚𝑚𝑚
𝐴𝐴𝑚𝑚𝑥𝑥𝑥𝑥𝑥  𝑚𝑚𝑦𝑦𝑦  𝑦𝑦𝑚𝑚𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑚𝑚. The twelve unknown con­
stants are found by using the boundary conditions,
the law of total probability, some geometric symme­
tries because thewalk gives symmetric jumps and also
the previous result regarding the drunkard’swalk. For
𝑚𝑚 𝑚𝑚 , it is easy to deduce that 𝑝𝑝𝑥𝑥𝑥𝑥𝑥(2) satisfies

⎧⎪
⎨
⎪⎩

𝑝𝑝0,𝑦𝑦(2)∶=  𝑝𝑝𝑦𝑦(1)=  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜃𝜃

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜃𝜃

𝑝𝑝0,0(2)∶=  1
𝑝𝑝𝑥𝑥𝑥𝑥𝑥(2)∶=0 

For 𝑚𝑚 𝑚𝑚 , it is easy to deduce that 𝑝𝑝𝑥𝑥𝑥𝑥𝑥(0) satisfies

⎧⎪
⎨
⎪⎩

𝑝𝑝𝑥𝑥𝑥𝑥𝑥(0)∶=  𝑝𝑝𝑥𝑥(0)=  𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝜃𝜃

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜃𝜃

𝑝𝑝𝑛𝑛𝑛𝑛𝑛(0)∶=  1
𝑝𝑝0,𝑦𝑦(0)∶=0 

For 𝑚𝑚 𝑚𝑚 , it is easy to deduce that 𝑝𝑝𝑥𝑥𝑥𝑥𝑥(1) satisfies

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑝𝑝0,𝑦𝑦(1)∶=  𝑝𝑝𝑦𝑦(0)=  𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝜃𝜃

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜃𝜃

𝑝𝑝𝑥𝑥𝑥𝑥𝑥(1)∶=  𝑝𝑝𝑥𝑥(1)=  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜃𝜃

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜃𝜃

𝑝𝑝0,𝑛𝑛(1)∶=  1
𝑝𝑝0,0(1)=  𝑝𝑝𝑛𝑛𝑛𝑛𝑛(1)∶=0 

Where the 𝑝𝑝𝑥𝑥(1) is the probability found in the previ­
ous section and 𝑝𝑝𝑥𝑥(0)=  1 − 𝑝𝑝𝑥𝑥(1), its complement.
Using the last three equations of (10) together with
the boundary conditions of each absorbed probability
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we can write for all 𝑚𝑚 𝑚 𝑚𝑚 𝑚𝑚 𝑚, the probability 𝑝𝑝𝑥𝑥𝑥𝑥𝑥(𝑚𝑚𝑚
in terms of the 𝐶𝐶𝑚𝑚’s only. Now we consider the fol­
lowing identity given by symmetry arguments

𝑝𝑝𝑥𝑥𝑥𝑥𝑥(2)=  𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(0)
which allows immediately to identify 𝐶𝐶 𝐶𝐶 𝐶𝐶2 = 𝐶𝐶0.
Using the law of total probability:

𝑝𝑝𝑥𝑥𝑥𝑥𝑥(2) + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥(1) + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥(0)=1 
we get 𝐶𝐶1 =−2 𝐶𝐶 . And, finally, using the condition
for 𝑝𝑝𝑥𝑥𝑥𝑥𝑥(1):

2𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥(1)=  𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(1) + 𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥(1),
we find that 𝐶𝐶 𝐶 1

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜃𝜃)(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜃𝜃)
. For sake of com­

pleteness we write below the explicit values of the
three absorption probabilities.

𝑝𝑝𝑥𝑥𝑥𝑥𝑥(2)=  (𝑛𝑛 𝑛 𝑛𝑛 𝑛 𝑛𝑛  𝑛𝑛𝜃𝜃)(𝑛𝑛 𝑛 𝑛 𝑛 𝑛𝑛𝑛  𝑛𝑛𝜃𝜃)
(𝑛𝑛 𝑛 𝑛𝑛𝑛  𝑛𝑛𝜃𝜃)(𝑛𝑛 𝑛 𝑛 𝑛𝑛 𝑛𝑛𝜃𝜃)

𝑝𝑝𝑥𝑥𝑥𝑥𝑥(0)=  (𝑥𝑥 𝑥𝑥𝑥𝑥𝑥   𝜃𝜃)(𝑦𝑦𝑦𝑦𝑦𝑦𝑦    𝜃𝜃)
(𝑛𝑛 𝑛 𝑛𝑛𝑛  𝑛𝑛𝜃𝜃)(𝑛𝑛 𝑛 𝑛 𝑛𝑛 𝑛𝑛𝜃𝜃)

𝑝𝑝𝑥𝑥𝑥𝑥𝑥(1)=  𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥    𝑥𝑥𝑥𝑥
(𝑛𝑛 𝑛 𝑛𝑛𝑛  𝑛𝑛𝜃𝜃)(𝑛𝑛 𝑛 𝑛 𝑛𝑛 𝑛𝑛𝜃𝜃)

+ 2(𝑛𝑛𝜃𝜃 −1) (1 + 𝑛𝑛 𝑛 𝑛𝑛𝜃𝜃)
(𝑛𝑛 𝑛 𝑛𝑛𝑛  𝑛𝑛𝜃𝜃)(𝑛𝑛 𝑛 𝑛 𝑛𝑛 𝑛𝑛𝜃𝜃)

.

At this point one can easily find the stationary correla­
tion by plugging the above result into equation (8).
All the computations presented above are in agree­
ment with those obtained by another method, called
the matrix ansatz product [7], where the stationary
correlations are also found, for details we refer the
reader to [8]. An intuitive representation of the dy­
namics of two dual exclusion particles on {0,1,  … , 𝑛𝑛𝑛
is given in the picture below. This dynamics can al­
ways be represented by the dynamics of a single par­
ticle which is performing a symmetric random walk
but now evolving inside the two dimensional simplex.
The red points are the traps where the random walk
is absorbed forever. They represent the three possi­
ble ways that two dual exclusion particles can be ab­
sorbed in the boundary of the lattice {0,1,  … , 𝑛𝑛𝑛. If
the randomwalk reaches the vertical cathetus itmeans
the leftmost exclusion particle has been absorbed in 0,
while if it reaches the horizontal cathetus, the right­
most exclusion particle has been absorbed in 𝑛𝑛. Note
that one of these two events has to happen in order
that the randomwalk hits one of the three traps. Once
the random walk reaches one of the two cathetus it
cannot leave that cathetus, since in the dynamics of
the two exclusion one particle is already absorbed. On
the cathethus the dynamics of the two dimensional
random walk is exactly the same as the one of the one

dimensional random walk with absorbing boundary,
whose absorption probability is given by the drunk­
ard’s walk. Note that since two exclusion particles
cannot be on the same site, we removed the diagonal
𝑦𝑦𝑦𝑦𝑦  , while the upper diagonal 𝑦𝑦𝑦𝑦𝑦𝑦𝑦     represents
the sites where the two exclusion particles are neigh­
bors.

We observe that these arguments can be ex­
tended to higher point correlations functions like
𝔼𝔼𝜇𝜇𝑠𝑠𝑠𝑠

[𝜂𝜂𝑥𝑥1
⋯ 𝜂𝜂𝑥𝑥𝑘𝑘

] and also to higher dimensions, but for
the purposes of this article we decide to present only
the one­dimensional case and the two­point correla­
tion function.

5 THE EVOLUTION OF DENSITY

The dynamics described above in different ways, if
not in the presence of stochastic reservoirs, would con­
serve one quantity: the number of particles. More pre­
cisely, starting from a configuration 𝜂𝜂0 with 𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘 
particles, at any time 𝑡𝑡 we would see exactly the same
number of particles on 𝜂𝜂𝑡𝑡. Adding the stochastic reser­
voirs, this conservation law is destroyed and the goal
is to see the effect at the macroscopic level of adding
reservoirs to the system. We define then a random
measure 𝜋𝜋𝑛𝑛 that gives weight 1/𝑛𝑛 to each particle as

𝜋𝜋𝑛𝑛(𝜂𝜂𝜂 𝜂𝜂𝜂𝜂𝜂𝜂  1
𝑛𝑛

𝑛𝑛𝑛𝑛

∑
𝑥𝑥𝑥𝑥

𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝑥𝑥𝑥𝑥𝑥(𝑑𝑑𝑑𝑑𝑑

which is a positive measure with total mass bounded
by 1. We assume that we start our process 𝜂𝜂𝑡𝑡 from
a measure 𝜇𝜇𝑛𝑛 for which the following result is true:
𝜋𝜋𝑛𝑛(𝜂𝜂𝜂 𝜂𝜂𝜂𝜂𝜂 converges, as 𝑛𝑛 𝑛 𝑛𝑛, to the measure
𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋  𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔     ℝ is a mea­
surable function. Observe that 𝜋𝜋𝑛𝑛 is a random mea­
sure while 𝜋𝜋 is deterministic. The above convergence
is in the weak sense and, by the randomness of 𝜋𝜋𝑛𝑛,
it is also in probability with respect to 𝜇𝜇𝑛𝑛, more pre­
cisely, 𝜇𝜇𝑛𝑛 is such that, for any 𝛿𝛿 𝛿 𝛿 and any function
𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  it holds

lim
𝑛𝑛

𝜇𝜇𝑛𝑛(𝜂𝜂 𝜂 |𝜋𝜋
𝑛𝑛(𝜂𝜂𝜂 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂   𝜂𝜂𝜂𝜂𝜂𝜂  𝜂| >𝛿𝛿 ) =0 . (11)

Above ⟨⋅, ⋅⟩ denotes the inner product in 𝐿𝐿2[0,1 ] and
𝜋𝜋𝑛𝑛(𝜂𝜂𝜂 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂  denotes the integral of 𝑓𝑓 with respect to
the measure 𝜋𝜋𝑛𝑛(𝜂𝜂𝜂 𝜂𝜂𝜂𝜂𝜂. The goal is then to show that
the same result holds true at any later time 𝑡𝑡, but the
limit measure is given by 𝜋𝜋𝑡𝑡(𝑑𝑑𝑑𝑑𝑑𝑑  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , where
the density 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  is the solution of a PDE. This result
is known in the literature as hydrodynamic limit and
the PDE is the hydrodynamic equation. In the case of
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the open SEEP we have the following result.

THEOREM 2 (HYDRODYNAMICS FOR SSEP).—
Starting from 𝜇𝜇𝑛𝑛 as described above i.e. satisfying
(11) for a certain measurable function 𝑔𝑔𝑔𝑔𝑔 𝑔𝑔 𝑔 ℝ;
the trajectory of random measures 𝜋𝜋𝑛𝑛

𝑡𝑡 (𝜂𝜂𝑡𝑡𝑡𝑡2 , 𝑑𝑑𝑑𝑑𝑑 con­
verges, as 𝑛𝑛 𝑛 𝑛𝑛, to the trajectory of determin­
istic measures given by 𝜋𝜋𝑡𝑡(𝑑𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑, where
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  is the unique weak solution of the heat equa­
tion 𝜕𝜕𝑡𝑡𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌   2

𝑢𝑢𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  starting from 𝑔𝑔 and with:

• Dirichlet boundary conditions 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌   𝑎𝑎 and
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌   𝑏𝑏, for any 𝑡𝑡 𝑡 𝑡, when 𝜃𝜃 𝜃 𝜃;

• Robin boundary conditions 𝜕𝜕𝑢𝑢𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌   𝜌𝜌 𝜌
𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾 𝛾𝛾𝛾𝑎𝑎) and 𝜕𝜕𝑢𝑢𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌   𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑏𝑏−𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 ,
for any 𝑡𝑡 𝑡 𝑡, when 𝜃𝜃 𝜃𝜃 ;

• Neumann boundary conditions 𝜕𝜕𝑢𝑢𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 
𝜕𝜕𝑢𝑢𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌   , for any 𝑡𝑡 𝑡 𝑡, when 𝜃𝜃 𝜃𝜃 .

The proof of the previous theorem, by using the en­
tropy method developed in [11], can be seen in [1] for
the regime 𝜃𝜃 𝜃 𝜃 and in [2] for the regime 𝜃𝜃 𝜃 𝜃. We
observe that above the time scale has been re­scaled
to 𝑡𝑡𝑡𝑡2, which is the time scale for which the evolution
of the density is non­ trivial, known as diffusive time
scale. What if one takes shorter time scales of the form
𝑛𝑛𝑠𝑠 with 𝑠𝑠 𝑠𝑠 ? Then we do not see any space/time
evolution of 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 𝜌 As a consequence of the previous
result we see that on a strong action regime of the
reservoir dynamics, the density profile is fixed at the
boundary; while on the weak action regime, the space
derivative (current) of the profile becomes fixed.

6 HYDROSTATICS AND CORRELATION
FUNCTIONS

The reader now might ask about the stationary mea­
sure. Can we obtain the previous result starting from
the measure 𝜇𝜇𝑠𝑠𝑠𝑠? This result is know in the literature
as hydrostatic limit and to recover it from last theorem
one just has to derive (11) for a certain function 𝑔𝑔. The
candidate is exactly the stationary solution of the cor­
responding PDE, which in the cases above is of the
form ̄𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌    , where 𝑎𝑎 and 𝑏𝑏 are fixed by the
boundary conditions. To prove the result we need two
things:

1. Define for 𝑥𝑥 𝑥 𝑥𝑛𝑛 the discrete profile 𝜌𝜌𝑛𝑛
𝑡𝑡 (𝑥𝑥𝑥𝑥

𝔼𝔼𝜇𝜇𝑛𝑛
[𝜂𝜂𝑡𝑡𝑡𝑡2(𝑥𝑥𝑥𝑥 and extend it to the boundary by set­

ting 𝜌𝜌𝑛𝑛
𝑡𝑡 (0)=𝜌𝜌  𝑎𝑎, 𝜌𝜌𝑛𝑛

𝑡𝑡 (𝑛𝑛𝑛𝑛𝑛𝑛  𝑏𝑏. Taking 𝜇𝜇𝑛𝑛 = 𝜇𝜇𝑠𝑠𝑠𝑠,

we need to know that the stationary discrete pro­
file 𝜌𝜌𝑛𝑛(𝑥𝑥𝑥 is close to ̄𝜌𝜌𝜌 𝑥𝑥

𝑛𝑛
). One way to do it is

fromKolmogorov’s equation, inwhich one finds
that it solves the equation

𝜕𝜕𝑡𝑡𝜌𝜌𝑛𝑛
𝑡𝑡 (𝑥𝑥𝑥𝑥𝑥  𝑥𝜃𝜃

𝑛𝑛 𝜌𝜌𝑛𝑛
𝑡𝑡 )(𝑥𝑥𝑥𝑥  𝑥𝑥 𝑥 𝑥𝑛𝑛 , 𝑡𝑡 𝑡𝑡

where the operator ℬ𝜃𝜃
𝑛𝑛 was defined in previ­

ously.

Observe that the above equation is closed in
terms of 𝜌𝜌𝑛𝑛

𝑡𝑡 (⋅), this is a consequence of the fact
that the generator of the dynamics does not in­
crease the degree of functions. A simple compu­
tation allows to derive the stationary solution of
the previous equation and to show that it is close
to ̄𝜌𝜌𝜌𝜌𝜌. Alternatively, we could use the results we
obtained by duality which give

𝔼𝔼𝜇𝜇𝑠𝑠𝑠𝑠
[𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂  𝑏𝑏ℙ𝑥𝑥(0)+𝜌𝜌  𝑎𝑎ℙ𝑥𝑥(1). (12)

From (9) we conclude that

𝜌𝜌𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥  𝛽𝛽𝛽𝛽𝛽 

2𝑛𝑛𝜃𝜃 + 𝑛𝑛 𝑛𝑛
𝑥𝑥𝑥 𝛽𝛽𝛽𝛽𝛽 

2𝑛𝑛𝜃𝜃 + 𝑛𝑛 𝑛𝑛
(𝑛𝑛𝜃𝜃−1)+𝛼𝛼𝛼

(13)
from where we can easily check that

lim
𝑛𝑛𝑛𝑛𝑛

max
𝑥𝑥𝑥𝑥𝑛𝑛

|𝜌𝜌𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥

𝑛𝑛
)| =0.

2. We need to study the behavior of the two­point
correlation function defined generally by

𝜑𝜑𝑛𝑛
𝑡𝑡 (𝑥𝑥𝑥 𝑥𝑥𝑥𝑥  𝔼𝔼𝜇𝜇𝑛𝑛

[ ̄𝜂𝜂𝑡𝑡𝑡𝑡2(𝑥𝑥𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡2(𝑦𝑦𝑦𝑦𝑦
where ̄𝜂𝜂𝑡𝑡𝑡𝑡2(𝑥𝑥𝑥𝑥𝑥𝑥  𝑡𝑡𝑡𝑡2(𝑥𝑥𝑥𝑥𝑥𝑥  𝑛𝑛

𝑡𝑡 (𝑥𝑥𝑥 and show that,
for 𝜇𝜇𝑛𝑛 = 𝜇𝜇𝑠𝑠𝑠𝑠, it vanishes as 𝑛𝑛 𝑛 𝑛𝑛. As for the
discrete profile, we can also apply Kolmogorov’s
equation and derive a discrete equation for the
evolution of this function and then obtain its sta­
tionary solution. Alternatively, we could use the
results we obtained by duality from where we
can get the explicit expression for the stationary
correlations. A simple, but long, computation
shows that

𝜑𝜑𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥𝑥  𝔼𝔼𝑛𝑛

𝜇𝜇𝑠𝑠𝑠𝑠
[ ̄𝜂𝜂𝜂𝜂𝜂𝜂𝜂 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂

− (𝛽𝛽𝛽𝛽𝛽𝛽  2(𝑥𝑥 𝑥𝑥𝑥 𝜃𝜃 −1) (𝑛𝑛 𝑛𝑛𝑛  𝑛 𝑛𝑛𝜃𝜃 −1)
(2𝑛𝑛𝜃𝜃 + 𝑛𝑛 𝑛𝑛𝑛 2(2𝑛𝑛𝜃𝜃 + 𝑛𝑛 𝑛 𝑛𝑛

from where we conclude that

max
𝑥𝑥𝑥𝑥𝑥

|𝜑𝜑𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥 𝑛𝑛𝑛𝑛𝑛 0.

Even if for hydrostatics it is enough to know the order
of decay of 𝜑𝜑𝑛𝑛

𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥, thanks to the approach shown
above we were able to write the actual form of the
two point correlation function. We note that from the
previous identity we can obtain the following relation­
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ship

𝜑𝜑𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥 (𝛽𝛽 𝛽 𝛽𝛽𝛽2

2𝑛𝑛𝜃𝜃 + 𝑛𝑛 𝑛 𝑛
𝑝𝑝𝑥𝑥(0)𝑝𝑝𝑦𝑦(1)

where 𝑝𝑝𝑥𝑥(1) is given in (9). We also note that for
𝜃𝜃 𝜃𝜃  the above identity becomes

𝜑𝜑𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥(𝛽𝛽 𝛽 𝛽𝛽𝛽2

𝑛𝑛 𝑛𝑛
𝐺𝐺Dir

(
𝑥𝑥
𝑛𝑛

, 𝑦𝑦
𝑛𝑛)

where𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢  𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 is theGreen function of the
2­dimensional laplacian on {(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢 𝑢 𝑢 𝑢𝑢 𝑢 𝑢𝑢 𝑢 𝑢𝑢𝑢
reflected on the line 𝑢𝑢 𝑢 𝑢𝑢 and with homogeneous
Dirichlet boundary conditions, that is 𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢 is the
solution of

Δ𝑅𝑅𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢𝑢  𝑢𝑢𝑢𝑢𝑢𝑢𝑢

where for 𝑢𝑢 𝑢 𝑢𝑢,
Δ𝑅𝑅𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢  𝑢𝑢2

𝑢𝑢𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢  𝑢𝑢2
𝑣𝑣𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢

and for 𝑢𝑢 𝑢 𝑢𝑢,
Δ𝑅𝑅𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢  𝑢𝑢𝑣𝑣𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢  𝑢𝑢𝑢𝑢𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢

and 𝐺𝐺Dir(0,𝑣𝑣𝑣𝑣𝑣𝑣   Dir(𝑢𝑢𝑢𝑢𝑢𝑢𝑢   . We get the scaling
form

lim
𝑛𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥 𝑥 𝑥𝑥𝑥2𝐺𝐺Dir(𝑢𝑢𝑢 𝑢𝑢𝑢

for the continuous correspondents 𝑥𝑥
𝑛𝑛

→ 𝑢𝑢 and 𝑦𝑦
𝑛𝑛

→𝑣𝑣 .
We now see what happens for the cases when 𝜃𝜃 𝜃𝜃 .
For 0 < 𝜃𝜃 𝜃𝜃 , a simple computation shows that the
limit above also holds. For 𝜃𝜃 𝜃𝜃  we get

lim
𝑛𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥(𝛽𝛽 𝛽 𝛽𝛽𝛽2

9
𝐺𝐺Rob(𝑢𝑢𝑢 𝑢𝑢𝑢

where 𝐺𝐺Rob(𝑢𝑢𝑢 𝑢𝑢𝑢𝑢  1
3
(𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢   𝑢𝑢𝑢 and corresponds

to the Green function of the 2­dimensional laplacian
defined above, but with homogeneous Robin bound­
ary conditions given by 𝜕𝜕𝑢𝑢𝐺𝐺Rob(0,𝑣𝑣𝑣𝑣𝑣𝑣   Rob(0,𝑣𝑣𝑣  and
𝜕𝜕𝑣𝑣𝐺𝐺Rob(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢   Rob(𝑢𝑢𝑢𝑢𝑢 . Finally, for 𝜃𝜃 𝜃 𝜃, if we
use the same scaling as above, we see that

lim
𝑛𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥𝑥

Nevertheless, a simple computation shows that

lim
𝑛𝑛𝑛𝑛𝑛

𝑛𝑛𝜃𝜃𝜑𝜑𝑛𝑛
𝑠𝑠𝑠𝑠(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥(𝛽𝛽 𝛽 𝛽𝛽𝛽2

8
(𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢   𝑢𝑢𝑢

for the continuous correspondents 𝑥𝑥𝑥𝑥𝑥𝜃𝜃 → 𝑢𝑢 and
𝑦𝑦𝑦𝑦𝑦𝜃𝜃 →𝑣𝑣 ; and this is the correct order to see a non­
trivial limit in the case of very slow boundary. For
higher point correlation functions, we can use exactly
the same argument as above in order to obtain the
exact rates of convergence of the corresponding sta­
tionary correlations. Moreover, we conjecture that we
can write the stationary 𝑘𝑘­th point correlation func­
tion𝜑𝜑𝑛𝑛

𝑠𝑠𝑠𝑠(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) as a product between a scaling fac­

tor and the absorption probabilities of 𝑘𝑘 independent
one­dimensional random walks. We also believe that
this argument could be extended to other models for
which duality is known but all this is left for a future
work.

Recently, it has been developed a method in [9] to
derive the hydrodynamic and the hydrostatic limits in
presence of duality for a similar model called the sym­
metric inclusion process, wheremany particles can oc­
cupy the same site and show a preference of laying
together. The macroscopic behavior for this process
is the same as the one described above, but the proof
now boils down to the sole use of duality.

We conclude by saying that there are many other
models for which one has to explore the notion of du­
ality, specially for asymmetric models where the equa­
tions for correlation functions are no longer closed.
There is a long and standing work to develop around
these problems and here we just collected some nice
and simple results for a toy model where Lie algebra
and, consequently, duality allows getting a lot of rele­
vant information about our model.
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José Agostinho Basto Gonçalves (born 28 January 1952) graduated in Mathematics at the University of Porto in 
1975 and in 1981 he received his PhD degree in Mathematics from the University of Warwick. He returned to Porto 
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Can you tell us in which moment you realized that you 
wanted to be a Mathematician and also let us know how 
this happened?
I did not think about it, but had always assumed, even as a 
child, that my work would be computations or something 
similar, and without a fixed timetable. I was very fortunate to 
get all that!
	 I initially entered an Engineering course, thinking that 
the Maths course was only for high school teachers, and 
Engineering was the course with more Maths in it. But after 
two years I changed to Mathematics.

You have graduated from Warwick. What were your 
reasons to choose this university? Also, was Warwick your 
first choice or have you considered other universities as 
well?
I attended a course at ICTP (Trieste) organized by prof. 
Markus from Minnesota and Warwick and prof. Olec from 
the Academy of Sciences (I think) in Czechoslovakia, and 
met prof. Pritchard from Warwick. Also, my friends Luisa 
Magalhães and Eugenia Sá were doing their Ph.D. at 
Warwick so . . .

You were one of the first people in Porto to have gone 
to Warwick for graduate school and since then, many 
others have followed this path some of them under 
your recommendation. Do you somehow feel to have a 
scouting job for Warwick?
Perhaps I was enthusiastic about my time at Warwick, it had 
been extraordinary for me; also it was easier to recommend 
people, and I knew well the conditions there. I always 
thought that it would be better if people went to different 
universities, but the knowledge of previous students is very 
important for the decision to leave Porto and study abroad.

Did you return to Porto immediately after defending 
your Phd thesis in Warwick? Can you describe the 
situation of the research in Mathematics in Portugal — 
and more precisely in the north region — at that time?
I returned to Porto in 1981 after 4 years at Warwick. As far as 
I remember there were no scientific papers in Mathematics 
published in Porto before 74, but when I came back the level 
of teaching was very different from my experience before 
leaving (I was in engineering for two years and then did 
Applied Mathematics). 
	 Before I left, the Applied Mathematics group was at best 
very old fashioned. At the end of the 70’s, the presence of 
Ricardo Lima was very influential at the group, and later in 

the University, through new people that studied for a Ph.D. 
thanks to him. He taught interesting courses, talked about 
research and helped former students to obtain contacts 
abroad and financial support.
	 In 81 the ambient in Applied Mathematics was very 
good: Manuel Rogério Silva, Teresa e Pedro Lago had 
already returned, there was no great interest in proper 
Mathematics but things were moving, research was being 
done and there was enthusiasm.
	 In Pure Mathematics there was no published research in 
the beginning of the 80’s, but the teaching was up to date. I 
think that this was already a fact even before 1974.
	 Certainly, anyone studying now (or since the end of the 
80’s) in Porto for a degree should be able to finish a Ph.D. 
anywhere.
	 I was very fortunate in many aspects: I was in engineering 
to begin with, I learned a lot more physics than is now 
common (I did not like that at the time but it was useful!), 
I studied topics In Mathematics courses that were old 
fashioned then, but were very considered later, and my final 
year in the Mathematics degree was 74/75 when the list of 
courses had a great change.

By the time you returned to Portugal, other young 
Portuguese mathematicians were also returning home 
from graduate school. How did you get organized to 
foster the creation of culture of research with high 
standards around this time? For example, you used to 
have local collaborators in research or have you actually 
put direct effort into interacting with other colleagues 
from Portuguese universities?
There was no organization but certainly a mutual interest: 
discovering the others and discussing the new results and 
topics.
	 Our research budget in 1982 was something like 150 
euros, the Fundação Calouste Gulbenkian and the director 
Alberto Amaral were an important help, later JNICT and 
then INIC had a complete change: we had a project with the 
money to invite very good mathematicians to give two-week 
courses, had a very generous budget to get equipment and 
to face the daily expenses and a number of young beginner 
mathematicians.

At the University of Porto, mathematicians are spread 
around several faculties, how does this affect research 
and teaching, and how have you dealt with this?
I have studied Applied Mathematics and always worked in 
the department of Applied Math; it was much improved with 
time due to the efforts of its members. But the University 
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had and has more than a dozen departments (or similar 
structures) responsible for Mathematics classes, and the 
Science Faculty had a Pure Mathematics department as well.
	 I never liked this situation, even when personally very 
convenient. We have tried to encourage collaboration 
within the university and endeavoured to surpass the 
inconveniences this causes, first in CMAUP, then in CMUP, 
after the two centres merged, by having all mathematicians 
together at the same research centre; the two departments 
in the Science Faculty are now just one department, but the 
problem persists at the University and it should not.

How easy was it in the ‚70s and ‚80s to get a grant to 
study/travel abroad? When and how did this change?
In 1975 the number of grants was very small, INIC and 
Gulbenkian and NATO altogether had fewer than 100 for all 
sciences and humanities (or at least this was commonly said) 
at Ph.D. level. The situation with Mariano Gago as head of 

JNICT was completely changed: now FCT has more than 
1500 grants for Ph.D.

How did you obtain funding for research through your 
career? How important was it for your research?
I studied for a Ph.D. in England with a Gulbenkian grant. 
The first budget I had from INIC after returning was less 
than 200 euros a year, that when everything was missing 
in the department (books, journals etc.); at that time 
Gulbenkian was a great help, with money for books, journals, 
for attending conferences. The community of active 
Portuguese mathematicians was very small, travelling was 
expensive and to stay abroad was even more expensive, all 
communications were done by letter through standard post 
service, there was still no e-mail or internet . . .
	 Young people could get a job and work with us (now 
is a lot harder) but then everything was missing: there 
were very few books or journals, first we shared a personal 
computer bought with University research money, then two 
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computers . . . We were a small group, six or seven, but we 
also shared with other people in the University.
	 Again this was completely changed still in the 80’s, first 
with INIC and afterwards with Luis Magalhães at FCT. We 
were able to invite scientists for giving courses lasting one or 
two weeks, everybody could go to a conference per year, our 
library was quite good, we had computers and printers, and 
there was very little bureaucracy. A paradise!
	 Funding was a constant worry in the beginning of the 
80’s, but that did not affect research much: with money the 
effort was less, there were more people involved, for me it 
just was easier but for younger people good funding was 
fundamental.

You were member of the first Scientific Committee 
of CIM (1996-2000) whose goal was to develop and 
promote the mathematical research in Portugal. What 
was the role of CIM in those years and how were the 
measures implemented?
I had not a clear idea of what should be the role of CIM, but 
I thought it was a good idea and could be developed without 
a lot of money (that of course did not exist).

What sort of progress have you detected/felt? Were they 
clear right from the beginning or they gradually become 
clear in the years to come?
I am not a big believer in the power of an institution. 
Having a permanent teaching/research staff is of course not 
indispensable but not having it does not help.

Going back to the question about sending students 
abroad, I am aware that you consider important — if not 
absolutely indispensable — for young mathematicians 
to acquire international experience (by the way, as your 
former student, I remember to have my “wrists slapped” 
for staying in Portugal for graduate school).

The mathematical community was very small, the number 
of research papers was almost zero in Porto, it was important 
for the students to have a different view and contact with 
much better research environment.

Do you think nonetheless that acquiring this international 
experience used to be more important years ago and/
or consider that significant changes have occurred and 
that nowadays this type of experience is somehow less 
relevant?
Now the number of people involved, in Portugal, is 
completely changed, the international relations exist and 

work, it is not as necessary to go abroad to change. However, 
doing everything, first degree to PhD in the same place is 
still not a good idea.

Besides the scientific connection with England, you also 
have many contacts in Brazil, where several Portuguese 
mathematicians, especially from Porto, have obtained 
their Phd degrees . . . Would you comment on the role 
the collaboration with Brazil played in your career as well 
as in the evolution of the research at CMUP?
I learned a lot in USP — S. Carlos, and (very) slowly moved 
from Control to more standard mathematics; this was only 
possible thanks to people from all the world I met there at 
the São Carlos Workshops on Singularities (every two years) 
and at the university. And I have made very good friends . . . 

Today CMUP is a top center for Mathematics recognized 
both at international and national levels. What is the 
feeling that such an evolution brings to you and the 
colleagues from your generation given that you have 
been the initial promoters of the culture of research? Are 
you especially proud of the work accomplished?
I am very happy seeing that the new normal was almost 
unthinkable when I began. Like a coach, I expect the new 
ones to do better than I did!

Our research centre CMAUP went from good to excellent, 
many students finished their Ph.D. here or abroad, CMUP is 
now excellent, things are much better than they were.

Do you have hobbies or other regular interests outside 
the academic community?
I should have thought about that long ago . . . 

I would like to close the interview with a comment rather 
than with a question. I would like to make clear that 
Professor José Basto played an important role in my 
Mathematical education. Namely, you were the instructor 
of 5 courses I have enrolled in over my undergraduate 
and Master courses. In addition, you have supervised my 
Master dissertation as well as my Phd thesis. I am very 
much indebted with you for everything I have learned 
and I also thank you for having persuaded me (finally 
after my thesis defenses) to go abroad for a post-doc in 
France . . . it certainly was very important in my life.
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The conference Dynamical Aspects of Pseudo-Riemannian Geometry was held at the School of 
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Mini-Courses

François Béguin (Univ. Paris 13)
Geometry and dynamics of spatially homogeneous spacetimes

João Pimentel Nunes (IST)
Quantization and Kahler Geometry

Abdelghani Zeghib (CNRS - ENS Lyon)
Configuration spaces: Geometry, Topology, Dynamics, Physics and Technology

The event consisted of an international conference 
revolving around dynamical systems naturally arising in 
important problems belonging to the field of pseudo-
Riemannian geometry and, in particular, of Lorentzian 
geometry. In this way, the conference has attracted 
interest from experts in dynamical systems and 
geometry as well as from certain physicists.
	 The conference has brought together more than 40 
experts in the mentioned areas coming from various 
countries and including several field leaders for a 

program consisting of 3 advanced mini-courses, 12 
invited talks and a poster session. The program also 
included some exercise sessions, related to the material 
covered in the mini-courses, and an open problem 
session. For further information check the link 
https://cmup.fc.up.pt/Pseudo-Riemannian-Geometry/
	 Thanks to the generous support provided by our 
sponsors, several graduate students and post-docs 
were able to attend the conference and the mini-
courses.
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Figure 1: A simple graph on 5 vertices and 4 edges (left); to define a function 𝑓𝑓 on a discrete realisation of the graph
we specify the values at the vertices – this also gives rise naturally to difference operators (centre); one may instead
identify each edge 𝑒𝑒𝑖𝑖 with an interval [0, ℓ𝑖𝑖] ⊂ ℝ (or a half­line [0, +∞)), and “glue together” the intervals at their
endpoints in the right way, to form a metric graph (right). Here a path between two points 𝑥𝑥 and 𝑦𝑦 is marked in
red.
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Figure 2: The Cheeger cut of a graph with 20 vertices.

1 INTRODUCTION: TWO COMPLEMENTARY
TYPES OF GRAPHS

Probably everyone has at least an intuitive notion of
what a graph is: a collection of vertices, or nodes,
joined by edges. Most mathematicians, perhaps even
some non­mathematicians, probably have some idea
of the role that graphs play in modelling phenomena
as diverse as fine structures such as crystals and car­
bon nanostructures, social networks, the PageRank
algorithm, data processing and machine learning, …,
but may not be so familiar with the details.

Generally speaking, at amathematical level, we are
interested in some process taking place on the graph,
such as described by a difference or differential equa­
tion. The mathematics behind such equations com­
bines ideas from graph theory (obviously), linear al­
gebra, functional analysis and the theory of differ­
ential equations, operator theory, and mathematical
physics; yet many of the details seem to be largely un­
known to the wider mathematical community. As a
test: do you know what quantum graphs are?

Our goal here is to give somewhat uneven intro­
duction to analysis on graphs: we first describe, in
hopefully accessible terms, what this is: how to de­
fine functions and difference and differential opera­

tors on graphs, and study them – and in particular
what are quantum graphs. Our starting point is that
there are (at least) two natural, somewhat parallel, no­
tions of graphs: discrete and metric graphs; the for­
mer give rise to difference operators, the latter to dif­
ferential operators. We will first discuss the construc­
tion of these graphs, and then introduce prototypical
difference and differential operators, principally reali­
sations of the Laplacian, on each.

But our second goal is to highlight some of the
parallels between the two kinds of graphs: indeed,
one speaks of Laplacians in both the discrete and the
metric case, nomenclature which is justified for var­
ious reasons, as we shall see. Finally, we will turn
to quantum graphs, which in simple terms are metric
graphs equipped with differential operators. We will
describe a number of areas of current interest, espe­
cially within (parts of ) themathematical physics com­
munity. The list of topics we have selected is some­
what idiosyncratic; we include a brief mention of, and
references to the literature for, a variety of others. The
reader interested in discoveringmore is referred to the
book [BK13], considered a standard reference in the
area, the recent survey paper [BK20], the elementary
introduction [Ber17], and the somewhat older volume
[EKKST08], which contains a large number of still
useful review articles.

1

We give a gentle introduction to analysis on graphs. We focus on the construction of prototypical difference operators on dis-
crete graphs, differential operators on metric graphs, and the parallels between the two. The latter lead naturally to quantum 
graphs, metric graphs on which a Schrödinger-type differential operator acts, for which we finish by discussing a number of 
recent applications and ongoing areas of investigation. These are drawn mostly, but not exclusively, from mathematical physics.
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1.1 DISCRETE GRAPHS

In the case of discrete graphs we are more interested
in the vertices and consider the edges as relations be­
tween the vertices, without necessarily having any
direct physical meaning. More formally, a discrete
graph 𝖦𝖦 is a pair (𝖵𝖵𝖵 𝖵𝖵𝖵, where the vertex set 𝖵𝖵 is
any countable (in practice usually finite) set and each
edge 𝖾𝖾 in the edge set 𝖤𝖤 may be regarded as a pair of
vertices, that is, 𝖤𝖤 may be identified with a subset of
𝖵𝖵𝖵𝖵𝖵. Already herewehave a further decision tomake:
whether to treat the edges 𝖾𝖾 𝖾 𝖾𝖾𝖾𝖾 𝖾𝖾𝖾, 𝗏𝗏𝗏𝗏𝗏  𝗏 𝗏𝗏 as
ordered or unordered pairs; we speak of directed edges
(also called bonds in some circles) and undirected edges,
respectively. In the case of directed edges 𝖾𝖾 𝖾 𝖾𝖾𝖾𝖾 𝖾𝖾𝖾,
wemay distinguish between the initial vertex 𝗏𝗏 and the
terminal vertex 𝗐𝗐.

Many social networks may be modelled in this
framework; for example, Facebook is a network in
which each person (or entity) represents a vertex,
and being (Facebook) friends corresponds to an undi­
rected edge between the two vertices. Twitter, on the
other hand, is directed, if one considers the edge (𝗏𝗏𝗏𝗏𝗏𝗏
to mean 𝗏𝗏 is a follower of 𝗐𝗐 — as is the internet itself
with links being edges between the pages represented
by vertices. More generally, any model of a network
in which there is no natural distance between vertices,
nor physical bond linking them, is likely to fit into the
framework of discrete graphs. This is of course a con­
siderable simplification; for example, one may assign
a weight function to the edges of a discrete graph to
give a notion of the proximity of the respective ver­
tices.

To do any sort of analysis, of course we need to
define functions on our graph. In the case of discrete
graphs, this is easy: if functions live on the vertices,
then the space of all functions may be identified with
ℝ|𝖵𝖵𝖵 or ℂ|𝖵𝖵𝖵. Some care must be taken if the vertex
set 𝖵𝖵 is infinite; it becomes natural to work with ℓ𝑝𝑝­
spaces.

1.2 METRIC GRAPHS

Metric graphs, on the other hand, focus attention on
the edges, and are thus more suited to modelling
actual physical networks, or fine ramified structures
such as nanostructures. We will write 𝒢𝒢 𝒢𝒢 𝒢𝒢 𝒢 𝒢𝒢
for a metric graph, where now each edge 𝑒𝑒 𝑒𝑒  is
identified with a closed interval which may be finite,
of some given length ℓ(𝑒𝑒𝑒 𝑒 𝑒, i.e. 𝑒𝑒 𝑒 𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒 𝑒 ℝ,
or a half­line, [0, +∞). Care must obviously be taken

with the latter, so here we will restrict ourselves to
compact intervals.

In order to encode the topological structure of the
graph, or equivalently to create ametric, one identifies
all interval endpoints which correspond to a given ver­
tex. While intuitively this is very simple, formally it
is somewhat fiddly and may be done in a number of
ways: for example:

• identify equivalence classes of endpoints, or

• define the underlying metric directly by declar­
ing that the distance between two different in­
terval endpoints corresponding to the same ver­
tex is zero, thus allowing the construction paths
between any two points on different edges, or
alternatively

• work directly at the level of continuous func­
tions.

For more details we refer to [BK13, Section 1.3],
[Mug19] and [KKLM20, Section 2].

At any rate, this gives rise naturally to a metric
space; the distance between two given points is the
(Euclidean) distance of the shortest path between
them. Technically the metric is a pseudometric, as it
may take the value +∞ if there is no path between a
given pair of points, but it becomes a metric if and
only if the graph is connected.

When it comes to defining spaces of functions,
metric graphs are, unsurprisingly, more interesting
than their discrete counterparts, albeit not yet at the
level of 𝐿𝐿𝑝𝑝­spaces: we may simply define, for a graph
𝒢𝒢 𝒢𝒢 𝒢𝒢 𝒢 𝒢𝒢 with a finite edge set ℰ ,

𝐿𝐿𝑝𝑝(𝒢𝒢 𝒢𝒢  ⨁
𝑒𝑒𝑒𝑒

𝐿𝐿𝑝𝑝(𝑒𝑒𝑒 𝑒 ⨁
𝑒𝑒𝑒𝑒

𝐿𝐿𝑝𝑝(0, ℓ(𝑒𝑒𝑒𝑒

(each edge being prototypically equipped with
Lebesgue measure on the interval [0, ℓ(𝑒𝑒𝑒𝑒); indeed,
𝐿𝐿𝑝𝑝­functions will never see the vertices as the latter
form a set of measure zero. Correspondingly, to in­
tegrate a function over the graph we integrate over
each edge and sum the result. The structure of the
graph is only encoded at the level of continuous func­
tions: 𝐶𝐶𝐶𝐶𝐶𝐶  will consist of those functions which are
continuous on every edge, such that their values at all
endpointsmeeting at a vertex should agree. These are
of course exactly the functions which are continuous
with respect to the metric.

To define differentiable functions becomes more
challenging because of the issue of defining the deriva­
tive across the vertices; instead, it becomes more nat­
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[1]	 This condition is sometimes loosely called a flow in equals flow out condition, although this expression must 
obviously be interpreted with care, depending on the kind of flow one is imagining.
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we specify the values at the vertices – this also gives rise naturally to difference operators (centre); one may instead
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X

X

Figure 2: The Cheeger cut of a graph with 20 vertices.

1 INTRODUCTION: TWO COMPLEMENTARY
TYPES OF GRAPHS

Probably everyone has at least an intuitive notion of
what a graph is: a collection of vertices, or nodes,
joined by edges. Most mathematicians, perhaps even
some non­mathematicians, probably have some idea
of the role that graphs play in modelling phenomena
as diverse as fine structures such as crystals and car­
bon nanostructures, social networks, the PageRank
algorithm, data processing and machine learning, …,
but may not be so familiar with the details.

Generally speaking, at amathematical level, we are
interested in some process taking place on the graph,
such as described by a difference or differential equa­
tion. The mathematics behind such equations com­
bines ideas from graph theory (obviously), linear al­
gebra, functional analysis and the theory of differ­
ential equations, operator theory, and mathematical
physics; yet many of the details seem to be largely un­
known to the wider mathematical community. As a
test: do you know what quantum graphs are?

Our goal here is to give somewhat uneven intro­
duction to analysis on graphs: we first describe, in
hopefully accessible terms, what this is: how to de­
fine functions and difference and differential opera­

tors on graphs, and study them – and in particular
what are quantum graphs. Our starting point is that
there are (at least) two natural, somewhat parallel, no­
tions of graphs: discrete and metric graphs; the for­
mer give rise to difference operators, the latter to dif­
ferential operators. We will first discuss the construc­
tion of these graphs, and then introduce prototypical
difference and differential operators, principally reali­
sations of the Laplacian, on each.

But our second goal is to highlight some of the
parallels between the two kinds of graphs: indeed,
one speaks of Laplacians in both the discrete and the
metric case, nomenclature which is justified for var­
ious reasons, as we shall see. Finally, we will turn
to quantum graphs, which in simple terms are metric
graphs equipped with differential operators. We will
describe a number of areas of current interest, espe­
cially within (parts of ) themathematical physics com­
munity. The list of topics we have selected is some­
what idiosyncratic; we include a brief mention of, and
references to the literature for, a variety of others. The
reader interested in discoveringmore is referred to the
book [BK13], considered a standard reference in the
area, the recent survey paper [BK20], the elementary
introduction [Ber17], and the somewhat older volume
[EKKST08], which contains a large number of still
useful review articles.

1

Figure 1. A simple graph on 5 vertices and 4 edges (left); to define a function f on a discrete 
realisation of the graph we specify the values at the vertices — this also gives rise naturally to 
difference operators (centre); one may instead identify each edge ei with an interval [0,𝓁i] ⊂ ℝ$ 
(or a half-line [0,+∞)), and glue together the intervals at their endpoints in the right way, to form 
a metric graph (right). Here a path between two points x and y is marked in red.

ural to speak of vertex conditions which the functions
should satisfy (such as continuity at the vertices, as
imposed in 𝐶𝐶𝐶𝐶𝐶 𝐶). Two of the most natural such
conditions to satisfy are the Dirichlet, or zero, condi­
tion, and the Kirchhoff condition, where the sum of
inward­pointing derivatives at a vertex equals zero.[1]

In practice, one usually works with Sobolev
spaces of weakly differentiable functions; for exam­
ple, 𝐻𝐻1(𝒢𝒢𝒢  is defined as those functions which are
edgewise 𝐿𝐿2­integrable with edgewise 𝐿𝐿2­integrable
weak derivative, and which are continuous across the
vertices. This makes sense since by standard Sobolev
embedding theorems one­dimensional 𝐻𝐻1­functions
are continuous and thus, up to choosing the correct
representative, defined pointwise.

Three final observations are in order: firstly, thus
defined, our graphs are not considered to be embed­
ded in Euclidean space; there is no curvature of the
edges or angle between them. Secondly, by labelling
one vertex of an edge 𝑒𝑒 𝑒 𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 as 0 and the other
as ℓ(𝑒𝑒𝑒 𝑒 𝑒, we are implicitly (or explicitly) imposing
an orientation. However, for many practical purposes
this orientation is irrelevant; the differential operators
we shall define in the sequel are independent of this
choice up to unitary equivalence. Thirdly, in the case
of metric graphs it is easy to allow multiple edges be­
tween vertices, as well as loops (edges which begin
and end at the same vertex); in the case of discrete
graphs this is a bit more complicated and we will tac­
itly assume that our graphs are free of such features,
even thoughmost of what we discuss will remain true
even with multiple parallel edges and loops.

2 DIFFERENCE AND DIFFERENTIAL
OPERATORS

We see immediately that on discrete graphs, since the
functions are identifiable with vectors, difference op­
erators (or more generally matrices) will arise; while
on metric graphs we may define (ordinary) differen­
tial expressions on the edges. In the latter case the
point of interest becomes specifying the vertex condi­
tions, or equivalently the domain of definition of the
differential operator; a metric graph is essentially a
smooth one­dimensional manifold with isolated sin­
gularities (the vertices). In both cases we will illus­
trate this via a prototypical operator, the Laplacian;
note that here, in both cases, our edges will be undi­
rected.

Let us start with metric graphs, as here we are
closer to the traditional Laplacian from the theory of
PDEs. In fact, we start with the differential expres­
sion −𝑓𝑓 ″ on each edge. It is natural to impose conti­
nuity at all vertices, as this is essentially the minimal
requirement for the functions to see the graph. Addi­
tionally imposing the Kirchhoff condition, which we
may write as

∑
𝑒𝑒 adjacent to 𝑣𝑣

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑣𝑣𝑣 𝑣 𝑣𝑣

that is, the sum of the derivatives of 𝑓𝑓 at the endpoint
of each edge 𝑒𝑒 directed into the vertex 𝑣𝑣, gives rise to
the Laplacian with vertex conditions variously known
as standard, natural, continuity­Kirchhoff, and even
Neumann­Kirchhoff (if the vertex has degree one, i.e.,
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only one edge attached, then this reduces to the Neu­
mann condition. Roughly speaking, in many ways
the Laplacianwith standard conditions behaves some­
what like the Neumann Laplacian on domains, or
the Laplace­Beltrami operator on manifolds without
boundary). For the Dirichlet condition at a vertex
𝑣𝑣, instead of the Kirchhoff condition we require that
𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓.

If the graph 𝒢𝒢 has finite total length, then such
operators are self­adjoint, semi­bounded from below,
and have compact resolvent; thus they behave exactly
like Laplacians or Schrödinger operators on bounded
domains and manifolds. Generalisations, such as
adding a potential to each edge, are easy to incorpo­
rate in this framework.

All this is perhaps more naturally seen at the
level of forms/weak solutions: the associated positive,
symmetric sesquilinear form reads

𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎  ∫𝒢𝒢
𝑓𝑓 ′ ⋅ 𝑔𝑔′ d𝑥𝑥

with form domain exactly 𝐻𝐻1(𝒢𝒢 𝒢 in the case of the
standard Laplacian; if Dirichlet conditions are im­
posed at one or more vertices then the functions
should additionally take on the value 0 there. (All
this is a short exercise in integration by parts.) The
eigenvalues and eigenfunctions of the Laplacian ad­
mit the usual min­max variational characterisation;
for example, the smallest eigenvalue can be obtained
by minimising 𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎  among all 𝑓𝑓 𝑓 𝑓𝑓1(𝒢𝒢 𝒢 whose
𝐿𝐿2­norm is 1.

On discrete graphs, the (discrete or combinatorial)
Laplacian is defined purely in terms of the graph struc­
ture. We suppose 𝖦𝖦 𝖦𝖦 𝖦𝖦𝖦 𝖦𝖦𝖦 to be a discrete graph
with finite vertex set 𝖵𝖵𝖵  𝖵𝖵𝖵1, … ,𝗏𝗏 𝑛𝑛} and finite edge
set 𝖤𝖤𝖤𝖤  𝖤𝖤1, … ,𝖾𝖾 𝑚𝑚}. We take as a starting point the
following matrices:

• the adjacency matrix, the symmetric matrix
whose (𝑖𝑖𝑖 𝑖𝑖𝑖­entry is 1 if 𝗏𝗏𝑖𝑖 and 𝗏𝗏𝑗𝑗 share an edge,
or 0 otherwise (in the case of directed edges this
matrix can still be defined but will no longer be
symmetric);

• the degree matrix, the diagonal matrix whose
(𝑖𝑖𝑖 𝑖𝑖𝑖­entry is the degree of 𝗏𝗏𝑖𝑖, i.e., the number
of edges emanating from 𝗏𝗏𝑖𝑖.

The (discrete) Laplacian is the difference operator cor­
responding to the symmetric, positive semidefinite
matrix 𝐿𝐿 𝐿𝐿 𝐿𝐿 𝐿 𝐿𝐿. For example, for the graph de­
picted in Figure 1, with the order of vertices as speci­

fied there, the Laplacian would be

𝐿𝐿 𝐿

⎛
⎜
⎜
⎜
⎜
⎝

1 −1 000 
−1 3 −1 −1 0
0− 1 1 00
0− 1 0 2 −1
000−   1 1

⎞
⎟
⎟
⎟
⎟
⎠

.

The fact that this is a plausible discrete version of the
Laplacian may be recognised in (at least) two ways:

• vectors 𝑥𝑥 satisfying 𝐿𝐿𝐿𝐿𝐿𝐿   have the mean value
property, as can be checked with the above exam­
ple: since the sum of each row of 𝐿𝐿 is zero, the
value of 𝑥𝑥 at a vertex is equal to the sum of the
values at the surrounding vertices – just as har­
monic functions inℝ𝑑𝑑 , solutions ofΔ𝑓𝑓 𝑓 𝑓, sat­
isfy the (continuous) mean value property;

• at the level of forms: 𝐿𝐿 is associated with the
positive, symmetric sesquilinear form

𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎  ∑
𝖾𝖾𝖾𝖾𝖾

(ℐ 𝑇𝑇 𝑥𝑥𝑥𝑥𝑥𝑥𝑥(ℐ 𝑇𝑇 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

where ℐ ∈ ℝ𝑛𝑛𝑛𝑛𝑛 is the so­called (signed) inci-
dence matrix encoding which vertices are the ter­
minal and initial endpoints of which edges; in
fact 𝐿𝐿 may also be represented as 𝐿𝐿 𝐿𝐿𝐿   𝑇𝑇 ,
and we may intuitively think of ℐ as a discrete
counterpart of the divergence operator.

A word of caution: there is a common, normalised
variant, namely

𝐿𝐿norm ∶= Id −𝐷𝐷−1/2𝐴𝐴𝐴𝐴−1/2

(that is, we normalise the operator by the degree of
the vertices); its |𝖵𝖵𝖵 eigenvalues (counting multiplic­
ities) always lie in the interval [0, 2]. The standard
reference on the topic is [Chu97]; see also [Mug14,
Chapter 2] for the construction of all these matrices
as well as their directed counterparts.

A strong mathematical parallel between the stan­
dard Laplacian on a metric graph and the normalised
Laplacian on the corresponding discrete graph was
established by von Below in 1985 [Bel85]. Namely,
if all the edges of the metric graph have length 1,
and we denote by 𝜆𝜆𝑘𝑘 the ordered eigenvalues of the
standard Laplacian, then, up to certain special cases
(corresponding to the normalised Laplacian eigenval­
ues 0 and 2) the eigenvalues of 𝐿𝐿norm are given by
1 − cos(√𝜆𝜆𝑘𝑘); the values of the eigenvectors corre­
spond to the values of the eigenfunctions at the ver­
tices. Thus, at least for this special class of equilateral
metric graphs, the standard Laplacian as a differential
operator is essentially determined by the corresponding
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discrete (normalised) Laplacian. Such connections
between discrete and continuous versions have natu­
rally been explored further over the last 30­odd years;
see [LP16] and the references therein.

2.1 SO WHAT ARE QUANTUM GRAPHS?

We can now finally answer the first question posed in
the title. By a quantum graph we understand a met­
ric graph on which acts a differential operator, most
often (but not necessarily) some kind of Schrödinger
operator orHamiltonian [Ber17, BK13]; of course this
includes various realisations of the Laplacian.

While differential operators onmetric graphs have
been studied for a long time— theywere actively stud­
ied in the 1980s, often under the name 𝑐𝑐2-networks
(e.g., [Bel85, Nic87]), and there are applications go­
ing back much further [RS53] — the name quantum
graph is generally considered [Ber17] to trace back to
the article Quantum Chaos on Graphs [KS97] from
1997, possibly as a contraction of the title.

3 A CORNUCOPIA OF APPLICATIONS

We finish with a discussion of some current topics of
interest in the community, as an answer to the sec­
ond question posed in the title: we wish to give some
idea of the variety of problems and applications which
arise in the context of quantum graphs. One may
broadly and imperfectly group the applications into
models where it is intrinsically sensible to consider
ramified structures (atomic or crystalline structures,
honeycombs, ramified traps,…) and those where the
graph represents a toymodel used to studymathemat­
ical or quantum physical phenomena: graphs are sim­
ple one­dimensional objects which often display com­
plex behaviour typical of higher­dimensional prob­
lems.

In the following list no claim is made to complete­
ness, either in the list of topics or in the references
given, which largely reflect the author’s personal taste
and prejudices. Where possible we have tried to pro­
vide some of the most recent references available to
act as a starting point for a further literature search.

In keepingwith these prejudices, aswell as the gen­
eral focus of the quantum graph community, we will
mostly be interested in differential operators such as
the Laplacian and Schrödinger operators, and their
spectra. This is natural since by the spectral theorem

the spectrum completely determines such self­adjoint
operators.

3.1 APPROXIMATION OF, OR BY,
HIGHER­DIMENSIONAL OBJECTS

There are two senses in which graphs, be they dis­
crete or metric, can be related to higher­dimensional
domains or manifolds: one can consider a (metric)
graph as the limit of a sequence of thin branching do­
mains (shrinking tubes, or fattened graphs), or one can
try and approximate a domain ormanifold as the limit
of as sequence of graphs. In the latter case one usually
takes discrete graphs as the approximating objects, as
a kind of discretisation of the domain or manifold.

Needless to say, there is an extensive literature on
both. The latter is sometimes used to extend results
from discrete graphs to manifolds (as in [LLPO15],
see also Section 3.3). The former provides a justifica­
tion for using quantum graphs to study phenomena
like waveguides, be they acoustic, quantum or elec­
tromagnetic, thin super­conducting structures and so
on; here we will follow, and refer to, [BK13, Sec­
tion 7.5]. Another standard reference for shrinking
tubes is the review paper [Gri08] contained in the vol­
ume [EKKST08]. Typical questions include whether
the solutions of differential equations in the thin do­
mains converge to the solution of some differential
equation on the graph, and if so, what vertex condi­
tions the problem in the limit satisfies. (More tech­
nically, we are interested in convergence of the resol­
vents of the operators in various norms, as well as of
the operator eigenvalues and eigenfunctions.)

The precise results depend very much on the na­
ture of the approximation, but in perhaps the sim­
plest and most important case of Schrödinger opera­
tors inNeumann tubes (thin perfectly insulated tubes)
shrinking uniformly, one does at least have conver­
gence of the eigenvalues to the eigenvalues, in the cor­
rect order, of the Schrödinger operator on the graph
with standard vertex conditions, and where the elec­
tric potential is, roughly speaking, the restriction of
the potential on the thin domain to the graph it con­
tains. Work is still ongoing to establish other kinds
of convergence, in particular under different kinds of
domain convergence.

In this case the limit object, the quantum graph
with its Schrödinger operator, forgets many geomet­
ric features of the domains, such as angles between
branches, curvature of edges and so on. If one al­
lows the Neumann tubes to shrink in a wilder, non­
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uniform fashion, then one may obtain more interest­
ing limit quantum graphs, including where the op­
erators satisfy other vertex conditions than the stan­
dard/Kirchhoff ones.

3.2 SPECTRAL GEOMETRY

We have seen that discrete Laplacians may be defined
directly in terms of the structure (topology) of a dis­
crete graph, and that at least at the spectral level this
can be transferred to equilateral metric graphs via von
Below’s formula. Can we say something about (non­
equilateral) metric graphs, where we have to contend
with both the topology and the edge length?

In the case of domains and manifolds a group
of questions revolves around understanding how the
eigenvalues and eigenfunctions depend on the geom­
etry of the underlying domain or manifold. The clas­
sical example is the theorem of Faber­Krahn from the
1920s, based on an earlier conjecture of LordRayleigh,
that among all domains of given volume the ball is
the one whose first Dirichlet Laplacian eigenvalue is
smallest. This is an analytic translation of the geomet­
ric isoperimetric inequality, that the ball minimises
surface area for given volume; the first (nonzero)
eigenvalue is of particular interest because it controls
the rate of heat loss in the heat equation, the lowest fre­
quency of the object, and so on. We refer to [Pay67]
for a (classical) introduction and [Hen06, Hen17] for
more modern surveys of the area of shape optimisation
and spectral theory. The corresponding inverse prob­
lem, determining the domain/manifold based on the
spectrum of a differential operator on it, corresponds
to the question made famous by Mark Kac, “can one
hear the shape of a drum?”; see [LR15].

On metric graphs the equivalent of the theorem
of Faber­Krahn states that the smallest nonzero eigen­
value of the Laplacianwith standard vertex conditions
isminimisedwhen the graph is an interval of the same
length; this theorem first appeared around 30 years
ago [Nic87]. It turns out that graphs are far more
amenable to this kind of analysis than domains; see
[BL17, BKKM19, KKMM16]. A surprisingly subtle
question is which (geometric or topological) proper­
ties of a graph are sufficient to bound its eigenvalues
and which are not. For example, fixing the diame­
ter 𝐷𝐷 (length of the longest path within the graph)
alone places no control on the smallest nonzero stan­
dard Laplacian eigenvalue: it may be arbitrarily large
or small [KKMM16]; however, if we restrict to trees,
graphs without cycles, then it cannot exceed 𝜋𝜋2/𝐷𝐷2,

the corresponding eigenvalue of an interval of length
𝐷𝐷.

Work has also been done on isospectral graphs,
quantum graphs which are different but have the
same Laplacian spectra. On graphs the problem can
be given a new twist since one has more chance of de­
scribing the corresponding eigenfunctions: one con­
siders the so­called nodal count, the number of nodal
domains, which are by definition the connected com­
ponents of the set where the eigenfunction is nonzero.
See [BK13, Section 7.1].

3.3 CLUSTERING AND PARTITIONS

A major preoccupation in applied graph theory is to
detect the presence of clusters in a (usually discrete)
graph. One might ask whether a given social network
such as Facebook tends to be divided into groups of
hig hly interconnected individuals with few links be­
tween the groups, thus creating the infamous echo
chambers. Alternatively, one might wish to identify,
say, weaknesses in a road network or an electricity
grid: if the power lines here go down, does half the
country lose power?

There are various ways to measure this. One natu­
ral way is the notion of Cheeger constants and Cheeger
cuts borrowed from geometric analysis, originally in­
troduced for manifolds. Say we wish to cut the graph
𝖦𝖦 into two pieces 𝑆𝑆 and 𝑆𝑆𝑐𝑐 = 𝖦𝖦 𝖦 𝖦𝖦, which we do by
cutting through edges. Then for each possible cut we
look at the ratio

|𝜕𝜕𝜕𝜕𝜕
min{|𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑐𝑐|}

of edges cut |𝜕𝜕𝜕𝜕𝜕 to the smaller of the two sets 𝑆𝑆 e 𝑆𝑆𝑐𝑐,
as measured by the number of vertices in the set.

The infimum of this quotient over all possible cuts
is the Cheeger constant; the smaller the constant, the
easier it is to cut the graph into two (the traditional
image for this is the dumbbell manifold, cut through
its thin handle).

Figure 2 gives an example on graphs: on this graph
of 20 vertices, there is a way to make just two cuts
to separate the graph into two groups of 10 vertices
each, labelled as blue and red; this is in fact the opti­
mal cut. One might imagine a social network where
the vertices represent users; the blue users tend only
to have friends with other blue users, while the red
users likewise stay amongst themselves. In this case
the Cheeger constant will be 2/ min{10, 10} = 1/5,
which may be considered small (the number has no
absolute meaning but should be viewed in conjunc­
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tion with the total number of vertices and edges).

One can also consider higher order Cheeger con­
stants, which partition the graph into more than two
pieces, and in fact estimating these constants, in par­
ticular in terms of Laplacian eigenvalues, is one in­
stance where results were first proved on discrete
graphs and then transferred to manifolds [LLPO15].
Cheeger constants have also been introduced on met­
ric graphs, with the numerator remaining the same
and the denominator becoming the total length (sum
of edge lengths) of each piece [KM16, Nic87].

The Cheeger constant corresponds to the first
eigenvalue of the so­called 1­Laplacian, i.e., the 𝑝𝑝­
Laplacian when 𝑝𝑝 𝑝 𝑝; the eigenvector/eigenfunction
has two nodal domains which correspond to the
Cheeger cut. This operator is singular, its eigenval­
ues lack the easy𝐿𝐿𝑝𝑝­variational characterisation of the
𝑝𝑝­Laplacian eigenvalues, and actually calculating the
constant of a large graph becomes a computationally
hard problem.

Thus one can use the (2­)Laplacian (say, with
standard vertex conditions) as a natural proxy, as its
variational structure makes determining the eigenval­
ues and eigenfunctions much easier, both analytically
and computationally. Ideally one would use the nodal
domains of the 𝑘𝑘­th eigenvalue as an “optimal” parti­
tion into 𝑘𝑘 pieces, but in general there is no simple re­
lationship between the number of nodal domains of
an eigenfunction and its number in the sequence. A
natural alternative is to consider spectral minimal par-
titions, whereby one looks to minimise a functional of
the eigenvalues over all partitions; prototypically this
problem might take the form

inf
𝒫𝒫

max
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜆𝜆1(Ω𝑖𝑖),

where the infimum is taken over all partitions𝒫𝒫 of the
object (domain, graph, …) into 𝑘𝑘 pieces Ω1,…,   Ω𝑘𝑘,
and 𝜆𝜆1(Ω𝑖𝑖) is the first nontrivial eigenvalue of a suit­
able Laplacian onΩ𝑖𝑖; one could equally take a 𝑝𝑝­norm
of the eigenvalues in place of the∞­norm. Such prob­

lems were originally considered, and have been stud­
ied intensively, on domains and some manifolds; see
[Hen17, Chapter 10] for a survey.

On metric graphs this topic is new: the first sys­
tematic study of spectral minimal partitions was un­
dertaken in [KKLM20]. As is the case for spectral ge­
ometry, and actually for many problems considered
here, one can say far more on metric graphs than on
domains. Here, far more functionals can be mean­
ingfully defined on the former than the latter, includ­
ing more exotic combinations of eigenvalues (such
as max­min rather than min­max problems). Under­
standing how these optimal partitions differ andwhat
they reveal about the structure of the graph will be a
topic of interest in the next few years.

3.4 NONLINEAR SCHRÖDINGER EQUATIONS

Until now we have always considered linear differ­
ential operators, as has historically usually been the
case on metric graphs. There is, however, a notable
family of exceptions, first considered just a few years
ago [AST15a]. This principally involves studying ex­
istence, or nonexistence, of certain solutions of sta­
tionary nonlinear Schrödinger equations on metric
graphs (NLSE for short). A stationaryNLSE typically
takes the form

−Δ𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  𝑢𝑢𝑢 (1)

where in place of the usual potential term 𝑉𝑉 𝑉𝑉 a non­
linearity 𝑓𝑓𝑓𝑓𝑓𝑓 is introduced; here, as in the literature,
we will consider the prototypical power nonlinearity
𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝𝑢𝑢. These equations, a bedrock of the
Calculus of Variations literature, are most commonly
studied in 𝑑𝑑­dimensional space, see [Caz03] for an
introduction, but a number of applications, such as
Bose­Einstein condensates in traps or optical fibres
[AST15a], make it reasonable to consider NLSE in
ramified structures, that is, on metric graphs, most
commonly and naturally with standard vertex condi­
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Figure 1: A simple graph on 5 vertices and 4 edges (left); to define a function 𝑓𝑓 on a discrete realisation of the graph
we specify the values at the vertices – this also gives rise naturally to difference operators (centre); one may instead
identify each edge 𝑒𝑒𝑖𝑖 with an interval [0, ℓ𝑖𝑖] ⊂ ℝ (or a half­line [0, +∞)), and “glue together” the intervals at their
endpoints in the right way, to form a metric graph (right). Here a path between two points 𝑥𝑥 and 𝑦𝑦 is marked in
red.

X

X

Figure 2: The Cheeger cut of a graph with 20 vertices.

1 INTRODUCTION: TWO COMPLEMENTARY
TYPES OF GRAPHS

Probably everyone has at least an intuitive notion of
what a graph is: a collection of vertices, or nodes,
joined by edges. Most mathematicians, perhaps even
some non­mathematicians, probably have some idea
of the role that graphs play in modelling phenomena
as diverse as fine structures such as crystals and car­
bon nanostructures, social networks, the PageRank
algorithm, data processing and machine learning, …,
but may not be so familiar with the details.

Generally speaking, at amathematical level, we are
interested in some process taking place on the graph,
such as described by a difference or differential equa­
tion. The mathematics behind such equations com­
bines ideas from graph theory (obviously), linear al­
gebra, functional analysis and the theory of differ­
ential equations, operator theory, and mathematical
physics; yet many of the details seem to be largely un­
known to the wider mathematical community. As a
test: do you know what quantum graphs are?

Our goal here is to give somewhat uneven intro­
duction to analysis on graphs: we first describe, in
hopefully accessible terms, what this is: how to de­
fine functions and difference and differential opera­

tors on graphs, and study them – and in particular
what are quantum graphs. Our starting point is that
there are (at least) two natural, somewhat parallel, no­
tions of graphs: discrete and metric graphs; the for­
mer give rise to difference operators, the latter to dif­
ferential operators. We will first discuss the construc­
tion of these graphs, and then introduce prototypical
difference and differential operators, principally reali­
sations of the Laplacian, on each.

But our second goal is to highlight some of the
parallels between the two kinds of graphs: indeed,
one speaks of Laplacians in both the discrete and the
metric case, nomenclature which is justified for var­
ious reasons, as we shall see. Finally, we will turn
to quantum graphs, which in simple terms are metric
graphs equipped with differential operators. We will
describe a number of areas of current interest, espe­
cially within (parts of ) themathematical physics com­
munity. The list of topics we have selected is some­
what idiosyncratic; we include a brief mention of, and
references to the literature for, a variety of others. The
reader interested in discoveringmore is referred to the
book [BK13], considered a standard reference in the
area, the recent survey paper [BK20], the elementary
introduction [Ber17], and the somewhat older volume
[EKKST08], which contains a large number of still
useful review articles.

1

Figure 2. The Cheeger cut of a graph whith 20 vertices.
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tions. Ofmost interest are the ground states, minimis­
ers of the energy functional for which 1 is the Euler­
Lagrange equation:

𝐸𝐸𝐸𝐸𝐸𝐸 𝐸 1
2

‖𝑢𝑢′‖2
2 − 1

𝑝𝑝
‖𝑢𝑢𝑢𝑝𝑝

𝑝𝑝,

where ‖ ⋅ ‖2 and ‖ ⋅ ‖𝑝𝑝 are, respectively, the 𝐿𝐿2­ and
𝐿𝐿𝑝𝑝­norms, here on some graph 𝒢𝒢 . Here one usu­
ally considers unbounded graphs, with a finite num­
ber of edges but where some of them are half­lines
(𝒢𝒢 𝒢 ℝ itself is a prototype, being two half­lines
glued together at the origin), as well as the subcritical
case 2 < 𝑝𝑝 𝑝 𝑝, which guarantees the Sobolev embed­
ding 𝐻𝐻1 ↪ 𝐿𝐿𝑝𝑝 in dimension 1.

It turns out that the existence or non­existence of
ground states on such graphs depends heavily on the
topology of the graph, as shown in a series of land­
mark papers [AST15a, AST15b, AST16, AST17]. Fur­
ther research, including into stability of solutions and
standing waves, other types of metric graphs, other
restrictions on the parameters, and other equations
is ongoing; see, for example, [DST20, Hof19, NP20]
and the references therein.

3.5 FINAL REMARKS

The above list excludes a huge and growing num­
ber of topics from various areas of mathematics.
We could mention quantum chaos (the presumable
source of the name quantum graph, as discussed in
Section 2.1; see also [BK13, Chapter 6]), as well as
various other applications in mathematical physics
such as scattering and inverse scattering, the Bethe­
Sommerfeld property on the gap structure of the spec­
trum of periodic objects [ET17], Anderson localisa­
tion [DFS, DS19], the spectra of graphene and car­
bon nanotubes, Bose­Einstein condensates, and the
quantumHall effect. Differential equations on metric
graphs also feature in other areas ofmathematics as di­
verse as neural networks andmodels of population dy­
namics [DLPZ20, SCA14]. Surveys of many of these
and further applications in mathematical physics may
be found in [BK20], [BK13, Chapter 7] and the collec­
tion [EKKST08].
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Let us start by talking about your early years. In School/
High School, was Mathematics your favorite subject? 
What other subjects captured your interest?
I always loved Mathematics. My fondest memories from 
High School are of being alone in my room studying 
Mathematics, while listening to music.

Can you tell us about your decision to study at Instituto 
Superior Técnico (IST)? What made you choose the 
undergraduate degree in Mathematics and Computation?
It was non-linear, I am afraid. I first chose to pursue an 
Engineering degree because I could not imagine that 
one could be a mathematician. I literally thought that all 
Mathematics had been done by Cauchy, Bolzano, and 
Weierstrass. Only when I took an ODE’s class with Professor 
José Sousa Ramos I realized that there was a whole world 
out there to be explored. I then changed my major from 
Engineering to Mathematics.

Can you describe the study environment at IST during 
your time there, in particular the role of your professors 
and colleagues in your Mathematics background, and in 
your path to become a researcher?
I loved it! It was a very small group and I had the good 
fortune of being taught by several young mathematicians 
that had just finished their Ph.D.‘s and returned from 
abroad (mostly from the United States). They would teach 
Mathematics that seemed very original, sophisticated, and it 
was truly inspiring.

It is clear that your Ph.D. at Stanford University was a 
fundamental step in your career. Can you also describe 
the academic environment there, in particular how you 
came to work on the interface between Geometry and 
Analysis, and the role of Prof. Richard Schoen, your 
advisor?
On my first year, I took a course in Riemannian Geometry 
that was taught by Rick Schoen. I loved the class and the 
subject and decided to pursue my Ph.D. in that area. Rick 
was the first outstanding mathematician I met, and he has 
served as a role model since. 
	 He was not afraid of pursuing hard questions and if he 
felt he had a good idea, he would fiercely pursue it. Most 
importantly, I understood that there is always a good reason 
for an idea to work, and that trying things just for the sake of 
it rarely works. He shaped my mathematical career.

Other key moments in your career were the Postdoc at 
Princeton, the position at Imperial College and the award 
of an ERC (European Research Council) grant. Can you 
tell us about those periods?
The time at Princeton was a bit stressful because one of 
the hardest periods in a mathematics career is the transition 
from Postdoc to mathematician. There is a tension that 

comes from the fact that, on one hand, we have to come 
up with our own problems and carve our own way of 
doing Mathematics, but on the other hand we also have 
the pressure to have papers published, because we will be 
applying for tenure-track jobs soon. 
	 At Imperial College, I had a tenured job and so the 
pressure of publishing decreased. I was freer to pursue other 
directions in Mathematics and to tackle problems in which I 
had to start from scratch. 
	 The ERC grant helped me because it reduced my 
administrative duties and allowed me to hire postdocs, some 
of which became good collaborators of mine.

You have established many research collaborations, but 
the one with Fernando Codá Marques is noteworthy. 
Can you summarize the story of how you became 
collaborators and friends?
We met at Princeton and became friends as we were one 
of the few Portuguese speaking people at the Mathematics 
Department. We were working on the same field and so we 
kept discussing mathematics problems on a regular basis. For 
the first years not much happened, but after a while we were 
able to look at some old problems with a new point of view 
and then our mathematics collaborations started.

Some mathematicians follow mostly one problem or 
guiding principle in their research, others keep changing 
fields and exploring different topics. Do you have a main 
philosophical guiding principle?
It is hard for me to answer because I literally pursue the 
questions that interest me at any given time. As I have 
become more confident, I have learned that if there is 
some phenomenon I don’t understand, then it is probably 
worthwhile to pursue that.

You are probably the portuguese mathematician that 
received more international prizes and awards. What do 
you think are the most important qualities a researcher 
must have to achieve such success at the international 
level? 

Being courageous and bold in the sense of not being afraid 
of addressing problems that are perceived as being hard is a 
good quality to have, in my opinion. 

You have worked both in Europe and in the United 
States. Do you think there are key differences in the ways 
Mathematics is viewed by academic departments, and 
their approaches to research training and funding?
In the U.S. the grants tend to be smaller, but more 
mathematicians are funded. In Europe, the grants are higher 
but less mathematicians are funded. I think that is partly 
because the University Departments in the U.S. fund the 
postdocs and the students, and so less funding is needed at 
the individual level. That being said, I am not sure that has 
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any effect in the quality of research. Both continents have 
stellar mathematicians.

Even though the World today is facing many crisis, and 
the areas of research and development are constantly 
evolving, many European countries have recently 
invested in Pure Mathematics, by creating Research 
Institutes in which Fundamental Mathematics form a 
central part, such as the ICMAT (Instituto de Ciencias 
Matemáticas, Madrid, Spain) or the IST Austria (Institute 
of Science and Technology Austria). Do you feel that the 
establishment of such a Research Institute in Portugal is 
crucial to promote research in Fundamental Science?
Of course! It would be wonderful if Portugal had a Research 
Institute in Mathematics like it has in other fields, for 
instance the Champalimaud Centre for the Unknown or the 
Gulbenkian Institute of Science.

Research today in Mathematics is being influenced and 
shifted by the rise of neighbouring disciplines, such as 
Data Science, Machine Learning, Quantum Computing, 
Mathematical Biology, etc, and there is a big pressure to 
give most of the funds to Applicable Mathematics. Do 
you think Pure Mathematics can continue it‘s path as 
before or, in order to strive and be funded, has to stay in 
close daily contact with Applied Sciences?
I think it is important for Mathematics to be in contact with 
Applied Sciences for two reasons. One, of course, is the 
funding issue. The other is more philosophical and is related 
with the fact that if we work with physical quantities that are 
governed by fundamental principles, then the mathematical 
research arising from that tends to reach several fields of 
Mathematics and Applied Sciences.

	 For instance, the fact that minimal surfaces are physical 
objects (i.e., they can be observed) is one of the reasons 
that minimal surfaces are found across several fields of 
Mathematics (Geometry, Relativity, Algebraic Geometry, 
Dynamical Systems, etc).
	 For instance, I ask questions and talk to colleagues of 
mine working in Materials Science to have a better idea of 
how minimal surfaces should distribute themselves in space 
(they call them gyroids).

What excites you most in mathematics research, and 
what makes you pursue problem after problem, even 
after solving already many famous ones? Do you want to 
tell us about your future projects?
I have always been attracted by simple questions that an 
undergraduate can understand, but that in order to be 
solved one needs sophisticated mathematics.
	 As for the problems that I pursue, it is a mix. Some of 
them I am motivated because the problems are spin-offs 
from a larger question that I cannot answer. Other times, 
I hear about some theorem or conjecture which I find 
fascinating and so I try to see if I can explain that to myself 
using the tools that I know. Most of the times I don’t, and 
that means I now have a new direction of research.

You often mention your interest in following portuguese 
mathematics. Do you see yourself returning to Portugal 
and establishing a new research group here?
Of course. I would love to have the opportunity to 
establish a research group in Portugal and help the young 
undergraduates pursue a career in Mathematics, in the same 
way that people helped me when I was an undergraduate.
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Given a topological space, one can consider its configuration space of n pairwise distinct points. We study the topological prop-
erties of such configuration spaces and address question of homotopy invariance.

1 CONFIGURATION SPACES AND
DEFINITIONS

Let 𝑋𝑋 be a topological space and 𝑛𝑛 𝑛 𝑛 be an integer.
The configuration space of 𝑛𝑛 (non-overlapping) points on
𝑋𝑋 is the set

Conf𝑛𝑛(𝑋𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋1, … , 𝑥𝑥𝑛𝑛) ∈ 𝑋𝑋𝑛𝑛 | 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑗𝑗 if 𝑖𝑖 𝑖𝑖𝑖 𝑖𝑖

1•

2•
•3 ∈ Conf3(Torus)

Notice that being a subset of 𝑋𝑋𝑛𝑛, the configuration
space Conf𝑛𝑛(𝑋𝑋𝑋 is itself a topological space. Configu­
ration spaces describe the state of an entire system as
a single point in a higher dimensional space.

It is clear that many situations can be expressed in
terms of configuration spaces. For instance, in me­
chanics, where objects can often be assumed to be
points and are not allowed to take the same place, the
configuration of the system is a point on the configu­
ration space.

What might be less clear is why we should be in­
terested in Conf𝑛𝑛(𝑋𝑋𝑋 not just as a set, but also as a
topological space, and in its homotopical properties.

Here are some examples where the topology of
configuration spaces appear:

• Imagine you have 𝑛𝑛 small robots on a plane

with obstacles. The surface of movement 𝑋𝑋 can
typically be represented as the complement of
the obstacles. If we approximate the robots by
points, their movement corresponds to a path
in Conf𝑛𝑛(𝑋𝑋𝑋. Turning the problem around,
we can consider the path space on Conf𝑛𝑛(𝑋𝑋𝑋,
Map([0, 1], Conf𝑛𝑛(𝑋𝑋𝑋𝑋 with the two projections

𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑛𝑛(𝑋𝑋𝑋𝑋 𝑋
→ Conf𝑛𝑛(𝑋𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋𝑛𝑛(𝑋𝑋𝑋

given by the initial and final configuration. A
motion planning algorithm is essentially a sec­
tion of the map 𝑝𝑝. Unless the configuration
space is contractible (which is almost never the
case) such a section does not exist globally. The
topological complexity (surveyed in last years
Bulletin [11]) is a homotopy invariant that al­
lows us to construct not­very­discontinuous sec­
tions.

• In knot theory one wishes to classify all knots
up to ambient isotopy, which corresponds to the
connected components of the space of smooth
embeddings Emb(𝑆𝑆1, ℝ3). As a first approxi­
mation of the knot one can discretise the knot
into many points, which gives a particular kind
of configuration on ℝ3. In fact, a drastic gen­
eralisation of this problem is the goal of un­
derstanding the homotopy type of the embed­
ding space Emb(𝑀𝑀𝑀 𝑀𝑀𝑀 between two smooth

1
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manifolds. Notice that such an embedding
𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓 induces amap at the level of config­
uration spaces 𝑓𝑓𝑛𝑛 ∶ Conf𝑛𝑛(𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀 𝑛𝑛(𝑁𝑁𝑁 by
evaluation pointwise. Under good conditions,
the Goodwillie­Weiss embedding calculus [2]
tells us that we can recover (up to homotopy)
the embedding space Emb(𝑀𝑀𝑀 𝑀𝑀𝑀 from the data
of all the 𝑓𝑓𝑛𝑛 together with some additional alge­
braic structure.

• The pure braid group on 𝑛𝑛 strands, denoted PB𝑛𝑛
is the group whose elements are 𝑛𝑛 braids (up to
ambient isotopy), and whose group operation is
composition of braids.

The pure braid group PB𝑛𝑛 is isomorphic to the
fundamental group of the configuration space of
𝑛𝑛 points on the plane 𝜋𝜋1(Conf𝑛𝑛(ℝ2)).

• In quantum field theory, namely in Chern­Si­
mons theory, one can construct invariants of
framed smoothmanifolds via integrals over con­
figuration spaces [3].

We point out that some authors would call this the
space of ordered configurations. The unordered config-
uration space (or configurations of indistinguishable
points) can be seen as the quotient space of Conf𝑛𝑛(𝑋𝑋𝑋
by the action of the symmetric group𝑆𝑆𝑛𝑛 which acts by
permuting the 𝑥𝑥𝑖𝑖’s.

In some sense unordered configuration spaces
contain less information than ordered configuration
spaces: as long as we can keep track of the symmetric
group action, we can always recover the first from the
latter.

2 EXAMPLES

Configuration spaces are very simple to define, but
surprisingly hard to understand. Compare themwith
𝑋𝑋𝑛𝑛 which we could call the configuration space of 𝑛𝑛 pos-
sibly overlapping points on 𝑋𝑋. In practice, most invari­
ants (such as the Euler characteristic, fundamental
group, cohomology over a field) of 𝑋𝑋𝑛𝑛 can be com­
puted from the same invariant on 𝑋𝑋.

It is very instructive to see some examples to get
a feel on configuration spaces. Notice that the baby
cases 𝑛𝑛 𝑛 𝑛𝑛𝑛  give us in all generality Conf0(𝑋𝑋𝑋𝑋  𝑋
and Conf1(𝑋𝑋𝑋𝑋  𝑋𝑋, but this is essentially all we can
say for an arbitrary topological space.

1. For the configuration of two points in the
euclidean space, there is an identification

Conf2(ℝ𝑘𝑘)=  ℝ𝑘𝑘 × 𝑆𝑆𝑘𝑘𝑘𝑘 × ℝ>0. This follows
from the fact the position of the two points can
be fully determined by first giving the position
of the first point, then determining the vector
the first point makes with the second one. One
can picture the (𝑘𝑘 𝑘 𝑘𝑘­dimensional sphere 𝑆𝑆𝑘𝑘𝑘𝑘

as a the angle the points make with one another.
Under this identification, the 𝑆𝑆2 action maps a
point in 𝑆𝑆𝑘𝑘𝑘𝑘 to its antipode. Notice that in par­
ticular the unordered configuration space will
be non­orientable for odd 𝑘𝑘.

2. If we consider the graph given by connecting
three vertices to a fourth vertex, its configura­
tion space Conf2( ) is the following space

Notice that in dimension 1 there is a phe­
nomenon of non­locality, in which even if two
of the points are close, it might be difficult for
them to exchange positions.

3. On the interval 𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼  , the configuration
space of 𝑛𝑛 points has 𝑛𝑛𝑛 connected components,
corresponding to all possible ways to order 𝑛𝑛
points. All of these components are homeomor­
phic to the open 𝑛𝑛­simplex

{(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) | 0 < 𝑥𝑥1 < ⋯ < 𝑥𝑥𝑛𝑛 < 1}.

3 HOMOTOPY TYPE

This last example 3 is the simplest example of a topo­
logical invariant (connected components) on the con­
figuration space that cannot be deduced just from
the invariant on the base space. While one could be
tempted to dismiss it as trivial, since it can only hap­
pen in dimension 1, it is actually a shadow of a more
general problem.

Indeed, these issues are related with the non­
functoriality of

Conf𝑛𝑛 ∶ Top. Spaces ⟶ Top. Spaces.
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If a map 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓 is not injective, the induced map
𝑓𝑓 𝑛𝑛 ∶𝑋𝑋 𝑛𝑛 →𝑌𝑌  𝑛𝑛 will not restrict to the respective con­
figuration spaces.

Recall that two spaces 𝑋𝑋 and 𝑌𝑌 are said to be ho-
motopy equivalent, denoted 𝑋𝑋 𝑋 𝑋𝑋 , if there are maps
𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓 and 𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔    such that 𝑓𝑓 𝑓 𝑓𝑓 is homo­
topic to the identity id𝑌𝑌 in the sense that there exists
a map ℎ∶𝑌𝑌  𝑌 𝑌𝑌𝑌 𝑌𝑌 𝑌𝑌𝑌  such that ℎ(𝑦𝑦𝑦𝑦 𝑦 𝑦 𝑦𝑦 and
ℎ(𝑦𝑦𝑦𝑦 𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦  𝑦𝑦𝑦, and similarly for 𝑔𝑔 𝑔𝑔𝑔  . When we
talk about the homotopy type of 𝑋𝑋, we mean the equiv­
alence class of all spaces homotopy equivalent to 𝑋𝑋.

Typically, invariants we study (and all those men­
tioned in this survey) of topological spaces depend
only on the homotopy type. The natural question that
one is led to ask is whether the homotopy type is pre­
served by taking configuration spaces, i.e., whether
𝑋𝑋 𝑋 𝑋𝑋 will guarantee that Conf𝑛𝑛(𝑋𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋𝑛𝑛(𝑌𝑌𝑌 .
This sounds very implausible given the preceding dis­
cussion. Also, out of a homotopy equivalence be­
tween𝑋𝑋 and 𝑌𝑌 , there seems to be no way to construct
a single map relating their configuration spaces.

In fact, the very first example 1 provides already a
plethora of counter­examples, since regardless of the
dimension, all Euclidean spaces are contractible (and
hence homotopy equivalent), but Conf2(ℝ𝑘𝑘)∼  𝑆𝑆𝑘𝑘𝑘𝑘

and no two different dimensional spheres have the
same homology, cohomology or homotopy groups.

Given this, one might be surprised that the next
open question is believed to be true.

CONJECTURE 1.— For simply connected compact
manifolds without boundary, the homotopy type of
Conf𝑛𝑛(𝑀𝑀𝑀 only depends on the homotopy type of 𝑀𝑀 .

The more general conjecture for non­simply con­
nected spaces was only disproved in 2005, when Lon­
goni and Salvatore were able to show that the lens
spaces 𝐿𝐿7,2 and 𝐿𝐿7,1 provide a counter­example by
computing the Massey products on the universal cov­
ers of the respective configuration spaces of 2 points
[8].

In the last section I will try to provide some evi­
dence for this conjecture in the form of Theorem 7.
From now on, we will restrict our study to the case of
smooth manifolds.

4 COMPACT VERSION OF CONFIGURATION
SPACES

Suppose that 𝑀𝑀 is a compact smooth manifold. Even
if 𝑀𝑀 is compact, the configuration space Conf𝑛𝑛(𝑀𝑀𝑀

is not compact when 𝑛𝑛 𝑛 𝑛, since a sequence of two
points moving into the same place does not converge.
This is an unfortunate property to lose: For instance,
in situations where one wishes to consider integrals
over configuration spaces (as in quantum field the­
ory), one has to deal with issues of convergence.

A neat way to address this issue is to work in­
stead with a suitable compactification of Conf𝑛𝑛(𝑀𝑀𝑀.
The most natural one is perhaps to consider 𝑀𝑀𝑛𝑛, but
this could of course lose all homotopy information
as in the case of ℝ𝑘𝑘. The strategy is instead to em­
bed Conf𝑛𝑛(𝑀𝑀𝑀 𝑀 𝑀𝑀 in some compact manifold with
boundary 𝐾𝐾 , such that Conf𝑛𝑛(𝑀𝑀𝑀 sits in 𝐾𝐾 as its in­
terior, since manifolds with boundary are homotopy
equivalent to their interiors.

The construction of such manifold is due to Ax­
elrod and Singer but is usually called the Fulton-
MacPherson compactification of Conf𝑛𝑛(𝑀𝑀𝑀, as it is
a real analog of an iterated blow­up construction
from algebraic geometry. This manifold is denoted
FM𝑛𝑛(𝑀𝑀𝑀 and admits a very visual description. In­
tuitively, instead of allowing two points moving to­
wards each other tomeet, we allow them to be infinites-
imally close together, but still retaining the information
of the direction in which they collided (i.e. they can
still move around each other along a sphere of dimen­
sion dim 𝑀𝑀 𝑀𝑀 ).

• •1 2

•3 ∈ FM3(Torus)

In the case where there are only two points, indeed
FM2(𝑀𝑀𝑀 will be a manifold with boundary, but oth­
erwise one needs to distinguish different situations
when more than two points collide, so in general
FM𝑛𝑛(𝑀𝑀𝑀 will be a compact smooth manifold with corners
whose interior is Conf𝑛𝑛(𝑀𝑀𝑀.

In the figure above, fixing points 1 and 2, there
are three possible cases when moving point 3 close
to 1 and 2: (A) Point 3 stays at the same “infinitesi­
mality stratum”; (B) Point 3 furthermore approaches
infinitesimally point 1, even from the perspective of
point 2; (C) Similar but point 3 approaches point 2.

•1
3
•

3•
1•

2•
•2(𝐴𝐴𝐴 (𝐶𝐶𝐶

For details and a nice exposition see [9].
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5 THE COHOMOLOGY OF Conf𝑛𝑛(ℝ𝑘𝑘)

So far we have considered configuration spaces of a
fixed number of points 𝑛𝑛, but given the same base
manifold 𝑀𝑀 , there are obvious relations between con­
figurations of different number of points. Namely,
given 1 ≤ 𝑖𝑖 𝑖 𝑖𝑖 𝑖𝑖𝑖 , there are projectionmaps

𝑝𝑝𝑖𝑖𝑖𝑖 ∶ Conf𝑛𝑛(𝑀𝑀𝑀 𝑀 𝑀𝑀𝑀𝑀2(𝑀𝑀𝑀𝑀 (1)

given by forgetting the position of all points but the
𝑖𝑖th and 𝑗𝑗th one.

These projection maps provide us with an attempt
to inductively try to understand configurations of a
large number of points from a smaller one. To illus­
trate this idea, let us consider in more detail the case
of configurations of points in ℝ𝑘𝑘, where we can get a
full description of the cohomology ring of Conf𝑛𝑛(ℝ𝑘𝑘).
For concreteness, let us denote by 𝐻𝐻•(𝑀𝑀𝑀 the co­
homology ring of 𝑀𝑀 with real coefficients. Since
Conf𝑛𝑛(𝑀𝑀𝑀 is a smooth manifold, we will interpret
this graded commutative ℝ­algebra as the cohomol­
ogy of de Rham algebra of differential forms, denoted
Ω•(Conf𝑛𝑛(𝑀𝑀𝑀𝑀.

From our previous example 1 we deduce that
𝐻𝐻•(Conf2(ℝ𝑘𝑘)) = 𝐻𝐻•(𝑆𝑆𝑘𝑘𝑘𝑘) = ℝ1⊕ℝ𝜔𝜔, where 𝜔𝜔 is
a degree 𝑘𝑘 𝑘 𝑘 element representing the cohomology
class of the volume form on 𝑆𝑆𝑘𝑘𝑘𝑘.

THEOREM 2 (ARNOLD [1] AND COHEN [5]).— The
cohomology ℝ­algebra 𝐻𝐻•(Conf𝑛𝑛(ℝ𝑘𝑘)) is given by

𝐴𝐴𝑛𝑛𝑛𝑛𝑛 =
Sym(𝜔𝜔𝑖𝑖𝑖𝑖)1≤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝜔𝜔𝑖𝑖𝑖𝑖 = (−1)𝑘𝑘𝜔𝜔𝑗𝑗𝑗𝑗, 𝜔𝜔2
𝑖𝑖𝑖𝑖 = 0,Arnold)

(2)

where 𝜔𝜔𝑖𝑖𝑖𝑖 are elements of degree 𝑘𝑘 𝑘 𝑘, Sym de­
notes the symmetric algebra and the Arnold relation
is 𝜔𝜔𝑖𝑖𝑖𝑖𝜔𝜔𝑗𝑗𝑗𝑗 + 𝜔𝜔𝑗𝑗𝑗𝑗𝜔𝜔𝑘𝑘𝑘𝑘 + 𝜔𝜔𝑘𝑘𝑘𝑘𝜔𝜔𝑖𝑖𝑖𝑖 = 0.

Heuristically, 𝜔𝜔𝑖𝑖𝑖𝑖 represents the interaction be­
tween the points 𝑖𝑖 and 𝑗𝑗, while the Arnold rela­
tions represent three­point interactions. The theorem
states that these relations generate all existing rela­
tions.

PROOF (SKETCH).— The first step is to construct the
map 𝐴𝐴𝑛𝑛𝑛𝑛𝑛 → 𝐻𝐻•(Conf𝑛𝑛(ℝ𝑘𝑘)). We interpret 𝜔𝜔𝑖𝑖𝑖𝑖 as
an element of 𝐻𝐻•(Conf𝑛𝑛(ℝ𝑘𝑘)) by pulling back along
the projection 𝑝𝑝𝑖𝑖𝑖𝑖 from equation (1) into the (𝑘𝑘 𝑘 𝑘𝑘­
sphere: 𝜔𝜔𝑖𝑖𝑖𝑖 ≔ 𝑝𝑝∗

𝑖𝑖𝑖𝑖𝜔𝜔.
The relation 𝜔𝜔2

𝑖𝑖𝑖𝑖 = 0 holds since it holds for 𝜔𝜔 𝜔
Ω𝑘𝑘𝑘𝑘(𝑆𝑆𝑘𝑘𝑘𝑘). Switching the indices in𝜔𝜔𝑖𝑖𝑖𝑖 corresponds
to applying the antipodal map in 𝑆𝑆𝑘𝑘𝑘𝑘, which has a
degree opposite to the dimension of the sphere, from
where it follows that 𝜔𝜔𝑖𝑖𝑖𝑖 = (−1)𝑘𝑘𝜔𝜔𝑗𝑗𝑗𝑗.

There are various short proofs of the Arnold
relation, none of them completely immediate.
It can be deduced by analysing the fibration
𝑝𝑝12 ∶ Conf3(ℝ𝑘𝑘) → Conf2(ℝ𝑘𝑘). Alternatively, one
can explicitly find a form 𝜂𝜂 such that 𝑑𝑑𝑑𝑑𝑑  Arnold
constructed as a fiber integral 𝜂𝜂 𝜂 ∫4 𝜔𝜔14𝜔𝜔24𝜔𝜔34, as
we will see in the final section.

Now that we have established maps

𝐴𝐴𝑛𝑛𝑛𝑛𝑛 → 𝐻𝐻•(Conf𝑛𝑛(ℝ𝑘𝑘)),
we need to show that they are isomorphisms, which
can be done by induction on 𝑛𝑛. For this, we observe
that the map Conf𝑛𝑛(ℝ𝑘𝑘) → Conf𝑛𝑛𝑛𝑛(ℝ𝑘𝑘) forgetting
the last point is a fibration whose fiber is homotopy
equivalent to a wedge sum of spheres ⋁𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖 𝑆𝑆𝑘𝑘𝑘𝑘 and
then apply the Serre spectral sequence. ∎

6 RATIONAL HOMOTOPY THEORY

Let us step back from configuration spaces for a mo­
ment to consider the general problem of understand­
ing the homotopy type of spaces via some algebraic
invariant.

The main issue is that invariants such as the coho­
mology ring of a space do not capture the homotopy
type sufficiently faithfully. A potentially stronger
invariant is given by the higher homotopy groups
𝜋𝜋𝑛𝑛, since Whitehead theorem guarantees that a map
of CW­complexes 𝑋𝑋 𝑋 𝑋𝑋 inducing isomorphisms
𝜋𝜋𝑛𝑛(𝑋𝑋𝑋𝑋𝑋𝑋  𝑛𝑛(𝑌𝑌𝑌  is a homotopy equivalence. This
not only does not completely solve our problem, since
CW­complexes might still have the same homotopy
groups without having a map inducing an isomor­
phism, but it also has the additional issue that higher
homotopy groups are extremely difficult to compute
due to their torsion parts. Rational homotopy theory
provides a good way to address both issues, if we are
willing to work modulo torsion:

DEFINITION 3.— We say that a map of simply con­
nected spaces𝑋𝑋 𝑋 𝑋𝑋 is a rational homotopy equivalence
if the induced map

𝜋𝜋𝑛𝑛(𝑋𝑋𝑋 𝑋ℤ ℚ → 𝜋𝜋𝑛𝑛(𝑌𝑌𝑌𝑌  ℤ ℚ
is an isomorphism for all 𝑛𝑛. Equivalently, 𝑋𝑋 𝑋 𝑋𝑋
is a rational homotopy equivalence if 𝐻𝐻𝑛𝑛(𝑌𝑌 𝑌 ℚ) →
𝐻𝐻𝑛𝑛(𝑋𝑋𝑋 ℚ) is an isomorphism for all 𝑛𝑛.

Sullivan [10] associated to a space 𝑋𝑋 a differential
graded (dg) commutative algebra𝐴𝐴•

𝑃𝑃 𝑃𝑃(𝑋𝑋𝑋 of piecewise
linear differential forms 𝑋𝑋, which the reader can think
of as the de Rham algebra for non­manifolds (and
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over ℚ instead of ℝ), or alternatively as the singu­
lar ℚ­cochains on 𝑋𝑋, 𝐶𝐶•(𝑋𝑋𝑋 ℚ) (except that the cup
product is not commutative before passing to coho­
mology). The cohomology of the dg algebra 𝐴𝐴•

𝑃𝑃 𝑃𝑃(𝑋𝑋𝑋
is the graded algebra 𝐻𝐻•(𝑋𝑋𝑋 ℚ).

In the category of rational dg commutative al­
gebras, one considers the corresponding notion of
homotopy equivalence, which is the one of a quasi-
isomorphism. These are morphisms of dg commuta­
tive algebras 𝐴𝐴• → 𝐵𝐵• such that the induced map in
cohomology 𝐻𝐻•(𝐴𝐴𝐴𝐴𝐴𝐴  •(𝐵𝐵𝐵 is an isomorphism.

The main result of Sullivan is that this construc­
tion captures faithfully the rational homotopy type of
spaces.

CAVEAT 4.— Unlike ordinary homotopy equiva­
lences, having a rational homotopy equivalence 𝑋𝑋 𝑋
𝑌𝑌 does not imply the existence of a rational homo­
topy equivalence 𝑌𝑌 𝑌𝑌𝑌 . We say that 𝑋𝑋 and 𝑌𝑌 are
rational homotopy equivalent and we write 𝑋𝑋 𝑋ℚ 𝑌𝑌
if there is a zig­zag of rational homotopy equivalences

𝑋𝑋 𝑋𝑋𝑋𝑋1→̃ ⋯ ̃←𝑋𝑋𝑛𝑛→̃𝑌𝑌
Similarly, quasi­isomorphisms of dg commutative al­
gebras are not invertible so the same remark holds.

There is a general construction in category theory:
Given a category 𝒞𝒞 with some set of homotopy equiva-
lences 𝐻𝐻 𝐻 Morphisms(𝒞𝒞 𝒞, one can construct the ho­
motopy category of 𝒞𝒞 , denoted 𝒞𝒞 𝒞𝒞𝒞−1], which pos­
sesses the same objects as 𝒞𝒞 , but where we formally
invert the maps in 𝐻𝐻 , such that they become isomor­
phisms in 𝒞𝒞 𝒞𝒞𝒞−1].

THEOREM 5 ([10]).— The construction 𝐴𝐴𝑃𝑃 𝑃𝑃 estab­
lishes an equivalence of categories

𝐴𝐴𝑃𝑃 𝑃𝑃 ∶ scSpaces[r.h.e.−1] → ℚ − DGCA>1[q.i.−1]
from the category of simply connected topological
spaces of finite type up to rational homotopy equiv­
alence, to the category of dg commutative ℚ­algebras
of finite type concentrated in degrees > 1 up to quasi­
isomorphism.

In practice, this result allows us to study topology
completely via (differential graded) algebraic meth­
ods. Any dg commutative algebra quasi­isomorphic
to 𝐴𝐴𝑃𝑃 𝑃𝑃(𝑋𝑋𝑋 is therefore called a rational model of 𝑋𝑋.
A classical question in rational homotopy theory is
whether one can find a small model for 𝑋𝑋. The small­
est possible candidate to be a model of 𝑋𝑋 would be its
cohomology ℚ­algebra, but in general it is not true
that 𝐻𝐻•(𝑋𝑋𝑋 ℚ) ∼ℚ 𝐴𝐴𝑃𝑃 𝑃𝑃(𝑋𝑋𝑋. If that happens to be the

case, we say that 𝑋𝑋 is formal.

It should be pointed out that in the context of Sulli­
van’s theorem there is nothing special about ℚ except
that it is a field of characteristic 0. Replacing it with
ℝ we would talk about the real homotopy type of 𝑋𝑋 in­
stead.

7 MODELS FOR CONFIGURATION SPACES

In this final section we will see how one can construct
a nice model of the real homotopy type of configura­
tion spaces using graphs. This will in particular allow
us to prove the real version of Conjecture 1, see Theo­
rem 7.

THEOREM 6 ([4]).— Let 𝑀𝑀 be a compact smooth
manifold without boundary and 𝑛𝑛 𝑛 ℕ. There ex­
ists a nice dg commutative ℝ­algebra spanned by a
certain type of graphs Graphs𝑛𝑛(𝑀𝑀𝑀 modeling the real
homotopy type of Conf𝑛𝑛(𝑀𝑀𝑀. This is expressed by a
direct quasi­isomorphism of algebras into the algebra
of semi­algebraic forms1 of FM𝑛𝑛(𝑀𝑀𝑀:

Graphs𝑛𝑛(𝑀𝑀𝑀 𝑀 𝑀𝑀FM𝑛𝑛(𝑀𝑀𝑀𝑀𝑀 (4)

Even though ℝ𝑘𝑘 is not a compact manifold, it is still
instructive to go back to Theorem 2 and start by un­
derstanding how one could try to obtain a model of
Conf𝑛𝑛 (ℝ𝑘𝑘) out of the computation of its cohomology.

The only reasonably natural attempt of estab­
lishing a quasi­isomorphism 𝐻𝐻•(Conf𝑛𝑛 (ℝ𝑘𝑘)) into
Ω(FM𝑛𝑛(ℝ𝑘𝑘)) would involve mapping 𝜔𝜔𝑖𝑖𝑖𝑖 ∈ 𝐴𝐴𝑛𝑛𝑛𝑛𝑛 into
the volume form of the spheres 𝑆𝑆𝑘𝑘𝑘𝑘. However, since
the Arnold relations are not satisfied at the level of dif­
ferential forms this cannot produce a map compatible
with the product.

While such a quasi­isomorphism of algebras can­
not be directly constructed, Kontsevich [7] showed
that configuration spaces in ℝ𝑘𝑘 are formal by estab­
lishing a zig­zag passing by an algebra of graphs.

Notice that one can identify the algebra 𝐴𝐴𝑛𝑛𝑛𝑛𝑛 with
a graded vector space given by ℝ­linear combinations
of graphs on 𝑛𝑛 vertices, where an edge between the
vertices 𝑖𝑖 and 𝑗𝑗 corresponds to 𝜔𝜔𝑖𝑖𝑖𝑖 .

1 2 3
∼

⟷ 𝜔𝜔12𝜔𝜔13

To be precise, depending on the parity of 𝑘𝑘, edges
should be oriented or ordered, and changing orien­
tation or order (by an odd permutation) produces a
minus sign, but from now on we will work up to sign.

1Pretend it is the de Rham complex. This is a minor technicality due to the lack of smoothness of forgetting points near the corners.
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Under this identification, edges have degree 𝑘𝑘𝑘𝑘 and
the commutative product on graphs is given by super­
position of vertices and taking the union of edges.

The idea now is to attempt to resolve 𝐴𝐴𝑛𝑛𝑛𝑛𝑛 by
adding a new kind of vertices, thatwouldmimic phan­
tom points moving freely in the configuration space.
Concretely, one can define a dg commutative algebra
Graphs𝑛𝑛(ℝ𝑘𝑘), spanned by graphs with 𝑛𝑛 labeled ver­
tices as before and a arbitrary number of unlabeled
vertices which now are of degree −𝑘𝑘.

The differential of a graph Γ ∈ Graphs𝑛𝑛(ℝ𝑘𝑘) is
given by summing all ways of contracting an unla­
beled vertex in Γ along an edge. Here is an example
exhibiting the Arnold relation as a coboundary:

𝑑𝑑
1

2

3
=

1

2

3
+

1

2

3
+

1

2

3
∈ Graphs3(ℝ𝑘𝑘).

Notice that the differential kills an unlabeled ver­
tex and an edge so it is indeed of degree+1 and (being
careful with signs) it squares to zero. The product is
still given by superposition of labeled vertices (in par­
ticular it adds the number of unlabeled vertices).

We can now produce a map into the algebra of
forms

Graphs𝑛𝑛(ℝ𝑘𝑘) ⟶ Ω(FM𝑛𝑛(ℝ𝑘𝑘))
given by “mapping edges 𝑖𝑖 𝑗𝑗 to the volume form
of the sphere 𝜔𝜔𝑖𝑖𝑖𝑖

2 and integrating out the unlabeled
vertices”. In particular, the graph above yielding the
Arnold relation is mapped to

𝜂𝜂 𝜂 ∫FM4→FM3

𝜔𝜔14𝜔𝜔24𝜔𝜔34.

The only non­immediate thing that needs to be
checked is the compatibility with the differential,
which follows mostly from the Stokes theorem for
manifolds with corners.

In fact, to prove the formality of configuration
spaces in ℝ𝑘𝑘, one just needs to show that the pro­
jection into graphs with no unlabeled vertices is a
quasi­isomorphism, which can be achieved by a spec­
tral sequence inductive argument.

While other configuration spaces over a compact
manifold𝑀𝑀 will not be formal (and there is no analog
of Theorem 2), stretching a bit the notion of graphs
one can use similar ideas to construct the dg commu­
tative ℝ­algebra Graphs𝑛𝑛(𝑀𝑀𝑀 as follows:

As a vector space, Graphs𝑛𝑛(𝑀𝑀𝑀 is spanned by
graphs with 𝑛𝑛 labelled vertices, some unlabeled ver­
tices and vertices can be decorated by (possibly repeat­
ing) reduced cohomology classes in 𝐻̃𝐻•(𝑀𝑀𝑀.

1 2 3 4

𝜔𝜔1 𝜔𝜔1

𝜔𝜔2 𝜔𝜔3

𝜔𝜔3

∈ Graphs4(𝑀𝑀𝑀𝑀

The product is still given by superposition of labeled
vertices. Following heuristically Kontsevich, we wish
to send such graphs to differential forms in FM𝑛𝑛(𝑀𝑀𝑀
in a way that integrates out unlabeled vertices and
sending cohomology classes in 𝐻𝐻•(𝑀𝑀𝑀 to represen­
tatives in Ω(FM1(𝑀𝑀𝑀𝑀. To establish the map in (4),
there are three main pieces:

(i) In the case of ℝ𝑘𝑘, FM2(ℝ𝑘𝑘) is essentially a sphere,
so edges can be sent to volume forms. To which
form in Ωdim 𝑀𝑀𝑀𝑀(FM2(𝑀𝑀𝑀𝑀 will edges be sent
to?

(ii) What kind of differential mustGraphs𝑛𝑛(𝑀𝑀𝑀 have
such that (4) is compatible with differentials?

(iii) How to make this map a quasi­isomorphism?

We will not address the third point and without get­
ting into details, let us just say that the first point is
addressed by mapping edges to what in mathematical
physics is called a propagator [3].

The second point is the trickiest: As far as
Graphs𝑛𝑛(𝑀𝑀𝑀 has been described, it only depends on
the cohomology of𝑀𝑀 , so it has no chance of even cap­
turing the real homotopy type of𝑀𝑀 , let alone the con­
figuration space. All this is hidden in the differential,
which splits into three pieces 𝑑𝑑 𝑑 𝑑𝑑contr.+𝑑𝑑Poinc.+𝑑𝑑𝑍𝑍𝑀𝑀

.
A first piece 𝑑𝑑contr. which contracts edges as in the ℝ𝑘𝑘

case, a second piece 𝑑𝑑Poinc. which uses the Poincaré du­
ality pairing on 𝐻𝐻•(𝑀𝑀𝑀 to split edges into two deco­
rations

Δ 𝑎𝑎 . = ∑
𝑒𝑒𝑖𝑖∈𝐻𝐻•(𝑀𝑀𝑀 𝑒𝑒𝑖𝑖

𝑒𝑒∗
𝑖𝑖

𝑎𝑎 .

and a third piece 𝑑𝑑𝑍𝑍𝑀𝑀
acting only on subgraphs con­

sisting of unlabeled vertices which depends on the
partition function 𝑍𝑍𝑀𝑀 of the universal perturbative
AKSZ topological field theory on 𝑀𝑀 . We interpret
𝑍𝑍𝑀𝑀 as a map from vacuum graphs (fully unlabeled
graphs in Graphs0(𝑀𝑀𝑀) into real numbers.

THEOREM 7 ([4, 6]).— Let𝑀𝑀 be a simply connected
smooth compact manifold without boundary. The

2Abusing the notation denoting by 𝜔𝜔𝑖𝑖𝑖𝑖 both the form and its class in cohomology.
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real homotopy type of 𝑀𝑀 determines the real homo­
topy type of its configuration space of points.

𝑀𝑀 𝑀ℝ 𝑁𝑁 𝑁 𝑁𝑁𝑁𝑁𝑛𝑛(𝑀𝑀𝑀 𝑀ℝ Conf𝑛𝑛(𝑁𝑁𝑁𝑁 𝑁𝑁𝑁 𝑁 ℕ.

PROOF (SKETCH).— Notice that since 𝑀𝑀 is simply
connected 𝐻𝐻1(𝑀𝑀𝑀 𝑀 𝑀 and therefore decorations of
graphs in Graphs𝑛𝑛(𝑀𝑀𝑀 have degree at least 2. Further­
more we can assume that 𝐷𝐷 𝐷 𝐷𝐷𝐷 𝐷𝐷 𝐷 𝐷 by the
Poincaré conjecture.

All pieces of the defining data of Graphs𝑛𝑛(𝑀𝑀𝑀 de­
pend only on the real homotopy type of 𝑀𝑀 , with the
possible exception of 𝑑𝑑𝑍𝑍𝑀𝑀

.
One can show that 𝑑𝑑𝑍𝑍𝑀𝑀

depends only on the value
of 𝑍𝑍𝑀𝑀 on graphs consisting only of degree 0 unla­
beled vertices with valence ≥ 3 (decorations count as
valence).

The proof of the theorem now follows from the
following purely combinatorial statement: Using that
decorations have degree at least 2, vertices have degree
−𝐷𝐷 and edges have degree 𝐷𝐷 𝐷𝐷 , the only ≥ 3­valent
graphs of degree 0 are trees.

It turns out that the values of 𝑍𝑍𝑀𝑀 on trees de­
pend only on the real homotopy type of 𝑀𝑀 . It fol­
lows that Graphs𝑛𝑛(𝑀𝑀𝑀 and therefore Conf𝑛𝑛(𝑀𝑀𝑀 also
depends only on the real homotopy type of 𝑀𝑀 . ∎
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