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1 Introduction

Given a finite set of points 𝑃𝑃1, … , 𝑃𝑃𝑠𝑠 in projective
space ℙ𝑑𝑑

ℂ, what is the lowest degree of a hypersur-
face passing through 𝑃𝑃1, … , 𝑃𝑃𝑠𝑠? How about a hyper-
surface passing through each given point 𝑃𝑃𝑖𝑖 with the
same multiplicity 𝑛𝑛? More generally, given an affine
or projective variety 𝑉𝑉 , which polynomials vanish to
order 𝑛𝑛 at every point in 𝑉𝑉 ? These classical geomet-
ric questions can be studied with commutative alge-
bra tools once we reframe them within the language
of symbolic powers.

Let us formalize what we mean by vanishing to or-
der 𝑛𝑛. Given a point 𝑎𝑎 in either affine space 𝔸𝔸𝑑𝑑𝑑1

ℂ
or projective space ℙ𝑑𝑑

ℂ, a polynomial 𝑓𝑓 𝑓 𝑓𝑓 𝑓
ℂ[𝑥𝑥0, … , 𝑥𝑥𝑑𝑑], which we assume to be homogeneous
in the projective case, vanishes to order 𝑛𝑛 at 𝑎𝑎 if

𝜕𝜕𝑐𝑐0𝑑⋯𝑑𝑐𝑐𝑑𝑑 𝑓𝑓
𝜕𝜕𝑥𝑥𝑐𝑐0

0 ⋯ 𝜕𝜕𝑥𝑥𝑐𝑐𝑑𝑑
𝑑𝑑

(𝑎𝑎𝑎 𝑎 0 for all 𝑐𝑐0 𝑑 ⋯ 𝑑 𝑐𝑐𝑑𝑑 < 𝑛𝑛𝑛

Notice that with this definition, 𝑓𝑓 vanishes to order
1 at 𝑎𝑎 if and only if 𝑓𝑓(𝑎𝑎𝑎 𝑎 0. More generally, given
an algebraic set 𝑉𝑉 — the solution set to some system
of polynomial equations in 𝑑𝑑 𝑑 1 variables, which are
homogeneous in the projective case — consider the
ideal 𝐼𝐼 of all the polynomials in 𝑓𝑓 that vanish at ev-
ery 𝑎𝑎 𝑓 𝑉𝑉 . A (homogeneous, in the projective case)

polynomial 𝑓𝑓 vanishes to order 𝑛𝑛 along 𝑉𝑉 if
𝜕𝜕𝑐𝑐0𝑑⋯𝑑𝑐𝑐𝑑𝑑

𝜕𝜕𝑥𝑥𝑐𝑐0
0 ⋯ 𝜕𝜕𝑥𝑥𝑐𝑐𝑑𝑑

𝑑𝑑

(𝑓𝑓 𝑎 𝑓 𝐼𝐼 for all 𝑐𝑐0 𝑑 ⋯ 𝑑 𝑐𝑐𝑑𝑑 < 𝑛𝑛𝑛

Let us give examples of polynomials vanishing to or-
der 𝑛𝑛 on a given algebraic set. The 𝑛𝑛th power of 𝐼𝐼 is
the ideal generated by all the 𝑛𝑛-fold products of ele-
ments in 𝐼𝐼 , which we write as

𝐼𝐼𝑛𝑛 𝑓 (𝑓𝑓1 ⋯ 𝑓𝑓𝑛𝑛 ∣ 𝑓𝑓𝑖𝑖 𝑓 𝐼𝐼𝑎𝑛
Here the notation 𝐼𝐼 𝑎 (𝐼𝐼1, … , 𝐼𝐼𝑚𝑚𝑎 stands for the ideal
generated by 𝐼𝐼1, … , 𝐼𝐼𝑚𝑚, so the elements in 𝐼𝐼𝑛𝑛 are all
the 𝑓𝑓-linear combinations of 𝑛𝑛-fold products of poly-
nomials that vanish at 𝑉𝑉 . It is elementary to show
that every element in 𝐼𝐼𝑛𝑛 must vanish to order 𝑛𝑛 along
𝑉𝑉 . However, we may have other more interesting
polynomials vanishing to order 𝑛𝑛 along 𝑉𝑉 .

Example 1.— Let 𝑉𝑉 be the union of the 3 coordinate
lines in affine 3-space, which corresponds to the ideal
𝐼𝐼 𝑎 (𝑥𝑥𝐼𝐼, 𝑥𝑥𝐼𝐼, 𝐼𝐼𝐼𝐼𝑎. The polynomial 𝑓𝑓 𝑎 𝑥𝑥𝐼𝐼𝐼𝐼 van-
ishes to order 2 along 𝑉𝑉 , since 𝜕𝜕𝑓𝑓 𝜕𝜕𝜕𝑥𝑥 𝑎 𝐼𝐼𝐼𝐼 𝑓 𝐼𝐼 ,
𝜕𝜕𝑓𝑓 𝜕𝜕𝜕𝐼𝐼 𝑎 𝑥𝑥𝐼𝐼 𝑓 𝐼𝐼 , and 𝜕𝜕𝑓𝑓 𝜕𝜕𝜕𝐼𝐼 𝑎 𝑥𝑥𝐼𝐼 𝑓 𝐼𝐼 . On the other
hand, all the nonzero polynomials in 𝐼𝐼2 have degree
4 or higher, so 𝑓𝑓 𝑓 𝐼𝐼2.

In particular, we may have polynomials vanishing to
order 𝑛𝑛 along 𝑉𝑉 that live in an unexpected degree —
meaning, a degree 𝑑𝑑 such that 𝐼𝐼𝑛𝑛 has no polynomials
of degree 𝑑𝑑. Completely describing which polynomi-
als vanish to order 𝑛𝑛 along a given algebraic set 𝑉𝑉 ,

1

Symbolic powers arise naturally in commutative algebra from the theory of primary decomposition, but they 
also contain geometric information, thanks to a classical result of Zariski and Nagata. Computing primary 
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determining whether those are exactly the polynomi-
als in 𝐼𝐼𝑛𝑛, or giving (lower) bounds for the degrees of
polynomials vanishing to order 𝑛𝑛 along 𝑉𝑉 are all very
delicate questions.

We can attack these questions using purely alge-
braic tools, thanks to a classical result of Zariski and
Nagata [Zar49, Nag62] which says that the polyno-
mials that vanish to order 𝑛𝑛 along 𝑉𝑉 are exactly the
polynomials in the 𝑛𝑛th symbolic power of 𝐼𝐼 , which
we will introduce in the next section. Despite be-
ing a classical topic that has been around for a cen-
tury, many natural questions about symbolic powers
remain unanswered, in part because it is computa-
tionally difficult to calculate symbolic powers and test
conjectures. We will first introduce symbolic pow-
ers in Section 2, and then quickly survey some of
the current active research questions related to sym-
bolic powers in the remaining sections. For a more
detailed survey of symbolic powers, see [DDSG+18].
Throughout, let 𝑅𝑅 be a commutative Noetherian ring;
a good working example is the case when 𝑅𝑅 is a poly-
nomial ring in finitely many variables over a field 𝑘𝑘.

2 Symbolic powers: definition and basic
properties

Symbolic powers arise naturally in commutative al-
gebra from the theory of primary decomposition.
Roughly speaking, primary decomposition is an ideal-
theoretic version of the Fundamental Theorem of
Arithmetic — the theorem which says that every
nonzero integer can be written as a product of prime
integers that is unique up to sign and the order of
the factors. Once we replace the integers with other
commutative rings, there are many examples of rings
where we cannot write every element as a product
of irreducibles that is unique up to multiplication
by units or the order of the factors; for example, in
ℤ[√−5], 6 = 2 ⋅ 3 = (1 + √−5)(1 − √−5) are
two distinct factorizations into irreducibles. One way
to avoid this failure of the Fundamental Theorem of
Arithmetic is to focus on ideals rather than elements:
every ideal in a Noetherian ring can be written as a
finite intersection of primary ideals [Las05, Noe21],
and while this primary decomposition is not necessar-
ily unique, there are certain aspects of it that are in
fact unique.

Let us start with prime ideals. An ideal 𝑃𝑃 is prime
if 𝑎𝑎𝑎𝑎 𝑎 𝑃𝑃 implies that 𝑎𝑎 𝑎 𝑃𝑃 or 𝑎𝑎 𝑎 𝑃𝑃 . When
𝑅𝑅 = ℂ[𝑥𝑥0, … , 𝑥𝑥𝑑𝑑], prime ideals are precisely the ide-

als that correspond to varieties: a variety is an irre-
ducible algebraic set, meaning it cannot be decom-
posed as a finite union of two or more proper alge-
braic subsets.

Definition 1.— Let 𝑃𝑃 be a prime ideal. The 𝑛𝑛th sym-
bolic power of 𝑃𝑃 is the ideal

𝑃𝑃 (𝑛𝑛) ≔ {𝑓𝑓 𝑎 𝑅𝑅 𝑓 𝑓𝑓𝑓𝑓 𝑎 𝑃𝑃 𝑛𝑛 for some 𝑓𝑓 𝑠 𝑃𝑃 𝑠𝑠

Note that 𝑃𝑃 𝑛𝑛 ⊆ 𝑃𝑃 (𝑛𝑛), since every 𝑓𝑓 𝑎 𝑃𝑃 𝑛𝑛 satisfies
1 ⋅ 𝑓𝑓 𝑎 𝑃𝑃 𝑛𝑛 for 1 𝑠 𝑃𝑃 . In general, 𝑃𝑃 𝑛𝑛 ≠ 𝑃𝑃 (𝑛𝑛).

Example 2.— Let 𝑅𝑅 = 𝑘𝑘[𝑥𝑥, 𝑅𝑅, 𝑅𝑅]𝑅(𝑥𝑥𝑅𝑅 − 𝑅𝑅2), where
𝑘𝑘 is an arbitrary field, and consider the prime ideal
𝑃𝑃 = (𝑥𝑥, 𝑅𝑅) in 𝑅𝑅. Since 𝑥𝑥𝑅𝑅 = 𝑅𝑅2 𝑎 𝑃𝑃 2 and 𝑅𝑅 𝑠 𝑃𝑃 , we
have 𝑥𝑥 𝑎 𝑃𝑃 (2), while 𝑥𝑥 𝑠 𝑃𝑃 2.

While we will not define primary decomposition, it
turns out that when writing a primary decomposition
for 𝑃𝑃 𝑛𝑛, one of the components — the 𝑃𝑃 -primary com-
ponent — will be precisely 𝑃𝑃 (𝑛𝑛). Historically, this is
the context where symbolic powers first arose.

More generally, let us consider a radical ideal 𝐼𝐼 ,
which means that 𝐼𝐼 is a finite intersection of prime
ideals. Geometrically, Hilbert’s Nullstellensatz gives
us a bijection between algebraic sets and radical ide-
als, so for our purposes these are the only ideals we
care about.

Definition 2.— Let 𝑃𝑃1, … , 𝑃𝑃𝑘𝑘 be prime ideals, and
let 𝐼𝐼 = 𝑃𝑃1 Z ⋯ Z 𝑃𝑃𝑘𝑘. The 𝑛𝑛th symbolic power of
𝐼𝐼 is the ideal

𝐼𝐼(𝑛𝑛) ≔ 𝑃𝑃 (𝑛𝑛)
1 Z ⋯ Z 𝑃𝑃 (𝑛𝑛)

𝑘𝑘
= {𝑓𝑓 𝑎 𝑅𝑅 𝑓 𝑓𝑓𝑓𝑓 𝑎 𝐼𝐼𝑛𝑛 for some 𝑓𝑓 𝑠 �𝑘𝑘

𝑖𝑖=1 𝑃𝑃𝑖𝑖𝑠𝑠
The following properties can be shown via elemen-
tary commutative algebra methods.

Theorem 3.— Let 𝐼𝐼 be a radical ideal in a Noetherian
ring 𝑅𝑅.

1. 𝐼𝐼𝑛𝑛 ⊆ 𝐼𝐼(𝑛𝑛) for all 𝑛𝑛 𝑛 1.

2. 𝐼𝐼(𝑛𝑛+1) ⊆ 𝐼𝐼(𝑛𝑛) for all 𝑛𝑛 𝑛 1.

3. 𝐼𝐼(𝑎𝑎)𝐼𝐼(𝑎𝑎) ⊆ 𝐼𝐼(𝑎𝑎+𝑎𝑎) for all 𝑎𝑎, 𝑎𝑎 𝑛 1.

The last property allows us to construct the symbolic
Rees algebra of 𝐼𝐼 , which packages together all the sym-
bolic powers of 𝐼𝐼 into one graded object. The sym-
bolic Rees algebra of 𝐼𝐼 is the graded 𝑅𝑅-algebra with
𝐼𝐼(𝑛𝑛) in degree 𝑛𝑛, ℛ𝑓𝑓(𝐼𝐼) = ⨁ 𝐼𝐼(𝑛𝑛)𝑡𝑡𝑛𝑛 ⊆ 𝑅𝑅[𝑡𝑡], where the
𝑡𝑡 keeps track of degrees. It turns out that this algebra
can fail to be finitely generated over 𝑅𝑅 — or equiv-
alently, it can fail to be a Noetherian ring — which
means that for arbitrarily high values of 𝑛𝑛, there are
elements in 𝐼𝐼(𝑛𝑛) that do not live in the product of sym-
bolic powers of 𝐼𝐼 of lower order. While we will not
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have a chance to discuss symbolic Rees algebras in
detail, we point the reader to [GS20] for a survey on
symbolic Rees algebras and the fascinating problem
of when they are finitely generated.

In the next section we will discuss some of the geo-
metric motivations to study 𝐼𝐼(𝑛𝑛𝑛. Note that there are
also many algebraic reasons to study symbolic pow-
ers, including the fact that they can be used as effec-
tive tools to answer questions that are a priori unre-
lated to symbolic powers, and that symbolic powers
are used in the proofs of important results in commu-
tative algebra, such as Krull’s Height Theorem and
the Hartshorne-Lichtenbaum Vanishing Theorem in
local cohomology, even though these results are not
about symbolic powers.

3 Higher order vanishing

A classical result of Zariski and Nagata [Zar49, Nag62]
and its modern generalization by Eisenbud and
Hochster [EH79] give us the connection with our
opening questions.

Theorem 4 (Zariski-Nagata, 1949 and 1962).—
Let 𝐼𝐼 be a radical ideal in 𝑅𝑅 𝑅 ℂ[𝑥𝑥0, … , 𝑥𝑥𝑑𝑑]. Then

𝐼𝐼(𝑛𝑛𝑛 𝑅
‘

{𝔪𝔪𝑛𝑛 ∣ 𝔪𝔪 𝔪 𝐼𝐼, 𝔪𝔪 maximal ideal} 𝑅

𝑅 {𝑓𝑓 𝑓 𝑅𝑅 |
𝜕𝜕𝑐𝑐0+⋯+𝑐𝑐𝑑𝑑

𝜕𝜕𝑥𝑥𝑐𝑐0
0 ⋯ 𝜕𝜕𝑥𝑥𝑐𝑐𝑑𝑑

𝑑𝑑

(𝑓𝑓 𝑛 𝑓 𝐼𝐼,

for all 𝑐𝑐0 + ⋯ + 𝑐𝑐𝑑𝑑 < 𝑛𝑛}.

(See [Zar49, Nag62, EH79, DDSG+18].)

This is the classical result we alluded to in the intro-
duction: that 𝐼𝐼(𝑛𝑛𝑛 is precisely the set of polynomials
that vanish to order 𝑛𝑛 along the algebraic set corre-
sponding to 𝐼𝐼 . The maximal ideals 𝔪𝔪 that contain
the radical ideal 𝐼𝐼 correspond to each point in the
affine algebraic set that 𝐼𝐼 defines, and 𝔪𝔪𝑛𝑛 is the set
of polynomials vanishing to order 𝑛𝑛 at the particular
point corresponding to 𝔪𝔪. From this perspective, our
opening questions can be answered by studying the
elements in 𝐼𝐼(𝑛𝑛𝑛 and their degrees.

This result can be stated in a lot more generality,
via differential operators.

Definition 5 (Grothendieck).— Given an 𝐴𝐴-algebra
𝑅𝑅, the 𝐴𝐴-linear differential operators on 𝑅𝑅 of order
up to 𝑛𝑛, 𝐷𝐷𝑛𝑛

𝑅𝑅𝑅𝐴𝐴, are defined inductively as follows:

• 𝐷𝐷0
𝑅𝑅𝑅𝐴𝐴 𝑅 Hom𝑅𝑅(𝑅𝑅, 𝑅𝑅𝑛 𝑅 Hom𝐴𝐴(𝑅𝑅, 𝑅𝑅𝑛 where

Hom𝐴𝐴(𝑅𝑅, 𝑅𝑅𝑛 consists of the 𝐴𝐴-module homo-
morphisms 𝑓𝑓 𝑓𝑅𝑅 𝑓 𝑅𝑅.

• 𝛿𝛿 𝑓 𝐷𝐷𝑛𝑛
𝑅𝑅𝑅𝐴𝐴 if and only if 𝛿𝛿 𝑓 Hom𝐴𝐴(𝑅𝑅, 𝑅𝑅𝑛 and

𝛿𝛿𝑓𝑓 𝛿 𝑓𝑓𝛿𝛿 𝑓 𝐷𝐷𝑛𝑛𝛿𝑛
𝑅𝑅𝑅𝐴𝐴 for every 𝑓𝑓 𝑓 𝐷𝐷0

𝑅𝑅𝑅𝐴𝐴.

(See section 16.8 of [Gro67].)

When 𝑅𝑅 𝑅 ℂ[𝑥𝑥𝑛, … , 𝑥𝑥𝑑𝑑], the ℂ-linear differential op-
erators on 𝑅𝑅 of order up to 𝑛𝑛 are

𝐷𝐷𝑛𝑛
𝑅𝑅𝑅ℂ 𝑅 ⨁

𝑎𝑎𝑛+⋯+𝑎𝑎𝑑𝑑⩽𝑛𝑛
ℂ ⋅ 𝜕𝜕𝑎𝑎𝑛+⋯+𝑎𝑎𝑑𝑑

𝜕𝜕𝑥𝑥𝑎𝑎𝑛
𝑛 ⋯ 𝜕𝜕𝑥𝑥𝑎𝑎𝑑𝑑

𝑑𝑑

.

The following result is the differential version of
Zariski-Nagata, see Proposition 2.4 in [DDSG+18].

Theorem 6.— Let 𝑘𝑘 be a perfect field and consider
any radical ideal 𝐼𝐼 in 𝑅𝑅 𝑅 𝑘𝑘[𝑥𝑥𝑛, … , 𝑥𝑥𝑑𝑑]. Then

𝐼𝐼(𝑛𝑛𝑛 𝑅 {𝑓𝑓 𝑓 𝑅𝑅 ∣ 𝜕𝜕(𝑓𝑓𝑛 𝑓 𝐼𝐼 for every 𝜕𝜕 𝑓 𝐷𝐷𝑛𝑛𝛿𝑛
𝑅𝑅𝑅𝑘𝑘 } .

If we replace 𝑘𝑘 by ℤ or some other ring of mixed char-
acteristic, this description no longer holds; roughly
speaking, the differential operators cannot see what
happens in the arithmetic direction.

Example 3.— In 𝑅𝑅 𝑅 ℤ[𝑥𝑥], the symbolic powers of
the maximal ideal 𝔪𝔪 𝑅 (𝔪, 𝑥𝑥𝑛 coincide with its pow-
ers, so 𝔪 ∉ 𝔪𝔪𝑛𝑛 for any 𝑛𝑛 𝑛 𝑛. However, any differ-
ential operator 𝜕𝜕 𝑓 𝐷𝐷𝑛𝑛

𝑅𝑅𝑅ℤ of any order is ℤ-linear, so
𝜕𝜕(𝔪𝑛 𝑅 𝔪 ⋅ 𝜕𝜕(𝑛𝑛 𝑓 𝔪𝔪.

To describe symbolic powers in mixed characteris-
tic, we need to consider differential operators to-
gether with 𝑝𝑝-derivations, a tool from arithmetic
geometry introduced independently in [Joy85] and
[Bui95]; for a thorough development of the theory of
𝑝𝑝-derivations, see [Bui05].

Definition 7 (𝑝𝑝-derivation).— Fix a prime 𝑝𝑝 𝑓 ℤ,
and let 𝑅𝑅 be a ring on which 𝑝𝑝 is a nonzerodivisor.
A set-theoretic map 𝛿𝛿 𝑓 𝑅𝑅 𝑓 𝑅𝑅 is a 𝑝𝑝-derivation if
𝜙𝜙𝑝𝑝(𝑥𝑥𝑛 𝑓𝑅 𝑥𝑥𝑝𝑝 + 𝑝𝑝𝛿𝛿(𝑥𝑥𝑛 is a ring homomorphism. Equiv-
alently, 𝛿𝛿 is a 𝑝𝑝-derivation if 𝛿𝛿(𝑛𝑛 𝑅 0 and 𝛿𝛿 satisfies
the following identities for all 𝑥𝑥, 𝑥𝑥 𝑓 𝑅𝑅:

(1) 𝛿𝛿(𝑥𝑥𝑥𝑥𝑛 𝑅 𝑥𝑥𝑝𝑝𝛿𝛿(𝑥𝑥𝑛 + 𝑥𝑥𝑝𝑝𝛿𝛿(𝑥𝑥𝑛 + 𝑝𝑝𝛿𝛿(𝑥𝑥𝑛𝛿𝛿(𝑥𝑥𝑛,

(2) 𝛿𝛿(𝑥𝑥 + 𝑥𝑥𝑛 𝑅 𝛿𝛿(𝑥𝑥𝑛 + 𝛿𝛿(𝑥𝑥𝑛 + 𝛿𝛿𝑝𝑝(𝑥𝑥, 𝑥𝑥𝑛

where 𝛿𝛿𝑝𝑝(𝑋𝑋, 𝑋𝑋 𝑛 𝑅 𝑋𝑋𝑝𝑝+𝑋𝑋 𝑝𝑝𝛿(𝑋𝑋+𝑋𝑋 𝑛𝑝𝑝

𝑝𝑝
𝑓 ℤ[𝑋𝑋, 𝑋𝑋 ]. If

𝛿𝛿 is a 𝑝𝑝-derivation, we set 𝛿𝛿𝑎𝑎 to be the 𝑎𝑎-fold self-
composition of 𝛿𝛿; in particular, 𝛿𝛿0 is the identity.

Roughly speaking, a 𝑝𝑝-derivation and its powers play
the role of differential operators in the arithmetic di-
rection.

3
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Theorem 8 (De Stefani-Grifo-Jeffries, 2020).— Let
𝑝𝑝 𝑝 ℤ be a prime. Let 𝐴𝐴 𝐴 ℤ or a DVR with
uniformizer 𝑝𝑝. Let 𝑅𝑅 be an essentially smooth 𝐴𝐴-
algebra that has a 𝑝𝑝-derivation 𝛿𝛿. Let 𝑄𝑄 be a prime
ideal of 𝑅𝑅 that contains 𝑝𝑝, and assume that 𝐴𝐴𝐴𝑝𝑝𝐴𝐴 is
perfect, or more generally that the field extension
𝐴𝐴𝐴𝑝𝑝𝐴𝐴 𝐴 𝑅𝑅𝑄𝑄𝐴𝑄𝑄𝑅𝑅𝑄𝑄 is separable. Then

𝑄𝑄(𝑛𝑛𝑛 𝐴 {𝑓𝑓 𝑝 𝑓𝑓 𝑓 (𝛿𝛿𝑠𝑠 ∘ 𝜕𝜕𝑛(𝑓𝑓 𝑛 𝑝 𝜕𝜕 for all 𝜕𝜕 𝑝 𝜕𝜕𝑡𝑡
𝑅𝑅𝑅𝐴𝐴

with 𝑠𝑠 𝑠 𝑡𝑡 𝑠 𝑛𝑛 𝑠 𝑠𝑠𝑠
(See [DSGJ20].)

For prime ideals that do not contain 𝑝𝑝, the usual de-
scription using only differential operators, as in The-
orem 6, still holds [DSGJ20, Theorem 3.9].

Example 4.— The maximal ideal 𝔪𝔪 𝐴 (𝔪𝔪 𝔪𝔪𝑛 in 𝑅𝑅 𝐴
ℤ[𝔪𝔪𝑥 contains the prime 𝔪, so to describe its symbolic
powers we need to consider a 𝔪-derivation. The map
𝛿𝛿𝔪 ∶ 𝑅𝑅 𝑅 𝑅𝑅

𝛿𝛿𝔪(𝑓𝑓(𝔪𝔪𝑛𝑛 𝐴 𝑓𝑓(𝔪𝔪𝔪𝑛 𝑠 𝑓𝑓(𝔪𝔪𝑛𝔪

𝔪
is a 𝔪-derivation on 𝑅𝑅. By Theorem 8, the symbolic
powers of 𝔪𝔪 𝐴 (𝔪𝔪 𝔪𝔪𝑛 are given by

𝔪𝔪(𝑛𝑛𝑛 𝐴 {𝑓𝑓 𝑝 ℤ[𝔪𝔪𝑥 | 𝛿𝛿𝑎𝑎
𝔪 (

𝜕𝜕𝑏𝑏𝑓𝑓
𝜕𝜕𝔪𝔪𝑏𝑏 ) 𝑝 (𝔪𝔪 𝔪𝔪𝑛𝔪

for 𝑎𝑎 𝑠 𝑏𝑏 𝑠 𝑛𝑛 𝑠 𝑠}𝑠

In particular, we can now see that 𝔪 ∉ 𝔪𝔪(𝔪𝑛, since

𝛿𝛿𝔪(𝔪𝑛 𝐴 𝔪 𝑠 𝔪𝔪

𝔪
𝐴 𝑠𝑠 ∉ 𝔪𝔪𝔪

while as we saw in Example 3 there are no ℤ-linear
differential operators 𝜕𝜕 of order up to 𝑠 (or any or-
der!) satisfying 𝜕𝜕(𝔪𝑛 ∉ 𝔪𝔪.

4 Some open Problems

There are many interesting open problems related
to symbolic powers. We collect a quick survey of
some of those problems, but must necessarily leave
a lot of the story to be told elsewhere. For a survey
of symbolic powers and other related problems, see
[DDSG𝑠18].

4.1 Equality

While the symbolic powers 𝜕𝜕(𝑛𝑛𝑛 of 𝜕𝜕 can be computa-
tionally difficult to compute, its ordinary powers 𝜕𝜕𝑛𝑛

are very easy to describe. It is thus desirable to un-
derstand when 𝜕𝜕(𝑛𝑛𝑛 𝐴 𝜕𝜕𝑛𝑛 for some or all 𝑛𝑛. We do
have 𝜕𝜕(𝑛𝑛𝑛 𝐴 𝜕𝜕𝑛𝑛 for all 𝑛𝑛 whenever 𝜕𝜕 defines a com-
plete intersection — meaning 𝜕𝜕 is generated by a reg-
ular sequence — though this condition is far from be-
ing necessary [Hoc73, LS]. A necessary and sufficient
condition can be found in [Hoc73], though this condi-
tion is not suitable to test in practice outside of special
cases. When we restrict to squarefree monomial ide-
als a polynomial ring 𝑘𝑘[𝔪𝔪𝑠𝔪 … 𝔪 𝔪𝔪𝑑𝑑𝑥 over a field 𝑘𝑘, it
is conjectured that the condition 𝜕𝜕(𝑛𝑛𝑛 𝐴 𝜕𝜕𝑛𝑛 for all 𝑛𝑛
is equivalent to a combinatorial condition. A mono-
mial ideal is an ideal generated by monomials, and it
is squarefree if it is generated by products of distinct
variables; (𝔪𝔪𝑥𝑥𝔪 𝔪𝔪𝑥𝑥𝔪 𝑥𝑥𝑥𝑥𝑛 is a squarefree monomial ideal,
(𝔪𝔪𝔪𝑥𝑥𝔪 𝑥𝑥𝑛 is a monomial ideal but not squarefree, and
(𝔪𝔪 𝑠 𝑥𝑥𝔪 𝑥𝑥𝑛 is not a monomial ideal.

Definition 9 (König ideal).— Let 𝜕𝜕 be a squarefree
monomial ideal of height 𝑐𝑐 in a polynomial ring over a
field. We say that 𝜕𝜕 is könig if 𝜕𝜕 contains 𝑐𝑐 monomials
with no common variables. A squarefree monomial
ideal of height 𝑐𝑐 is said to be packed if every ideal
obtained from 𝜕𝜕 by setting any number of variables
equal to 0 or 𝑠 is könig.

The following is a restatement by Gitler, Valencia, and
Villarreal [GVV05] in the setting of symbolic pow-
ers of a conjecture of Conforti and Cornuéjols about
max-cut min-flow properties.

Conjecture 1 (Packing Problem).— Let 𝜕𝜕 be a
squarefree monomial ideal in a polynomial ring over
a field 𝑘𝑘. We have 𝜕𝜕(𝑛𝑛𝑛 𝐴 𝜕𝜕𝑛𝑛 for all 𝑛𝑛 𝑛 𝑠 if and only
if 𝜕𝜕 is packed.

The Packing Problem has been solved for edge ideals
of simple graphs, in which case 𝜕𝜕𝑛𝑛 𝐴 𝜕𝜕(𝑛𝑛𝑛 for all 𝑛𝑛
if and only if 𝜕𝜕 is the edge ideal of a bipartite graph
[GVV05], but it remains open in the general setting.

One may also wonder if it is sufficient to check
the equality 𝜕𝜕𝑛𝑛 𝐴 𝜕𝜕(𝑛𝑛𝑛 for finitely many 𝑛𝑛; this has
recently been shown to hold in the case when 𝜕𝜕 is
generated by monomials.

Theorem 10 (Montaño-Núnez Betancourt, 2019).—
Let 𝜕𝜕 be a monomial ideal in 𝑘𝑘[𝔪𝔪𝑠𝔪 … 𝔪 𝔪𝔪𝑑𝑑𝑥, where 𝑘𝑘
is a field, and suppose that 𝜕𝜕 is generated by 𝜇𝜇 mono-
mials. If 𝜕𝜕𝑛𝑛 𝐴 𝜕𝜕(𝑛𝑛𝑛 for all 𝑛𝑛 𝑠 𝜇𝜇

𝔪
, then 𝜕𝜕𝑛𝑛 𝐴 𝜕𝜕(𝑛𝑛𝑛 for all

𝑛𝑛. (See [MnNnB19].)

It is an open question whether such a theorem holds
for a general ideal, and if it does, what values of 𝑛𝑛 we
need to test to guarantee 𝜕𝜕𝑛𝑛 𝐴 𝜕𝜕(𝑛𝑛𝑛 for all 𝑛𝑛.

4
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4.2 Degree bounds

Given a nonzero homogeneous ideal 𝐼𝐼 in
𝑘𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑑𝑑], we write 𝛼𝛼𝛼𝐼𝐼𝛼 for the minimum degree
of a nonzero homogeneous 𝑓𝑓 𝑓 𝐼𝐼 . The questions
that we opened the paper with asked about 𝛼𝛼𝛼𝐼𝐼𝛼 and
𝛼𝛼𝛼𝐼𝐼𝛼𝑛𝑛𝛼𝛼; giving lower bounds for these quantities can
be quite challenging.

Conjecture 2 (Chudnovsky, 1981 [Chu81]).—
If 𝐼𝐼 defines a finite set of points in ℙ𝑁𝑁 , then for all
𝑚𝑚 𝑚 1 we have

𝛼𝛼𝛼𝐼𝐼𝛼𝑚𝑚𝛼𝛼
𝑚𝑚

𝑚 𝛼𝛼𝛼𝐼𝐼𝛼 𝛼 𝑁𝑁 𝛼 1
𝑁𝑁

.

Chudnovsky’s conjecture holds for any set of points
in ℙ2 [Chu81, HH13], a general set of points in ℙ3

[Dum15], a set of at most 𝑁𝑁 𝛼 1 points in generic
position in ℙ𝑁𝑁 [Dum15], a set of a binomial coeffi-
cient number of points forming a star configuration
[BH10, GHM13], a set of points in ℙ𝑁𝑁 lying on a
quadric [FMX18], a very general set of points in ℙ𝑁𝑁

[DTG17, FMX18], and sets of 𝑠𝑠 𝑚 𝑠𝑁𝑁 general points
in ℙ𝑁𝑁 [BGHN]. The case of an arbitrary set of points
remains open.

4.3 The Containment Problem

When is 𝐼𝐼𝛼𝑎𝑎𝛼 ⊆ 𝐼𝐼𝑏𝑏? Necessary and sufficient condi-
tions for this question to make sense — so that given
𝐼𝐼 and 𝑏𝑏, we can always find such an 𝑎𝑎 — were stud-
ied by Schenzel in the 1980s [Sch85]. For each 𝐼𝐼 and
each 𝑏𝑏, we want to find the smallest possible 𝑎𝑎 with
𝐼𝐼𝛼𝑎𝑎𝛼 ⊆ 𝐼𝐼𝑏𝑏. If 𝐼𝐼𝛼𝑏𝑏𝛼 ⊆ 𝐼𝐼𝑏𝑏, then 𝐼𝐼𝛼𝑏𝑏𝛼 = 𝐼𝐼𝑏𝑏, so this ques-
tion contains the equality problem as a subproblem.
When equality does not hold, we may think of the
Containment Problem as a way of comparing the or-
dinary and symbolic powers of 𝐼𝐼 . Notice also that
if 𝐼𝐼𝛼𝑎𝑎𝛼 ⊆ 𝐼𝐼𝑏𝑏, then 𝛼𝛼𝛼𝐼𝐼𝛼𝑎𝑎𝛼𝛼 𝑚 𝑏𝑏𝛼𝛼𝛼𝐼𝐼𝛼, so answering the
Containment Problem for 𝐼𝐼 will in particular provide
lower bounds for the degrees of elements in the sym-
bolic powers of 𝐼𝐼 .

Over 𝑅𝑅 = 𝑘𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑑𝑑], or more generally any
regular ring, the answer depends on the big height of
𝐼𝐼 , the largest codimension of an irreducible compo-
nent of the algebraic set corresponding to 𝐼𝐼 , which in
algebraic terms is the same as the largest height of a
minimal prime of 𝐼𝐼 .

This answer is a beautiful theorem of Ein—
Lazersfeld—Smith, Hochster—Huneke, and Ma—
Schwede.

Theorem 11.— Let 𝑅𝑅 be a regular ring and 𝐼𝐼 a radical
ideal in 𝑅𝑅. If ℎ is the big height of 𝐼𝐼 , then

𝐼𝐼𝛼ℎ𝑛𝑛𝛼 ⊆ 𝐼𝐼𝑛𝑛 for all 𝑛𝑛 𝑚 1.
(See [ELS01, HH02, MS17, M].)

In particular, when 𝑘𝑘 is a field and 𝑅𝑅 = 𝑘𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑑𝑑],
the theorem says that 𝐼𝐼𝛼𝑑𝑑𝑛𝑛𝛼 ⊆ 𝐼𝐼𝑛𝑛 for every 𝐼𝐼 . This
type of uniform behavior — in this case, independent
of the ideal 𝐼𝐼 we choose — appears in many shapes
and forms throughout commutative algebra. For ex-
ample, for a prime ideal 𝑃𝑃 of height 2, the theorem
says that 𝑃𝑃 𝛼𝑠𝛼 ⊆ 𝑃𝑃 2; in 2000, Huneke asked if this
could be improved to 𝑃𝑃 𝛼3𝛼 ⊆ 𝑃𝑃 2 under some techni-
cal hypothesis, which inspired the following conjec-
ture.

Conjecture 3 (Harbourne, 2006).— Let 𝐼𝐼 be a radi-
cal homogeneous ideal in 𝑘𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑑𝑑], and let ℎ be
the big height of 𝐼𝐼 . Then for all 𝑛𝑛 𝑚 1,

𝐼𝐼𝛼ℎ𝑛𝑛𝛼ℎ𝛼1𝛼 ⊆ 𝐼𝐼𝑛𝑛.

Hochster and Huneke’s proof of Theorem 11 uses
prime characteristic techniques and reduction to
characteristic 𝑝𝑝 to do the case when the ring contains
a field, and their proof in the prime characteristic 𝑝𝑝
case for 𝑛𝑛 = 𝑝𝑝𝑒𝑒 turns out to be a beautiful application
of the Pigeonhole Principle. A more careful applica-
tion of the Pigeonhole Principle gives Harbourne’s
Conjecture for powers of 𝑝𝑝: 𝐼𝐼𝛼ℎ𝑞𝑞𝛼ℎ𝛼1𝛼 ⊆ 𝐼𝐼𝑞𝑞 for all
𝑞𝑞 = 𝑝𝑝𝑒𝑒. In an amazing twist, however, 3 is not true
as stated: there is a set of 12 points in ℙ12 [DSTG13]
with ℎ = 2 that fails 𝐼𝐼𝛼3𝛼 ⊆ 𝐼𝐼2, among other families
of counterexamples [HS15, Sec15, DS21].

Despite these counterexamples, Conjecture 3
does hold for some large classes of ideals, such as
monomial ideals [BDRH𝛼09, Example 8.4.5], generic
sets of points in ℙ2 [BH10] or ℙ3 [Dum15], for ma-
troid configurations [GHMN17], and for star configu-
rations [HH13]. The conjecture also holds if 𝑅𝑅𝑅𝐼𝐼 has
nice singularities: if 𝑅𝑅𝑅𝐼𝐼 is F-pure in prime charac-
teristic or of dense F-pure type in equicharacteristic
0 [GH]. This class of rings contains Veronese rings,
generic determinantal rings, and more generally rings
of invariants of linearly reductive groups.

Moreover, every counterexample to 3 known to
date actually satisfies the following open conjecture:

Conjecture 4 (Stable Harbourne [Gri20]).— If 𝐼𝐼 is
a radical ideal of big height ℎ in a regular ring, then
𝐼𝐼𝛼ℎ𝑛𝑛𝛼ℎ𝛼1𝛼 ⊆ 𝐼𝐼𝑛𝑛 for all 𝑛𝑛 𝑛 0.

We are asking if Harbourne’s Conjecure holds for 𝑛𝑛
large — where large enough should depend on 𝐼𝐼 . The
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philosophy is that when one asks for the smallest 𝑎𝑎𝑛𝑛
such that 𝐼𝐼(𝑎𝑎𝑛𝑛) ⊆ 𝐼𝐼𝑛𝑛, things get better as 𝑛𝑛 grows.
Not only do we have no counterexamples to this
conjecture, the evidence supporting it keeps growing
[Gri20, BGHN, GHM20a, GHM20b]. In fact, every
counterexample known to date to the original conjec-
ture, Conjecture 3, satisfies the stable conjecture.

If studying 𝐼𝐼(𝑛𝑛) is hard, the computational prob-
lems only get harder as 𝑛𝑛 grows. As such, testing
conjectures such as this one can be quite challeng-
ing. Many of the results in this direction rely on
proving that certain particular containments are suf-
ficient to obtain an eventual containment statement
for large 𝑛𝑛, a technique which has also found appli-
cations [BGHN, BGHN22] in the degree problem we
mentioned in Section 4.2.

The problems we discussed here have been open
for decades, but have paved the way for many new
research avenues in recent years. For more on recent
advances in the topic of symbolic powers, and their
connections to other topics, see [DDSG+18].
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