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Given a compact connected Lie group 𝐺 and a closed manifold 𝑀 it is natural to ask if 𝑀 admits a 
nontrivial action of 𝐺 and, if yes, how many different actions it can have. The existence of even the 
simplest case of a circle action already imposes strong restrictions on the topology of the manifold. We 
will explore some of these restrictions, illustrating how the simple existence of a circle symmetry already 
provides much information on the underlying manifold.

1 Introduction

Given a compact connected Lie group 𝐺𝐺 and a closed
manifold 𝑀𝑀 it is natural to ask if 𝑀𝑀 admits a nontriv-
ial action of 𝐺𝐺 and, if yes, how many different actions
it can have. The existence of even the simplest case
of a circle action already imposes strong restrictions
on the topology of the manifold. For instance, in the
1970’s, Petrie proved that if 𝑀𝑀 is homotopy equiva-
lent to a complex projective space and admits a cir-
cle action with isolated fixed points, then its Pontrja-
gin classes are determined by the representations at
the fixed points [27]. Based on this, he formulated
what is known as the Petrie conjecture: if 𝑀𝑀 is homo-
topy equivalent to a complex projective space and ad-
mits a circle action with isolated fixed points then its
Pontrjagin classes are the same as those of the pro-
jective space. This was proved in many situations
[7, 13, 19, 24, 25, 33, 34] but it is still open in general.

If we consider an almost complex manifold, the
existence of a circle action again restricts many topo-
logical (or almost complex) invariants of the manifold.
A simple example is the Euler characteristic. Indeed,
if 𝑀𝑀2𝑛𝑛 admits a circle action with isolated fixed points

that preserves the almost complex structure, then the
number of fixed points coincides with the Euler char-
acteristic of 𝑀𝑀 [11, Section 3]. If, in addition, 𝑀𝑀
is symplectic[1] and the action is Hamiltonian[2] then
the fixed points are the critical points of the Hamil-
tonian function (a perfect Morse function) and so, as
the Morse inequalities become equalities, the num-
ber of fixed points is equal to the sum of the even
Betti numbers of 𝑀𝑀 (all critical points have an even
index). Since the classes [𝜔𝜔𝑘𝑘] ∈ 𝐻𝐻2𝑘𝑘(𝑀𝑀𝑀 ℝ) are non
zero for 𝑘𝑘 𝑘 𝑘𝑘 𝑘 𝑘 (𝑘𝑘𝑘 𝑀𝑀)𝑘2, the number of fixed
points, and consequently the Euler characteristic of
𝑀𝑀 , is at least 𝑛𝑛 𝑛 𝑛.

Another topological invariant of an almost com-
plex manifold that is determined by the circle ac-
tion is the Chern number 𝑐𝑐𝑛𝑐𝑐𝑛𝑛𝑛𝑛[𝑀𝑀], where 𝑐𝑐𝑗𝑗 ∈
𝐻𝐻2𝑗𝑗(𝑀𝑀𝑀 ℤ) is the degree-2𝑗𝑗 Chern class of 𝑇𝑇 𝑀𝑀 , for
𝑗𝑗 𝑘 𝑘𝑘 𝑘 𝑘 𝑛𝑛. Salamon [30] showed that this Chern
number can be obtained from the Hirzebruch genus[3]

of 𝑀𝑀 as

𝑐𝑐𝑛𝑐𝑐𝑛𝑛𝑛𝑛[𝑀𝑀] 𝑘 𝑀
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[1] A symplectic manifold is a pair (𝑀𝑀𝑘 𝜔𝜔) where 𝑀𝑀 is a smooth manifold and 𝜔𝜔 is a closed non-degenerate 2-form on 𝑀𝑀 called a symplectic
form.

[2] A symplectic circle action on (𝑀𝑀𝑘 𝜔𝜔) is said to be Hamiltonian if there exists an 𝑆𝑆𝑛-invariant function 𝜓𝜓 𝜓 𝑀𝑀 𝜓 ℝ (called the moment
map or Hamltonian function) such that 𝑑𝑑𝜓𝜓 𝑘 𝑛𝑑𝑑(𝑑𝑑♯)𝜔𝜔, where 𝑑𝑑♯ is the vector field generated by the circle action.

[3] The Hirzebruch genus 𝜒𝜒𝑦𝑦(𝑀𝑀) is the genus corresponding to the power series 𝑄𝑄𝑦𝑦(𝑥𝑥) 𝑘 (𝑥𝑥(𝑛 𝑛 𝑦𝑦𝑥𝑥𝑛𝑥𝑥(𝑛𝑛𝑦𝑦)))𝑘(𝑛 𝑛 𝑥𝑥𝑛𝑥𝑥(𝑛𝑛𝑦𝑦)) (cf. [16]).
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Since the Hirzebruch genus is rigid for almost com-
plex manifolds admitting a circle action, this Chern
number is determined by a set of integers 𝑁𝑁𝑖𝑖 defined
by the action as follows:

Theorem 1.— [11, Theorem 1.2] Let (𝑀𝑀2𝑛𝑛, 𝐽𝐽 𝐽 be a
closed almost complex manifold with an 𝑆𝑆1-action
that preserves the almost complex structure 𝐽𝐽 and
has isolated fixed points. For every 𝑖𝑖 𝑖 𝑖, 𝑖 , 𝑛𝑛, let
𝑁𝑁𝑖𝑖 be the number of fixed points with exactly 𝑖𝑖 nega-
tive weights[4]. Then

𝑐𝑐1𝑐𝑐𝑛𝑛𝑛1[𝑀𝑀𝑀 𝑖
𝑛𝑛

∑
𝑖𝑖𝑖𝑖

𝑁𝑁𝑖𝑖 [6𝑖𝑖(𝑖𝑖 𝑛 1𝐽 𝑖 5𝑛𝑛 𝑛 𝑛𝑛𝑛2

2 ] . (2)

In the following sections we will see some interesting
applications of this result. The goal is to illustrate how
the simple existence of a circle symmetry can provide
so much information on the underlying manifold.

2 Possible weights for a circle action

The collection of possible weights for a circle action
on an almost complex manifold must satisfy many
strong conditions imposed, for instance, by the Lo-
calization Theorem in equivariant cohomology [2, 5].
Using (2) we can obtain additional linear relations
through an algorithm constructed in [11].

These relations are very powerful. In particular,
when 𝑀𝑀 is symplectic of dimension smaller than 1𝑖
and the action is Hamiltonian with a minimal number
of fixed points, it is possible to determine all families
of weights, proving a symplectic generalization of the
Petrie conjecture proposed by Tolman [32]:

Conjecture 1 (Symplectic Petrie Conjecture).— If a
symplectic manifold (𝑀𝑀, 𝑀𝑀𝐽 satisfying 𝐻𝐻2𝑖𝑖(𝑀𝑀𝑀 ℝ𝐽 𝑖
𝐻𝐻2𝑖𝑖(ℂℙ𝑛𝑛𝑀 ℝ𝐽 for all 𝑖𝑖 admits a Hamiltonian circle ac-
tion, then 𝐻𝐻𝑗𝑗(𝑀𝑀𝑀 ℤ𝐽 𝑖 𝐻𝐻𝑗𝑗(ℂℙ𝑛𝑛𝑀 ℤ𝐽 for all 𝑗𝑗. More-
over, the total Chern class 𝑐𝑐(𝑐𝑐 𝑀𝑀𝐽 is completely de-
termined by the cohomology ring 𝐻𝐻∗(𝑀𝑀𝑀 ℤ𝐽.
In dimension 4, the weights obtained by the algo-
rithm agree with those of the standard circle action on
the complex projective plane, and so do the (equivari-
ant) cohomology ring and Chern classes of the mani-
fold.

In dimension 6 we recover previous results of
Ahara [1] and Tolman [32].

Theorem 2.— [32, Theorem 1] Let (𝑀𝑀6, 𝑀𝑀𝐽 be a closed
symplectic manifold with a Hamiltonian circle action
with 4 fixed points. Then one of the following holds:

1. 𝐻𝐻∗(𝑀𝑀𝑀 ℤ𝐽 𝑖 ℤ[𝑥𝑥𝑀𝑥(𝑥𝑥4𝐽,
and 𝑐𝑐(𝑐𝑐 𝑀𝑀𝐽 𝑖 1 𝑖 4𝑥𝑥 𝑖 6𝑥𝑥2 𝑖 4𝑥𝑥𝑛;

2. 𝐻𝐻∗(𝑀𝑀𝑀 ℤ𝐽 𝑖 ℤ[𝑥𝑥, 𝑥𝑥𝑀𝑥(𝑥𝑥2 𝑛 2𝑥𝑥, 𝑥𝑥2𝐽,
and 𝑐𝑐(𝑐𝑐 𝑀𝑀𝐽 𝑖 1 𝑖 𝑛𝑥𝑥 𝑖 𝑐𝑥𝑥 𝑖 4𝑥𝑥𝑥𝑥;

3. 𝐻𝐻∗(𝑀𝑀𝑀 ℤ𝐽 𝑖 ℤ[𝑥𝑥, 𝑥𝑥𝑀𝑥(𝑥𝑥2 𝑛 5𝑥𝑥, 𝑥𝑥2𝐽,
and 𝑐𝑐(𝑐𝑐 𝑀𝑀𝐽 𝑖 1 𝑖 2𝑥𝑥 𝑖 12𝑥𝑥 𝑖 4𝑥𝑥𝑥𝑥;

4. 𝐻𝐻∗(𝑀𝑀𝑀 ℤ𝐽 𝑖 ℤ[𝑥𝑥, 𝑥𝑥𝑀𝑥(𝑥𝑥2 𝑛 22𝑥𝑥, 𝑥𝑥2𝐽,
and 𝑐𝑐(𝑐𝑐 𝑀𝑀𝐽 𝑖 1 𝑖 𝑥𝑥 𝑖 24𝑥𝑥 𝑖 4𝑥𝑥𝑥𝑥;

(where, in all cases, 𝑥𝑥 has degree 2 and 𝑥𝑥 has degree
4).

In (1𝐽 the weights agree with those of the standard
circle action on ℂℙ𝑛. In (2𝐽 they agree with those
of a circle action on the Grassmannian of oriented 2-
planes[5] 𝐺𝐺𝐺𝐺𝑖

2 (ℝ5𝐽 as a subgroup of 𝑆𝑆𝑆𝑆(5𝐽. In (𝑛𝐽 and
(4𝐽 they are the same as those of circle actions on the
Fano manifolds 𝑉𝑉5 and 𝑉𝑉22 [26].

In dimension 𝑐 the algorithm yields the following
result [11, 21].

Theorem 3.— Let (𝑀𝑀𝑐, 𝑀𝑀𝐽 be a closed symplectic
manifold with a Hamiltonian 𝑆𝑆1-action with 5 fixed
points. Then the weights agree with those of the stan-
dard circle action on ℂℙ4 as well as the cohomology
ring and Chern classes, i.e.

𝐻𝐻∗(𝑀𝑀𝑀 ℤ𝐽 𝑖 ℤ[𝑥𝑥𝑀𝑥(𝑥𝑥5𝐽 and 𝑐𝑐(𝑐𝑐 𝑀𝑀𝐽 𝑖 (1 𝑖 𝑥𝑥𝐽5 ,
where 𝑥𝑥 has degree 2.

3 Lower bounds for the number of fixed
points

Theorem 1 imposes several restrictions on the possi-
ble number of fixed points of a circle action. If 𝑀𝑀

[4] Given a fixed point 𝑝𝑝𝑖𝑖 ∈ 𝑀𝑀 , the 𝑆𝑆1-representation on 𝑐𝑐𝑝𝑝𝑖𝑖
𝑀𝑀 is determined by a multiset of integers {𝑤𝑤𝑖𝑖1, 𝑖 , 𝑤𝑤𝑖𝑖𝑛𝑛} called the weights of

the action at 𝑝𝑝𝑖𝑖 and we can equivariantly identify 𝑐𝑐𝑝𝑝𝑖𝑖
𝑀𝑀 with ℂ𝑛𝑛 with a circle action given by 𝜆𝜆 𝜆 (𝜆𝜆1, 𝑖 , 𝜆𝜆𝑛𝑛𝐽 𝑖 (𝜆𝜆𝑤𝑤𝑖𝑖1 𝜆𝜆1, 𝑖 , 𝜆𝜆𝑤𝑤𝑖𝑖𝑛𝑛 𝜆𝜆𝑛𝑛𝐽, for

𝜆𝜆 ∈ 𝑆𝑆1.
[5] An 𝑆𝑆𝑆𝑆(5𝐽 coadjoint orbit.
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Figure 1.—Lower bounds for the number of fixed points, 𝑛𝑛 𝑛 𝑛𝑛𝑛.
Figure 2.—Reflexive Polygons.
Figure 3.—A reflexive triangle Δ and its polar dual Δ∗.
Figure 4.—The reflexive cube and its dual.
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is symplectic and the action is Hamiltonian we have
seen that there are at least 𝑛𝑛 𝑛 𝑛 fixed points. More-
over, for general unitary 𝑆𝑆𝑛-manifolds[6] there exists
an open conjecture stated by Kosniowsky [22].

Conjecture 2 (Kosniowski).— There exists a linear
function 𝑓𝑓 such that, for every 2𝑛𝑛-dimensional com-
pact unitary 𝑆𝑆𝑛-manifold 𝑀𝑀 with isolated fixed
points which is not equivariantly unitary cobordant
with the empty set, the number of fixed points is
greater than 𝑓𝑓𝑓𝑛𝑛𝑓. In particular, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓2 should
satisfy this condition, implying that the number of
fixed points is expected to be at least ⌊𝑛𝑛𝑓2𝑛 𝑛 𝑛.

Using information from a non-vanishing Chern num-
ber, several lower bounds have been obtained (see for
example [14, 29, 23, 6, 20]). If, on the other hand, we
have 𝑐𝑐𝑛𝑐𝑐𝑛𝑛𝑛𝑛[𝑀𝑀𝑀 𝑓 𝑀, which is satisfied, for example
by all symplectic Calabi-Yau manifolds, then Theo-
rem 1 provides additional lower bounds (see Figure 1)
in the case of an almost complex manifold and, in par-
ticular, for symplectic circle actions [12, Theorem B].
This requires the use of classical number theory re-
sults involving polygonal numbers originally stated by

Fermat and proved later by Legendre, Lagrange, Eu-
ler, Gauss and Ewell [8, 9]. In some cases the lower
bounds obtained are stronger than those conjectured
by Kosniowski. However, our bounds are at most
24 in all dimensions, and so they do not provide evi-
dence of a lower bound that depends linearly on the
dimension, as proposed by Kosniowski.

Still when 𝑐𝑐𝑛𝑐𝑐𝑛𝑛𝑛𝑛[𝑀𝑀𝑀 𝑓 𝑀, Theorem 1 provides
strong divisibility conditions that must be satisfied by
the number of fixed points. These improve the exist-
ing divisibility results for the Euler characteristic of
almost complex manifolds satisfying 𝑐𝑐𝑛𝑐𝑐𝑛𝑛𝑛𝑛[𝑀𝑀𝑀 𝑓 𝑀
obtained by Hirzebruch in [15], adding that the Euler
characteristic must be divisible by 3, whenever the di-
mension of the manifold is not a multiple of 6.

Theorem 4.— [12, Theorem A] Let 𝑓𝑀𝑀2𝑛𝑛, 𝐽𝐽 𝑓 be a
closed connected almost complex manifold equipped
with a 𝐽𝐽 -preserving circle action with nonempty, dis-
crete fixed point set 𝑀𝑀𝑆𝑆𝑛

and such that 𝑐𝑐𝑛𝑐𝑐𝑛𝑛𝑛𝑛[𝑀𝑀𝑀 𝑓
𝑀. Let 𝑚𝑚 be such that 𝑛𝑛 𝑓 2𝑚𝑚 (𝑚𝑚 𝑚 𝑛) when 𝑛𝑛 is
even, and 𝑛𝑛 𝑓 2𝑚𝑚 𝑛 3 (𝑚𝑚 𝑚 𝑛) when 𝑛𝑛 is odd. If

[6] Unitary 𝑆𝑆𝑛-manifolds are smooth manifolds with a fixed 𝑆𝑆𝑛-invariant complex structure on the stable tangent bundle.
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𝑟𝑟 𝑟 𝑟𝑟𝑟 𝑟𝑟𝑟𝑟 𝑟𝑟𝑟, then

|𝑀𝑀𝑆𝑆𝑟| ≡ 0 mo𝑟 𝑟𝑟
𝑟𝑟

if 𝑛𝑛 is even

and
|𝑀𝑀𝑆𝑆𝑟| ≡ 0 mo𝑟 𝑟4

𝑟𝑟
if 𝑛𝑛 is odd.

If we restrict to Hamiltonian actions, keeping the hy-
pothesis that 𝑐𝑐𝑟𝑐𝑐𝑛𝑛𝑛𝑟[𝑀𝑀𝑀 𝑟 0, we can improve the ex-
isting lower bound of 𝑛𝑛 𝑛 𝑟.

Theorem 5.— [12, Theorem 2.8] Let 𝑀𝑀 be a 𝑟𝑛𝑛-
dimensional closed connected symplectic manifold
with 𝑐𝑐𝑟𝑐𝑐𝑛𝑛𝑛𝑟[𝑀𝑀𝑀 𝑟 0. Then the number of fixed
points of a Hamiltonian circle action on 𝑀𝑀 is at least

• 𝑟𝑛𝑛 𝑛 𝑟𝑟𝑟𝑛𝑛 𝑛 𝑟𝑟𝑟 if 𝑛𝑛 is even;

• 𝑛𝑛𝑟 𝑛 6𝑛𝑛 𝑛 𝑟𝑛 𝑛 𝑟4
𝑟𝑟𝑟 𝑟𝑛𝑛𝑛𝑛

𝑟
𝑟 𝑟𝑟𝑟

𝑟 if 𝑛𝑛 𝑛 𝑛 is odd.

4 Reflexive polytopes

Another interesting application of Theorem 1 con-
cerns reflexive polytopes. A polytope Δ is called re-
flexive if it is integral, contains the origin in the inte-
rior and can be written as

Δ 𝑟
𝑘𝑘‘

𝑖𝑖𝑟𝑟
{𝑥𝑥 𝑥 ℝ𝑛𝑛 ∣ ⟨𝑥𝑥𝑟 𝑥𝑥𝑖𝑖⟩ ≤ 𝑟} 𝑟

where 𝑥𝑥𝑖𝑖 𝑥 ℤ𝑛𝑛 are the primitive outward normal vec-
tors to the hyperplanes supporting the facets of Δ (see
Figure 2).

They were first defined by Batyrev [3], play an
important role in mirror symmetry and satisfy many
special combinatorial properties. For example, they
have only one interior lattice point (the origin)
and their polar duals are also reflexive. Moreover,
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they satisfy the following property in dimensions 2
and 3, involving the relative (lattice) length of their
edges and of their polar duals.

Theorem 6.— (12 and 24 -Theorem) Let Δ be a reflex-
ive polytope of dimension 𝑛𝑛 with edge set 𝐸𝐸.

• If 𝑛𝑛 𝑛 𝑛 then

∑
𝑒𝑒𝑒𝐸𝐸

𝑙𝑙𝑙𝑒𝑒𝑙 𝑙 ∑
𝑓𝑓𝑒𝐸𝐸∗

𝑙𝑙𝑙𝑓𝑓 𝑙 𝑛 𝑙𝑛 𝑙

• If 𝑛𝑛 𝑛 𝑛 then

∑
𝑒𝑒𝑒𝐸𝐸

𝑙𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒∗𝑙 𝑛 𝑛4 ,

where 𝐸𝐸∗ denotes the edge set of the dual polytope
Δ∗, the edge 𝑒𝑒∗ 𝑒 𝐸𝐸∗ is dual to the edge 𝑒𝑒 𝑒 𝐸𝐸 and
𝑙𝑙𝑙𝑒𝑒𝑙 is the relative length of 𝑒𝑒.

One can prove this theorem in many ways. For ex-
ample, since there exists only a finite number of re-
flexive polytopes in each dimension (up to a lattice
isomorphism) one can prove it by exhaustion. In di-
mension two, there are other proofs [28, 17], involv-
ing modular forms, toric geometry and certain rela-
tions in 𝑆𝑆𝑆𝑆𝑙𝑛, ℤ𝑙. In dimension three, this result was
obtained by Dais and Batyrev [4, Corollary 7.10] using
toric geometry. A combinatorial proof is presented in
[18, Section 5.1.2].

Surprisingly, we can use Theorem 1 to generalize
Theorem 6 to all Delzant[7] reflexive polytopes, i.e.
those arising as moment map images of closed sym-
plectic toric manifolds 𝑙𝑀𝑀, 𝑀𝑀𝑙 with 𝑐𝑐𝑙 𝑛 [𝑀𝑀𝜔. In par-
ticular, we have the following result.

Theorem 7.— [10, Theorem 1.2] Let Δ be a Delzant
reflexive polytope of dimension 𝑛𝑛 with edge set 𝐸𝐸.
Then

∑
𝑒𝑒𝑒𝐸𝐸

𝑙𝑙𝑙𝑒𝑒𝑙 𝑛 𝑙𝑛𝑓𝑓𝑛 𝑙 𝑙5 − 𝑛𝑛𝑛𝑙𝑓𝑓𝑙, (3)

where 𝑓𝑓𝑘𝑘 is the number of faces of Δ of dimension 𝑘𝑘.

For 𝑛𝑛 𝑛 𝑛, the Delzant reflexive polygons are de-
picted in the first line of Figure 2. Moreover, in this
dimension, Theorem 6 is equivalent to the property
that the sum of the relative lengths of the edges of Δ
and the number of vertices of Δ is always equal to 𝑙𝑛
(see Fgure 2). Indeed, all the edges of the dual poly-
gon Δ∗ have length equal to 𝑙 (as Δ is Delzant) and
the number of edges of Δ∗ is equal to the number of
vertices of Δ. On the other hand, the relation in (3)
tell us that the sum of the relative lengths of the edges
of Δ is equal to 𝑙𝑛 − 𝑓𝑓𝑙 or, equivalently, to 𝑙𝑛 − 𝑓𝑓0
(as the number of edges of a polygon is equal to the
number of vertices) and so the two theorems agree.

When 𝑛𝑛 𝑛 𝑛, the relation in (3) tells us that the
sum of the integer lengths of the edges of a Delzant
reflexive polytope is equal to 𝑙𝑛𝑓𝑓𝑛 − 4𝑓𝑓𝑙. Using the
Euler relation 𝑓𝑓0 − 𝑓𝑓𝑙 𝑙 𝑓𝑓𝑛 𝑛 𝑛 and the fact that
𝑛𝑓𝑓0 𝑛 𝑛𝑓𝑓𝑙 (as the polytope is simple), we obtain that
this sum is always 𝑛4. This agrees with Theorem 6
since the length of every edge of the dual of a Delzant
reflexive polytope is always 𝑙 (see, for example, Fig-
ure 4 for the reflexive cube and its dual). Note that,
in this dimension, the sum of the relative lengths of
the edges of Δ has a nice geometric interpretation: it
is the Euler characteristic of a Calabi Yau surface (a

[7] A polytope of dmension 𝑛𝑛 is said to be Delzant if it is simple (each vertex is the intersection of exactly 𝑛𝑛 edges), rational (the 𝑛𝑛 edges that
intersect at a vertex 𝑣𝑣 are contained in affine lines of the form 𝑣𝑣 𝑙 𝑣𝑣𝑣𝑖𝑖⟩ with 𝑣𝑣𝑖𝑖 𝑒 ℤ𝑛𝑛) and smooth (for each vertex, the edge vectors
𝑣𝑣𝑖𝑖 𝑒 ℤ𝑛𝑛 can be chosen so that 𝑣𝑣𝑣𝑙, … , 𝑣𝑣𝑛𝑛⟩ℤ 𝑛 ℤ𝑛𝑛𝑙.
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𝐾𝐾𝐾 surface) obtained from Δ through a construction
described, for example, in [3]. To prove Theorem 7
using Theorem 1, we consider the symplectic toric
manifold (𝑀𝑀Δ, 𝜔𝜔, 𝜔𝜔𝜔 corresponding to the Delzant
polytope Δ = 𝜔𝜔(𝑀𝑀Δ𝜔 (where 𝜔𝜔 is the toric moment
map) and the preimage 𝒮𝒮 𝒮= 𝜔𝜔−1(𝐸𝐸𝜔 of the edge set.
Then 𝒮𝒮 is a union of smoothly embedded 2-spheres
𝒮𝒮 = Y𝑒𝑒𝑒𝐸𝐸𝑆𝑆2

𝑒𝑒 and is Poincaré dual to 𝑐𝑐𝑛𝑛−1. Hence, we
have

𝑐𝑐1𝑐𝑐𝑛𝑛−1[𝑀𝑀Δ] = ∑
𝑆𝑆2

𝑒𝑒 𝑒𝒮𝒮

𝑐𝑐1[𝑆𝑆2
𝑒𝑒 ] = ∑

𝑆𝑆2
𝑒𝑒 𝑒𝒮𝒮

[𝜔𝜔]([𝑆𝑆2
𝑒𝑒 ]𝜔 =

= ∑
𝑆𝑆2

𝑒𝑒 𝑒𝒮𝒮

Vol𝜔𝜔(𝑆𝑆2
𝑒𝑒 𝜔 = ∑

𝑒𝑒𝑒𝐸𝐸
𝑙𝑙(𝑒𝑒𝜔,

and so this Chern number is the sum of the relative
lengths of the edges of Δ. Taking a generic subcircle
of the torus acting on 𝑀𝑀Δ and the corresponding 𝑁𝑁𝑖𝑖
(the number of fixed points of this circle action with
exactly 𝑖𝑖 negative weights which, in turn, is equal to
the Betti number 𝑏𝑏2𝑖𝑖(𝑀𝑀Δ𝜔), and expressing the Betti
numbers of 𝑀𝑀Δ in terms of the face numbers of Δ
[31], we obtain the relation in (3).

This result can also be proved without any sym-
plectic or toric geometry, using only the combinato-
rial properties of Delzant reflexive polytopes (see [10]
for details).
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