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Elliptic partial differential equations are a very import class of equations with obvious connections 
to applied sciences (e.g. physics, biology, chemistry and engineering) as well as to other fields of 
Mathematics such as Differential Geometry, Functional Analysis and Calculus of Variations. Because of 
these facts they are a quite fascinating topic and an increasingly active field of research. In this article 
we focus our attention on semilinear problems of type Δ𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑢𝑢, more specifically on the Lane-Emden 
equation, as a mean to explain some of the tools and methods (mostly topological or variational) that are 
available to treat elliptic problems. The topics addressed concern existence and multiplicity of solutions, 
as well as their qualitative properties such as sign and symmetry. The goal is not to provide a complete 
state-of-the-art (which would not fit in a few pages), but rather to present some relevant and interesting 
questions and, whenever possible, to explain which ones we cannot answer yet.

1 Introduction

Many problems can be modelled with the aid of ellip-
tic partial differential equations[1]. One of the most
well known examples is the classical Poisson equa-
tion: given a bounded regular domain Ω ⊂ ℝ𝑛𝑛, we
take

−Δ𝑢𝑢 𝑢 𝑢𝑢 in Ω.

Its solutions may represent the shape of an elastic
membrane in equilibrium subject to a vertical load
𝑢𝑢 𝑓 Ω 𝑓 ℝ (𝑢𝑢𝑢𝑢𝑢𝑢 corresponds to the vertical dis-
placement at the point 𝑢𝑢); an electrostatic potential
(for 𝑢𝑢 𝑢 𝑓𝑓𝑓𝑓𝑓, where 𝑓𝑓𝑢𝑢𝑢𝑢 is the volume charge density
and 𝑓𝑓 the permittivity of the medium), a gravitational
potential (for 𝑢𝑢 𝑢 −𝑓𝑓𝑓𝑓𝑓𝑓𝑓, where 𝑓𝑓 is the density
of the object and 𝑓𝑓 the gravitational constant), or the
stationary solutions for the heat equation (in this case
𝑢𝑢 represents a temperature, and 𝑢𝑢 is a heat source or
sink). Here Δ𝑢𝑢 𝑢 ∑𝑛𝑛

𝑖𝑖𝑢𝑖 𝜕𝜕2𝑢𝑢𝑓𝜕𝜕𝑢𝑢2
𝑖𝑖 is the Laplace oper-

ator (the trace of the Hessian matrix). To obtain ex-
istence and uniqueness of solution, one couples the

equation with boundary conditions: Dirichlet bound-
ary conditions (𝑢𝑢 𝑢 𝑢𝑢 on 𝜕𝜕Ω) or Neumann bound-
ary conditions (𝜕𝜕𝑢𝑢𝑓𝜕𝜕𝜕𝜕 𝜕 𝜕𝑢𝑢 𝜕 𝜕𝜕 𝑢 𝑢𝑢 on 𝜕𝜕Ω, where
𝜕𝜕 𝑢 𝜕𝜕𝑢𝑢𝑢𝑢 is the exterior normal at 𝑢𝑢 𝑥 𝜕𝜕Ω) are typi-
cal examples arising in applications. Linear problems
are very well understood and can be found in classi-
cal textbooks (see for instance [14, 26]), while current
research aims at a good understanding of nonlinear
problems. Among the wide class of possible nonlin-
ear problems, the simplest to treat (although already
quite rich mathematically, as we will see) are semilin-
ear ones, where 𝑢𝑢 𝑓 ℝ 𝑓 ℝ, 𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑢𝑢, is a nonlinear
function, that is, the nonlinearity occurs at the level
of the zero order terms. Let us see some examples.

Example 1.— The stationary Fisher equation: −Δ𝑢𝑢 𝑢
𝑎𝑎𝑢𝑢𝑢𝑎𝑎 − 𝑢𝑢2𝑢. Solutions are equilibrium points of the
evolutionary equation

𝑣𝑣𝑡𝑡 − 𝑑𝑑Δ𝑢𝑢𝑣𝑣 𝑢 𝑣𝑣𝑢𝑎𝑎 − 𝑎𝑎𝑣𝑣𝑢𝑣 𝑢𝑢𝑢𝑣 𝑡𝑡𝑢 𝑥 Ω 𝑣 ℝ+𝑣
where 𝑎𝑎𝑣 𝑎𝑎 are positive constants, and 𝑣𝑣 𝑢 𝑣𝑣𝑢𝑢𝑢𝑣 𝑡𝑡𝑢 rep-
resents the density of a population at the point 𝑢𝑢 and
time 𝑡𝑡, subject to diffusion (modelled by the Laplacian

[1] Is is out of the scope of this article to give a more general definition of what is an elliptic problem, but we can briefly explain the
nomenclature. It comes from an analogy with the classification of conics, and from the classification of a general linear second order PDE
in dimension 2: 𝑎𝑎𝑢𝜕𝜕2𝑢𝑢𝑓𝜕𝜕𝑢𝑢2

𝑖𝑢 + 2𝑎𝑎𝑢𝜕𝜕2𝑢𝑢𝑓𝜕𝜕𝑢𝑢𝑖𝜕𝜕𝑢𝑢2𝑢 + 𝑐𝑐𝑢𝜕𝜕2𝑢𝑢𝑓𝜕𝜕𝑢𝑢2
2𝑢 + lower order terms 𝑢 𝑢𝑢 is called elliptic if 𝑎𝑎2 − 𝑎𝑎𝑐𝑐 𝑎 𝑎. A typical example is

the case 𝑎𝑎 𝑢 𝑐𝑐 𝑢 𝑖, 𝑎𝑎 𝑢 𝑎, which corresponds to having the Laplace operator in dimension 2.
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term) and following a logistic law of growth (compare
with the well known ordinary differential equation
version of it: 𝑢𝑢′ = 𝑢𝑢𝑢𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑢).

Example 2.— The Lane-Emden equation: 𝑢Δ𝑢𝑢 =
|𝑢𝑢|𝑝𝑝𝑢𝑝𝑢𝑢, which appears in astrophysics. If 𝑛𝑛 = 𝑛, and 𝑢𝑢
is radially symmetric and positive, then 𝜃𝜃𝑢|𝜃𝜃|𝑢 = 𝑢𝑢𝑢𝜃𝜃𝑢
solves the Lane-Emden equation of index 𝑝𝑝 𝑢 𝑝,

𝑝
𝜉𝜉𝑝

𝑑𝑑
𝑑𝑑𝜉𝜉 (𝜉𝜉𝑝 𝑑𝑑𝜃𝜃

𝑑𝑑𝜉𝜉 ) + 𝜃𝜃𝑝𝑝𝑢𝑝 = 0, 𝜃𝜃𝑢0𝑢 = 𝑝, 𝜃𝜃′𝑢0𝑢 = 0

which can be used to model self-gravitating spheres
of plasma such as stars. Up to constants, we have that
𝜃𝜃 is the temperature, 𝜃𝜃𝑝𝑝 is the pressure, the first root
𝑟𝑟𝑝 of 𝜃𝜃 is the star’s radius, and ∫𝑟𝑟𝑝

0 𝜃𝜃𝑢𝑟𝑟𝑢𝑝𝑝𝑢𝑝𝑟𝑟𝑝 𝑑𝑑𝑟𝑟 is the
total mass [12]. We will meet again this equation in
Section 3.

Example 3.— The time independent nonlinear
Schrödinger equation: 𝑢Δ𝑢𝑢 + 𝑢𝑢𝑢 𝑢𝜃𝜃𝑢 + 𝑢𝑢𝑢𝑢𝑢 = 𝑢𝑢|𝑢𝑢|𝑝𝑢𝑢
appears naturally when looking for standing wave so-
lutions of the Schrödinger Equation 𝑖𝑖𝑖𝑡𝑡 = 𝑢Δ𝑖 +
𝑢𝑢 𝑢𝜃𝜃𝑢𝑖 𝑢 𝑢𝑢|𝑖|𝑝𝑖, that is, solutions whose modulus
is time-independent: 𝑖𝑢𝜃𝜃, 𝑡𝑡𝑢 = 𝑥𝑥𝑖𝑖𝑢𝑢𝑡𝑡𝑢𝑢𝑢𝜃𝜃𝑢. This evo-
lutionary equation appears in quantum mechanics,
nonlinear optics and in the study of Bose-Einstein
condensation.

Example 4.— The Yamabe Problem (Differential Ge-
ometry):

𝑢4𝑢𝑛𝑛 𝑢 𝑝𝑢
𝑛𝑛 𝑢 𝑝

Δℳ𝑢𝑢 + 𝑢𝑢𝑔𝑔𝑢𝜃𝜃𝑢𝑢𝑢 = 𝑢𝑢𝑔𝑔0
𝑢𝑢𝑝∗𝑢𝑝, (1)

where 𝑝∗ = 𝑝𝑛𝑛𝑛𝑢𝑛𝑛 𝑢 𝑝𝑢. Here ℳ is a compact man-
ifold of dimension 𝑛𝑛 𝑛 𝑛 with a Riemannian metric
𝑔𝑔 and scalar curvature 𝑢𝑢𝑔𝑔 . Yamabe in 1960 made the
conjecture that there always exist a conformal metric
𝑔𝑔0 with constant scalar curvature (actually he proved
it, but a mistake in the proof was found by Trudinger
in 1968). The final proof was given in the 1984 after
the contributions of Yamabe, Trudinger, Aubin and
Schoen (see a detailed account in [21]). The previ-
ous equation has a positive solution 𝑢𝑢 and, for the
metric 𝑔𝑔0 ∶= 𝑢𝑢4𝑛𝑢𝑛𝑛𝑢𝑝𝑢𝑔𝑔, the manifold has constant
scalar curvature 𝑢𝑢𝑔𝑔0

. The exponent 𝑝∗ is called the
Sobolev exponent and plays a crucial role in the the-
ory of Sobolev spaces and weak solutions (we will
meet them briefly in Section 2). In local coordinates,
(1) reads

𝑢 𝑝
𝑢𝑢𝑢𝜃𝜃𝑢

div𝑢𝐴𝐴𝑢𝜃𝜃𝑢𝐴𝑢𝑢𝑖𝑖𝑢 + 𝑢𝑢𝑔𝑔𝑢𝜃𝜃𝑢𝑢𝑢 = 𝑢𝑢𝑔𝑔0
𝑢𝑢𝑝∗𝑢𝑝

in an open bounded domain Ω,

𝑢𝑢𝑢𝜃𝜃𝑢 = 𝑛𝑛 𝑢 𝑝
4𝑢𝑛𝑛 𝑢 𝑝𝑢

√|𝑔𝑔𝑢𝜃𝜃𝑢| ∶= 𝑛𝑛 𝑢 𝑝
4𝑢𝑛𝑛 𝑢 𝑝𝑢√det 𝑔𝑔𝑖𝑖𝑖𝑖𝑢𝜃𝜃𝑢

and
𝐴𝐴𝑢𝜃𝜃𝑢 = √𝑔𝑔𝑢𝜃𝜃𝑢𝑢𝑔𝑔𝑖𝑖𝑖𝑖𝑢𝜃𝜃𝑢𝑢𝑖𝑖𝑖𝑖 ,

where 𝑢𝑔𝑔𝑖𝑖𝑖𝑖𝑢𝜃𝜃𝑢𝑢𝑖𝑖𝑖𝑖 is the inverse matrix of the metric
𝑢𝑔𝑔𝑖𝑖𝑖𝑖𝑢𝜃𝜃𝑢𝑢𝑖𝑖𝑖𝑖 .

The purpose of this article is to briefly explain some
of the questions that mathematicians working in this
field try to answer. To fix ideas, we focus on the equa-
tion introduced in Example 2, as it is one of the sim-
plest prototypical situations. Whenever is possible
and not too complicated to do, we will leave some
open problems for the interested reader. Before en-
tering into more recent and sophisticated material, it
is helpful to review some classical one for the Poisson
equation. We do it in the next section.

2 Weak Solutions. The Variational
Method

Let us deal with the Poisson equation with zero
Dirichlet boundary conditions:

𝑢Δ𝑢𝑢 = 𝑢𝑢 in Ω, 𝑢𝑢 = 0 on 𝜕𝜕Ω, (2)

where 𝑢𝑢 = 𝑢𝑢𝑢𝜃𝜃𝑢 ∶ Ω → ℝ is a regular function (ob-
serve that the function 𝑢𝑢 depends only on the 𝜃𝜃 vari-
able, not on the solution itself like in Example 2). A
classical solution is a function 𝑢𝑢 𝑢 𝑢𝑢𝑝𝑢Ω𝑢Z𝑢𝑢𝑢Ω𝑢 satis-
fying the equalities in (2) pointwise. It is typically not
easy to find classical solutions directly, being common
to take the variational point of view: if 𝑢𝑢 is a 𝑢𝑢𝑝𝑢Ω𝑢 so-
lution, then it is not hard to prove that 𝑢𝑢 is a solution
to the minimization problem

inf {ℰ𝑢𝑢𝑢𝑢 ∶ 𝑢𝑢 𝑢 𝑢𝑢𝑝𝑢Ω𝑢, 𝑢𝑢 = 0 on 𝜕𝜕Ω} ,
where

ℰ𝑢𝑢𝑢𝑢 𝑢 𝑝
𝑝 ∫Ω

|𝐴𝑢𝑢|𝑝 𝑢 ∫Ω
𝑢𝑢𝑢𝑢𝑓 (3)

This is called the Dirichlet’s Principle, and it is con-
nected with one of the physical interpretations of the
problem: for an elastic membrane, we are minimiz-
ing the total potential energy [26, §6.1]. This may look
like a very good way of finding solutions, however it is
not as simple as it sounds: there are situations where
there are no minimizers (there are famous counterex-
amples by Weierstrass (1870) and F. Prym (1871)). In
a nutshell, the problem is that there is a natural norm
present:

𝑢𝑢 𝑢 (∫Ω
|𝐴𝑢𝑢|𝑝 + ∫Ω

𝑢𝑢𝑝
)

𝑝𝑛𝑝

, (4)

3
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however the function space 𝐶𝐶2(Ω) is not complete
when equipped with it. This, among other things, led
to Sobolev spaces (mid 1930’s), defined as the closure
of 𝐶𝐶2(Ω) for (4) or, equivalently, as[2]

𝐻𝐻1(Ω) = 𝑊𝑊 1,2(Ω) =

= {𝑢𝑢 𝑢 𝑢𝑢2(Ω) ∶ 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕𝑖𝑖

𝑢 𝑢𝑢2(Ω)} =

=
{

𝑢𝑢∶Ω 𝑢 ℝ ∶ ∫Ω
𝑢𝑢2,∫Ω(

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕𝑖𝑖 )

2

< ∞ ∀𝑖𝑖
}

.

(5)

We also denote by 𝐻𝐻1
0 (Ω) the set of functions in

𝐻𝐻1(Ω) which are zero at the boundary (in the sense
of traces). We advice the reader to check for instance
[26, §7] or [14, §5] for the details. This leads to the
minimization problem

inf {ℰ(𝑢𝑢) ∶ 𝑢𝑢 𝑢 𝐻𝐻1
0 (Ω)} ,

for ℰ ∶ 𝐻𝐻1
0 (Ω) 𝑢 ℝ, as defined in (3).

The functional ℰ is differentiable in 𝐻𝐻1
0 (Ω). It is

standard (within the field of Calculus of Variations) to
prove that minimizers exist; moreover, if 𝑢𝑢 is a mini-
mizer, then, for every 𝑣𝑣 𝑢 𝐻𝐻1

0 (Ω),

ℰ′(𝑢𝑢)𝑢𝑣𝑣𝑢 𝑢 𝑑𝑑
𝑑𝑑𝑑𝑑

ℰ(𝑢𝑢 𝑢 𝑑𝑑𝑣𝑣)𝑢𝑑𝑑=0 =

= ∫Ω ∇𝑢𝑢 𝑢 ∇𝑣𝑣 𝑢 ∫Ω 𝑓𝑓𝑣𝑣 = 0.

Definition 1.— We say 𝑢𝑢 𝑢 𝐻𝐻1
0 (Ω) is a weak solution

(or variational solution) of (2) if

∫Ω
∇𝑢𝑢 𝑢 ∇𝑣𝑣 𝑢 ∫Ω

𝑓𝑓𝑣𝑣 = 0 ∀𝑣𝑣 𝑢 𝐻𝐻1
0 (Ω).

Therefore 𝑢𝑢 is a weak solution of (2) if, and only if, 𝑢𝑢
is a critical point of ℰ . We have also seen that mini-
mizers (which exist) provide weak solutions. On the
other hand, if 𝑢𝑢 is sufficiently regular, then the notion
of classical and weak solution coincide. This theory
allows to treat separately the existence of solutions
and their regularity, and the existence part is trans-
lated into finding critical points of a certain functional.
This leads to the subject Variational Methods/Critical
Point Theory, which can be used to tackle not only lin-
ear problems, but also semilinear problems like the
ones presented in the Introduction.

3 Study of a model problem: the
Lane-Emden equation

3.1 Statement of the problem and some technical
background

Let 𝑛𝑛 𝑛 𝑛, 𝑝𝑝 𝑝 1 and let Ω be a bounded, regular,
connected open set. We work from now on with the
prototypical problem considered in Example 2, under
Dirichlet boundary conditions

𝑢Δ𝑢𝑢 = 𝑢𝑢𝑢𝑢𝑝𝑝𝑢2𝑢𝑢 in Ω, 𝑢𝑢 = 0 on 𝜕𝜕Ω. (6)

Clearly 𝑢𝑢 𝑢 0 is always a solution, but we are inter-
ested in nontrivial ones. Based on what we have seen
in the previous section, a natural definition of weak
solution is

∫Ω
∇𝑢𝑢 𝑢 ∇𝑣𝑣 𝑢 ∫Ω

𝑢𝑢𝑢𝑢𝑝𝑝𝑢2𝑢𝑢𝑣𝑣 = 0 ∀𝑣𝑣 𝑢 𝐻𝐻1
0 (Ω),

and (at least formally, for now) weak solutions corre-
spond to critical points of the functional

ℐ ∶ 𝐻𝐻1
0 (Ω) 𝑢 ℝ,

ℐ (𝑢𝑢) = 1
2 ∫Ω

𝑢∇𝑢𝑢𝑢2 𝑢 1
𝑝𝑝 ∫Ω

𝑢𝑢𝑢𝑢𝑝𝑝 (7)

(observe that (𝑢𝑑𝑑𝑢𝑝𝑝)′ = 𝑝𝑝𝑢𝑑𝑑𝑢𝑝𝑝𝑢2𝑑𝑑 for every 𝑑𝑑 𝑢 ℝ, 𝑝𝑝 𝑝 1).
To make these statements precise and correct, actu-
ally we need a restriction on the exponent 𝑝𝑝: the
integral ∫Ω 𝑢𝑢𝑢𝑢𝑝𝑝 is not always finite for 𝑢𝑢 𝑢 𝐻𝐻1

0 (Ω).
One needs to recall Sobolev inequalities: for 1 ≤ 2∗ =
2𝑛𝑛𝑛(𝑛𝑛 𝑢 2) there exists 𝐶𝐶𝑛𝑛,𝑝𝑝 𝑝 0 such that

(∫Ω
𝑢𝑢𝑢𝑢𝑝𝑝

)

1𝑛𝑝𝑝

≤ 𝐶𝐶𝑛𝑛,𝑝𝑝 (∫Ω
𝑢∇𝑢𝑢𝑢2

)

1𝑛2

for every 𝑢𝑢 𝑢 𝐻𝐻1
0 (Ω), which amounts to say that

the embedding 𝐻𝐻1
0 (Ω) ↪ 𝑢𝑢𝑝𝑝(Ω) is continuous. The

number 2∗ is the critical Sobolev exponent, which we
already met in Example 4. Therefore, in conclusion,
(7) is defined only for 𝑝𝑝 ≤ 2∗. In this case, in order to
look for weak solutions of the problem (6), we may
try to find critical points of ℐ .

Now the question is: how can we find a critical
point of ℐ ? And how many of them are there? The
answer depends on 𝑝𝑝: not only the geometry of ℐ
changes from 𝑝𝑝 < 2 to 𝑝𝑝 𝑝 2, but also the situations

[2] Observe (or recall) that the meaning of (𝜕𝜕𝑢𝑢𝑛𝜕𝜕𝜕𝜕𝑖𝑖) 𝑢 𝑢𝑢2(Ω) is not obvious at all for a function 𝑢𝑢 in 𝑢𝑢2(Ω). It means that the first order weak
derivatives of 𝑢𝑢 are 𝑢𝑢2(Ω) — functions; in other words, for every 𝑖𝑖 = 1, 𝑖 , 𝑖𝑖 , there exists 𝑔𝑔𝑖𝑖 𝑢 𝑢𝑢2(Ω) (which we call 𝜕𝜕𝑢𝑢𝑛𝜕𝜕𝜕𝜕𝑖𝑖) such that

∫Ω
𝑔𝑔𝑖𝑖𝜑𝜑 = 𝑢 ∫Ω

𝑢𝑢 𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕𝑖𝑖

∀𝜑𝜑 𝑢 𝐶𝐶∞(Ω) with compact support.
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𝑝𝑝 𝑝 𝑝∗ and 𝑝𝑝 𝑝 𝑝∗ are very different: the embedding
of 𝐻𝐻1

0 (Ω) in 𝐿𝐿𝑝𝑝(Ω) is compact only for 1 ≤ 𝑝𝑝 𝑝 𝑝∗.
The discussion of the case 𝑝𝑝 𝑝 𝑝∗ is much harder and
less is known, being out of the scope of this article.

3.2 The linear case 𝑝𝑝 𝑝 𝑝.

Before going nonlinear, let us analyse what happens
in the linear case 𝑝𝑝 𝑝 𝑝, that is: −Δ𝑢𝑢 𝑝 𝑢𝑢 in Ω, 𝑢𝑢 𝑝 0
on 𝜕𝜕Ω. This problem may or may not have a solution;
what we are asking in other words is if 𝜆𝜆 𝑝 1 is an
eigenvalue of the operator 𝐴𝐴 𝐴𝑝 −Δ with Dirichlet
boundary conditions. In this context, indeed, 𝜆𝜆 𝜆 ℝ
is called an eigenvalue whenever −Δ𝑢𝑢 𝑝 𝜆𝜆𝑢𝑢 in Ω,
𝑢𝑢 𝑝 0 on 𝜕𝜕Ω admits a nontrivial (weak) solution.
From the spectral theory of compact operators (using
the compactness of the embedding 𝐻𝐻1

0 (Ω) ↪ 𝐿𝐿𝑝(Ω)),
we deduce that the eigenvalues of −Δ (counting mul-
tiplicities) form a nondecreasing sequence

0 𝑝 𝜆𝜆1(Ω) 𝑝 𝜆𝜆𝑝(Ω) ≤ 𝜆𝜆3(Ω) ≤ ⋯ → ∞
with associated eigenfunctions (𝑣𝑣𝑛𝑛)𝑛𝑛𝜆ℕ which form a
Hilbert base of 𝐻𝐻1

0 (Ω). Exactly as for eigenvalues of
a matrix, the eigenvalues admit a variational formula-
tion, namely

𝜆𝜆1(Ω) 𝑝 min {ℛ(𝑢𝑢) 𝐴 𝑢𝑢 𝜆 𝐻𝐻1
0 (Ω) ⧵ {0}} ,

𝜆𝜆𝑘𝑘(Ω) 𝑝 min
𝑉𝑉 𝑉𝐻𝐻1

0 (Ω),dim 𝑉𝑉 𝑝𝑘𝑘
max

𝑢𝑢𝜆𝑉𝑉 ⧵{0}
ℛ(𝑢𝑢), (𝑘𝑘 𝑢 𝑝) (8)

where ℛ(𝑢𝑢) 𝑝 ∫Ω |∇𝑢𝑢|𝑝/ ∫Ω 𝑢𝑢𝑝 is called the Rayleigh
quotient. The details can be found in [26, §6], for
instance. Therefore, the question of whether (6) in
the case 𝑝𝑝 𝑝 𝑝 admits a nontrivial solution or not de-
pends on the domain: the answer is affirmative only
for domains for which 1 𝑝 𝜆𝜆𝑖𝑖(Ω) for some 𝑖𝑖.

3.3 The sublinear case 0 𝑝 𝑝𝑝 𝑝 𝑝.

This is called the sublinear case. It is quite easy to see
that ℐ has a minimum in each direction: for a fixed
𝑤𝑤 𝜆 𝐻𝐻1

0 (Ω), this corresponds to study the real func-
tion 𝑓𝑓(𝑓𝑓) 𝑝 ℐ (𝑓𝑓𝑓𝑓), which has the form 𝑎𝑎𝑓𝑓𝑝 − 𝑏𝑏|𝑓𝑓|𝑝𝑝 for
some 𝑎𝑎, 𝑏𝑏 𝑝 0 (see the left picture on Figure 1). Using
Sobolev inequalities and the direct method of Calcu-
lus of Variations [14, §8.2], one shows that ℐ admits
a negative global minimum in 𝐻𝐻1

0 (Ω): the level

inf{ℐ (𝑢𝑢) 𝐴 𝑢𝑢 𝜆 𝐻𝐻1
0 (Ω)} 𝑝 0

is achieved, providing a nontrivial solution (which is
called a least energy solution). We know a lot about
minimizers. First of all, they are signed: either 𝑢𝑢 𝑝 0
in Ω or 𝑢𝑢 𝑝 0 in Ω (consequence of the inequality
ℐ (|𝑢𝑢|) ≤ ℐ (𝑢𝑢) and the strong maximum principle
[17, §2.2]). Positive solutions are unique [20]. This
uniqueness property also implies symmetry proper-
ties in symmetric domains: for instance if the do-
main is radially symmetric (ball or annulus), the so-
lution is radially symmetric (working in the space
{𝑢𝑢 𝜆 𝐻𝐻1

0 (Ω) 𝐴 𝑢𝑢(𝑢𝑢) 𝑝 𝑢𝑢(|𝑢𝑢|) 𝑢𝑢𝑢 𝜆 Ω} provides a

5

Figure 1.—Given 𝑢𝑢 𝑢 𝑢𝑢10(Ω), the shape of the map 𝑡𝑡 𝑢 ℝ+
0 ↦ ℐ(𝑡𝑡𝑢𝑢) for 𝑝𝑝 𝑝 𝑝 and 𝑝𝑝 𝑝 𝑝

is represented on the left and right figures respectively.
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positive solution). More generally, we can consider
the situation of a domain Ω which is invariant for a
subgroup 𝐺𝐺 of 𝑂𝑂𝑂𝑂𝑂𝑂.

In the previous paragraph we described properties
of minimizers. Does ℐ admit more critical points
(i.e., solutions of the problem (6))? The answer is af-
firmative (see e.g. [7]): there exists a sequence of crit-
ical points 𝑂𝑣𝑣𝑘𝑘𝑂𝑘𝑘, which satisfy

ℐ 𝑂𝑣𝑣𝑘𝑘𝑂 < 0, ℐ 𝑂𝑣𝑣𝑘𝑘𝑂 → 0.
This is a consequence of the ℤ2–symmetry of the
problem (the functional is invariant under the map
𝑢𝑢 𝑢 𝑢𝑢𝑢); solutions can be found as saddle points
of ℐ , characterized via min-max methods in an anal-
ogous way to what happens for higher eigenvalues
(recall (8)). Observe that, since positive (and neg-
ative) solutions are unique, the previous multiplic-
ity result yields the existence of infinitely many sign-
changing solutions. The next step is then to under-
stand them as better as possible. The study of the
zero-set of sign-changing solutions (the free-boundary
set Γ = {𝑥𝑥 𝑥 Ω 𝑥 𝑢𝑢𝑂𝑥𝑥𝑂 = 0𝑥) has been done re-
cently: up to a set with small Hausdorff dimension, Γ
is a regular hypersurface [27, 28]. Moreover, one may
also ask if, among all sign-changing solutions, there is
one that minimizes the energy functional ℐ , that is,
if the level

𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 = inf{ℐ 𝑂𝑢𝑢𝑂 𝑥 𝑢𝑢 is a sign-changing
critical point of ℐ 𝑥

is achieved. The answer is affirmative, as shown re-
cently in [9]. On radial domains this solution is not ra-
dially symmetric, but only axially symmetric. In this
last paper it is also shown, quite remarkably, that the
type of critical point we find depends on the domain:
there are domains where the least energy nodal solu-
tion is a local minimizer of ℐ , and others where it is
a saddle point. A complete understanding of how the
domain influences the type of critical point is open.

3.4 The superlinear–subcritical case 2 < 𝑝𝑝 < 2∗.

For the case 𝑝𝑝 𝑝 2, in each direction the functional
looks like the picture on the right in Figure 1. Using
Sobolev inequalities, one can show that:

— the origin 𝑢𝑢 = 0 is a strict local minimum;

— ℐ is unbounded from below and from above.

In this case, to obtain solutions we cannot simply
minimize (nor maximize) the functional in the whole
𝐻𝐻1

0 𝑂Ω𝑂. Based on the geometry of the functional, we

can use the following version of the celebrated result
by Ambrosetti and Rabinowitz [3].

Theorem 2 (Mountain Pass Theorem).— Let 𝐻𝐻 be a
Hilbert space and let 𝒥𝒥 𝑥 𝐻𝐻 → ℝ be a 𝒞𝒞 1,1 func-
tional satisfying

• 𝒥𝒥 𝑂0𝑂 = 0;

• there exists 𝑟𝑟 𝑝 0 such that 𝒥𝒥 𝑂0𝑂 𝒥 𝒥𝒥 𝑂𝑢𝑢𝑂 for
every ‖𝑢𝑢‖ 𝒥 𝑟𝑟 and inf{𝒥𝒥 𝑂𝑢𝑢𝑂 𝑥 ‖𝑢𝑢‖ = 𝑟𝑟𝑥 𝑝 0;

• there exists 𝑣𝑣 such that 𝒥𝒥 𝑂𝑣𝑣𝑂 < 0.

Let
Γ 𝑥= {𝛾𝛾 𝑥 𝛾𝛾1𝑂[0, 1]; 𝐻𝐻1

0 𝑂Ω𝑂𝑂 𝑥
𝛾𝛾𝑂0𝑂 = 0, 𝒥𝒥 𝑂𝛾𝛾𝑂𝑣𝑣𝑂𝑂 < 0𝑥,

and
𝑐𝑐 𝑥= inf

𝛾𝛾𝑥Γ
sup
𝑢𝑢𝑥𝛾𝛾

𝒥𝒥 𝑂𝑢𝑢𝑂.

Then there exists a sequence 𝑂𝑢𝑢𝑘𝑘𝑂 ⊂ 𝐻𝐻 such that
𝒥𝒥 𝑂𝑢𝑢𝑘𝑘𝑂 → 𝑐𝑐 and 𝒥𝒥 ′𝑂𝑢𝑢𝑘𝑘𝑂 → 0.

The proof of this result uses deformation lemmas and
the study of steepest descending flows (a simple proof
can be found in [14, §8]). The existence of a sequence
𝑂𝑢𝑢𝑘𝑘𝑂 such that 𝒥𝒥 𝑂𝑢𝑢𝑘𝑘𝑂 → 𝑐𝑐 and 𝒥𝒥 ′𝑂𝑢𝑢𝑘𝑘𝑂 → 0, by it-
self, does not imply the existence of a critical point
(take the counterexample 𝐻𝐻 = ℝ, 𝑢𝑢𝑘𝑘 = 𝑢𝑘𝑘 and
𝒥𝒥 𝑂𝑥𝑥𝑂 = 𝒥𝒥𝑥𝑥). A new concept regarding compactness
is needed:

A functional 𝒥𝒥 𝑥 𝛾𝛾1𝑂𝐻𝐻, ℝ𝑂 satisfies the
Palais-Smale condition at 𝑐𝑐 if, whenever we
have a sequence 𝑂𝑢𝑢𝑘𝑘𝑂 such that 𝒥𝒥 𝑂𝑢𝑢𝑘𝑘𝑂 → 𝑐𝑐
and 𝒥𝒥 ′𝑂𝑢𝑢𝑘𝑘𝑂 → 0, then there exists a subse-
quence 𝑂𝑢𝑢𝑘𝑘𝑗𝑗

𝑂 of 𝑂𝑢𝑢𝑘𝑘𝑂 and 𝑢𝑢 𝑥 𝐻𝐻 such that
𝑢𝑢𝑘𝑘𝑗𝑗

→ 𝑢𝑢 in 𝐻𝐻 . In particular, 𝒥𝒥 ′𝑂𝑢𝑢𝑂 = 0.

Using the compactness of the Sobolev embeddings
for 𝑝𝑝 < 2∗, one proves that ℐ defined before in (7)
satisfies this condition, and the Mountain-Pass theo-
rem provides the existence of a critical point of ℐ ,
hence a solution of (6). What can we now say about
this solution? It is also a least energy solution (a.k.a.
ground state), in the sense that

𝑐𝑐 = inf{ℐ 𝑂𝑢𝑢𝑂 𝑥 𝑢𝑢 𝑥 𝐻𝐻 𝑐 {0𝑥, ℐ ′𝑂𝑢𝑢𝑂 = 0𝑥.
Exactly as in the sublinear case, the solution can be
shown to be signed: it is either stricly positive or
strictly negative in Ω. However, uniqueness of posi-
tive solutions does not hold in general, as an effect of
the topology of the domain (there are multiplicity re-
sults in annular domains) or of the geometry (dumb-
bell shaped domains). There is a long standing con-
jecture by Kawohl (1985) and Dancer (1988) stating
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that, if the domain is convex, then there is unique-
ness of positive solution of (6) for 2 < 𝑝𝑝 < 2∗. A
good review of the state-of-the-art regarding this can
be found in the introduction of [16]. What about the
symmetry in radial domains? When the domain is
a ball, positive solutions are radially symmetric (con-
sequence of a the so called Moving Plane Method[3],
which uses many types of maximum principles, see
[15] or [17, §2.6]). However, if Ω is an annulus, the
solutions (at least for large 𝑝𝑝) loose one axis of sym-
metry, being just axially symmetric [6]. As we can see,
there are some key changes between the cases 𝑝𝑝 < 2
and 𝑝𝑝 𝑝 2.

Regarding multiplicity of solutions, again by the
ℤ2—invariance of the functional, there exist infinitely
many (sign-changing) solutions; however, unlike the
sublinear case, this time we can find a sequence of so-
lutions (𝑢𝑢𝑘𝑘) such that ℐ (𝑢𝑢𝑘𝑘) → ∞. A long standing
open question is whether the symmetry is necessary
to obtain multiplicity results, with partial results ob-
tained over the years by Bahri, Beresticky, Struwe, Ra-
binowitz, Bolle, Ghoussoub, Tehrani, Lions, Ramos,
T., Zou, among many others. The study of the reg-
ularity of the zero-set of sign changing solutions is
actually simpler in the superlinear case 𝑝𝑝 𝑝 2 than
in the sublinear one 𝑝𝑝 < 2 (although in any case it is
not at all simple); this is as a consequence of the map
𝑓𝑓(𝑓𝑓) 𝑓 𝑓𝑓𝑓𝑓𝑝𝑝𝑝2𝑢𝑢 being of class 𝐶𝐶1 for 𝑝𝑝 𝑝 2 [19, 22].

The critical case 𝑝𝑝 𝑓 2∗ 𝑓 2𝑛𝑛𝑛(𝑛𝑛 𝑝 2)

In this case, we are dealing with

𝑝Δ𝑢𝑢 𝑓 𝑓𝑢𝑢𝑓2∗𝑝2𝑢𝑢 in Ω, 𝑢𝑢 𝑓 𝑢 on 𝜕𝜕Ω,
and the associated functional ℐ does not satisfy the
Palais-Smale condition for all levels 𝑐𝑐. The question
of whether there are (nontrivial) solutions or not for
𝑝𝑝 𝑓 2∗ or 𝑝𝑝 𝑝 2∗ depends strongly on the domain.
When Ω is star-shaped, for instance, there are no so-
lutions (by the Pohozaev identity, see for instance
[4, Theorem 3.4.26]); however there are examples of
contractible domains where solutions do exist. This
shows that the topology of the domain is not enough
to characterize the situation, although it has influence:
if, for some positive 𝑑𝑑, the homotopy group of Ω with
ℤ2 coefficients is non trivial, ℋ𝑑𝑑(Ω, ℤ2) ≠ {𝑢}, then
we have a positive solution [5]. Multiplicity results
are much more recent (and challenging); recent con-

tributions are due to Clapp, Ge, Musso, Pistoia, Weth,
among others.

In order to show how delicate the situation is in
the critical case, we make two remarks:

1. If the domain is not bounded but instead the
whole ℝ𝑛𝑛, then we have (explicit!) solutions:

𝑈𝑈𝛿𝛿,𝛿𝛿 𝑓 (𝑛𝑛(𝑛𝑛 𝑝 2))(𝑛𝑛𝑝2)𝑛𝑛 𝛿𝛿
𝑛𝑛𝑝2

2

(𝛿𝛿2 + 𝑓𝑥𝑥 𝑝 𝛿𝛿𝑓2)
𝑛𝑛𝑝2

2

,

for 𝛿𝛿 𝑝 𝑢, 𝛿𝛿 𝜉 ℝ𝑛𝑛.

2. If we consider a linear perturbation of the prob-
lem:

𝑝Δ𝑢𝑢 𝑓 𝑢𝑢𝑢𝑢 + 𝑓𝑢𝑢𝑓2∗𝑝2𝑢𝑢 in Ω, 𝑢𝑢 𝑓 𝑢 on 𝜕𝜕Ω
the situation changes: this problem has posi-
tive solutions for 𝑢𝑢 𝜉 (𝑢, 𝑢𝑢1(Ω)) and 𝑛𝑛 𝑛 𝑛
(the problem is commonly known as the Brezis-
Nirenberg problem [11]). The topology of the
domain, in this situation, also influences multi-
plicity results: there exist at least catΩ(Ω) solu-
tions, where the (Lyusternik-Schnirelmann) cat-
egory of Ω is the least integer 𝑑𝑑 such that there
exists a covering of Ω by 𝑑𝑑 closed contratible
sets. As 𝑢𝑢 → 𝑢, the solutions tends to con-
centrate and blowup at certain points which de-
pend on geometric properties of Ω [18, 24].

4 Recent directions of Research

In the previous section we reviewed some old and
new results regarding the Lane-Emden equation with
Dirichlet boundary conditions. This is still a very ac-
tive field of research and there are still many interest-
ing questions left open. Although we described quite
a few results, there would clearly be a lot more to be
said. In this section, instead, we point out new direc-
tions of research that poped up more recently. One
is the case of other boundary conditions such as the
Neumann problem:

𝑝Δ𝑢𝑢 𝑓 𝑓𝑢𝑢𝑓𝑝𝑝𝑝2𝑢𝑢 in Ω, 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

𝑓 𝑢 on 𝜕𝜕Ω𝜕

The difficulty of the problem is related with the fact
that, in the associated functional ℐ , we have the pres-
ence of only ‖∇𝑢𝑢‖𝐿𝐿2 , which is a norm in 𝐻𝐻1

𝑢 (Ω) but
not in 𝐻𝐻1(Ω). The study of least-energy solutions for

[3] The argument is based on a method developed by Alexandrov circa 1958 to establish that spheres are the only embedded compact
hypersurfaces of 𝑅𝑅𝑛𝑛 with constant mean curvature.
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𝑝𝑝 𝑝 𝑝∗ (existence, study of its symmetry in symmetric
domains, …) is mostly recent [23, 25]. Quite remark-
ably, for 𝑝𝑝 𝑝 𝑝∗, there are solutions in all regular do-
mains, one of the few things that has been known for
a while [13]. An open question is whether there is a so-
lution for every 𝑝𝑝 𝑝 𝑝∗ (or at least for 𝑝𝑝 𝑝 𝑝𝑝∗, 𝑝∗ + 𝜀𝜀𝜀
for sufficiently small 𝜀𝜀).

Another direction of research is the case of sys-
tems. Here one might consider

−Δ𝑢𝑢𝑖𝑖 𝑝 𝑓𝑓𝑖𝑖𝑝𝑢𝑢𝑖𝑖𝜀 + 𝑢𝑢𝑖𝑖 ∑
𝑗𝑗𝑗𝑖𝑖

𝛽𝛽𝑖𝑖𝑗𝑗𝑢𝑢𝑝
𝑗𝑗 in Ω

under a symmetric interaction 𝛽𝛽𝑖𝑖𝑗𝑗 𝑝 𝛽𝛽𝑗𝑗𝑖𝑖. From a phys-
ical point of view, this is connected with the search
of standing wave solutions in systems of nonlin-
ear Schrödinger type equations (coming from Bose-
Einstein condensation and nonlinear optics). Mathe-
matically speaking, this is a good prototype of a gradi-
ent system (the interaction term is the gradient of the
potential 𝐻𝐻𝑝𝑢𝑢1, … , 𝑢𝑢𝑘𝑘𝜀 𝑝 𝑝∑𝑗𝑗𝑝𝑖𝑖 𝛽𝛽𝑖𝑖𝑗𝑗𝑢𝑢𝑝

𝑖𝑖 𝑢𝑢𝑝
𝑗𝑗 𝜀/𝑝). Again,

one might study existence, multiplicity and classifica-
tion of solutions, concentration results in the critical
case and symmetry questions. These issues are more
complex for systems due to the possibility of differ-
ent types of interaction between components, see for
instance [30] and references.

Other variational systems (not of gradient type)
are Lane-Emden systems:

−Δ𝑢𝑢 𝑝 𝑢𝑢𝑢𝑢𝑞𝑞−𝑝𝑢𝑢, −Δ𝑢𝑢 𝑝 𝑢𝑢𝑢𝑢𝑝𝑝−𝑝𝑢𝑢 in Ω
(the reader might take a look at [8] for a recent sur-
vey).

5 Conclusion and recommended readings

In this short article we motived the study of some
elliptic problems, starting from some classical mate-
rial, introducing the concept of weak solutions and
speaking about some variational methods, conclud-
ing with recent directions of research. With the ex-
ception of the fourth section and part of the third, ev-
erything is by now already included in introductory
books. For Sobolev spaces, weak Solutions, and the
linear theory of elliptic equations, the recommenda-
tion is [10, 14, 26] (the author of these lines uses a com-
bination of these three books whenever he teaches a
PDE course at the master level). For a gentle introduc-
tion to semilinear theory and the use of variational
methods, we recommend [4], while [1, 2, 29, 31] con-
tains more advanced material.
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