
1 Introduction: simple random walks on
integer lattices

This note is about the simple random walk[1] (𝑆𝑆𝑛𝑛, 𝑛𝑛 𝑛
0) on the integer lattice ℤ𝑑𝑑 and we will pay special at-
tention to the case 𝑑𝑑 𝑑 𝑑. SRW is a discrete-time
stochastic process defined as follows: if at a given
time the walker is at 𝑥𝑥 𝑥 ℤ𝑑𝑑 , then at the next time
moment it will be at one of 𝑥𝑥’s 𝑑𝑑𝑑 neighbours cho-
sen uniformly at random, as shown on Figure 1. In
other words, the probability that the walk follows a
fixed length-𝑛𝑛 path of nearest-neighbour sites equals
(𝑑𝑑𝑑)−𝑛𝑛. As a general fact, a random walk may be re-
current (i.e., almost surely it returns infinitely many
times to its starting location) or transient (i.e., with
positive probability it never returns to its starting lo-
cation). An important result about SRWs on integer
lattices is Pólya’s classical theorem:

Theorem 1 ([10]).— Simple random walk in dimen-
sion 𝑑𝑑 is recurrent for 𝑑𝑑 𝑑 𝑑, 𝑑 and transient for
𝑑𝑑 𝑛 𝑑.

A well-known interpretation of this fact, attributed
to Shizuo Kakutani, is: “a drunken man always re-
turns home, but a drunken bird will eventually be
lost”. Still, despite recurrence, the drunken man’s life
is not so easy either: as we will see, it may take him
quite some time to return home.

Indeed, it is possible to obtain (see (10) and (6) be-
low) that the probability that two-dimensional SRW
gets more than distance 𝑛𝑛 away from its starting posi-
tion before revisiting it is approximately (𝑑.0𝑑9𝑑7 +
𝑑
𝜋𝜋

ln 𝑛𝑛)−𝑑. While this probability does converge to
zero as 𝑛𝑛 𝑛 𝑛, it is important to notice how slow this
convergence is. Here is a concrete example. Imagine
a (two-dimensional) SRW taking place on the galactic
plane of our galaxy, with the size of the walker’s step
being equal to 𝑑m. What is the probability of reaching
the galaxy’s boundary before returning to the initial
location? Since the walk is recurrent and the galaxy
is enormous, one would expect this probability to be
extremely small, correct? Now, let us do the calcula-
tions. The radius of the Milky Way galaxy is around
𝑑0𝑑𝑑m, and (𝑑.0𝑑9𝑑7 + 𝑑

𝜋𝜋
ln 𝑑0𝑑𝑑)−𝑑 ≈ 0.0𝑑𝑑, which is

surprisingly large. Indeed, this means that the walker

[1] Also abbreviated as SRW.
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Figure 1.— Simple random walk in two dimensions.
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would revisit the origin only around 30 times on av-
erage, before leaving the galaxy; this is not something
one would normally expect from a recurrent process.

Incidentally, these sorts of facts explain why it is
difficult to verify conjectures about two-dimensional
SRW using computer simulations. (For example,
imagine that one needs to estimate via simulations
how long we will wait until the walk returns to the
origin, say, a hundred times.)

As we will see shortly, the recurrence of 𝑑𝑑-
dimensional SRW is related to the divergence of the
series ∑∞

𝑛𝑛𝑛𝑛 𝑛𝑛−𝑑𝑑𝑑𝑑. Notice that this series diverges if
and only if 𝑑𝑑 𝑑 𝑑, and for 𝑑𝑑 𝑛 𝑑 it is the harmonic
series that diverges quite slowly. This might explain
why the two-dimensional case is, in some sense, really
critical. It is always interesting to study critical cases
– they frequently exhibit behaviours not observable
away from criticality.

It is not our intention to present the proof of The-
orem 1 in this note (one can find a modern proof of
that result e.g. in [7]), but let us at least give a heuris-
tic explanation of why it should be true. First, let us
show that the number of visits to the origin is a.s. fi-
nite if and only if the expected number of visits to the
origin is finite (note that this is something which is
not true for general random variables). This is a use-
ful fact, because, as it frequently happens, it is easier
to control the expectation than the random variable
itself.

Let 𝑝𝑝𝑚𝑚(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑛 ℙ𝑥𝑥[𝑆𝑆𝑚𝑚 𝑛 𝑥𝑥𝑦 be the transition prob-
ability from 𝑥𝑥 to 𝑥𝑥 in 𝑚𝑚 steps for the simple random
walk in 𝑑𝑑 dimensions. Let 𝑞𝑞𝑑𝑑 be the probability that,
starting at the origin, the walk eventually returns to
the origin. If 𝑞𝑞𝑑𝑑 < 𝑛, then the total number of vis-
its (counting the initial instance 𝑆𝑆0 𝑛 0 as a visit) is
a geometric random variable with success probabil-
ity 𝑛 − 𝑞𝑞𝑑𝑑 , which has expectation (𝑛 − 𝑞𝑞𝑑𝑑𝑥−𝑛 < ∞.
If 𝑞𝑞𝑑𝑑 𝑛 𝑛, then, clearly, the walk visits the origin in-
finitely many times a.s‥ So, random walk is transient
(i.e., 𝑞𝑞𝑑𝑑 < 𝑛) if and only if the expected number of
visits to the origin is finite. This expected number
equals[2]

𝔼𝔼0

∞

∑
𝑘𝑘𝑛0

𝟏𝟏𝟏𝑆𝑆𝑘𝑘 𝑛 0} 𝑛
∞

∑
𝑘𝑘𝑛0

𝔼𝔼0𝟏𝟏𝟏𝑆𝑆𝑘𝑘 𝑛 0} 𝑛
∞

∑
𝑛𝑛𝑛0

𝑝𝑝𝑑𝑛𝑛(0𝑥 0𝑥

(observe that the walk can be at the starting point only
after an even number of steps). We thus obtain that

the recurrence of the walk is equivalent to
∞

∑
𝑛𝑛𝑛0

𝑝𝑝𝑑𝑛𝑛(0𝑥 0𝑥 𝑛 ∞. (1)

So, let us try to understand why Theorem 1 should
hold. One can represent the 𝑑𝑑-dimensional simple
random walk 𝑆𝑆 as

𝑆𝑆𝑛𝑛 𝑛 𝑋𝑋𝑛 + ⋯ + 𝑋𝑋𝑛𝑛𝑥
where (𝑋𝑋𝑘𝑘𝑥 𝑘𝑘 𝑘 𝑛𝑥 are i.i.d. random vectors, uni-
formly distributed on the set 𝟏±𝑒𝑒𝑗𝑗𝑥 𝑗𝑗 𝑛 𝑛𝑥 𝑗 𝑥 𝑑𝑑},
where 𝑒𝑒𝑛𝑥 𝑗 𝑥 𝑒𝑒𝑑𝑑 is the canonical basis of ℝ𝑑𝑑 . Since
these random vectors are centered (expectation is
equal to 0, component-wise), one can apply the (mul-
tivariate) Central Limit Theorem (CLT) to obtain that
𝑆𝑆𝑛𝑛𝑑√𝑛𝑛 converges in distribution to a (multivariate)
centered Normal random vector with a diagonal co-
variance matrix. That is, it is reasonable to expect that
𝑆𝑆𝑛𝑛 should be at distance of order √𝑛𝑛 from the origin.

So, what about 𝑝𝑝𝑑𝑛𝑛(0𝑥 0𝑥? If 𝑥𝑥𝑥 𝑥𝑥 𝑥 ℤ𝑑𝑑 are two even
sites[3] at distance of order at most √𝑛𝑛 from the ori-
gin, then our CLT intuition tell us that 𝑝𝑝𝑑𝑛𝑛(0𝑥 𝑥𝑥𝑥 and
𝑝𝑝𝑑𝑛𝑛(0𝑥 𝑥𝑥𝑥 should be comparable, i.e., their ratio should
be bounded away from 0 and ∞. In fact, this state-
ment can be made rigorous by using the local Cen-
tral Limit Theorem (e.g., Theorem 2.1.1 of [7]). Now,
if there are 𝑂𝑂(𝑛𝑛𝑑𝑑𝑑𝑑𝑥 sites where 𝑝𝑝𝑑𝑛𝑛(0𝑥 ⋅𝑥 are compara-
ble, then the value of these probabilities (including
𝑝𝑝𝑑𝑛𝑛(0𝑥 0𝑥) should be of order 𝑛𝑛−𝑑𝑑𝑑𝑑. It remains only to
observe that the series ∑∞

𝑛𝑛𝑛𝑛 𝑛𝑛−𝑑𝑑𝑑𝑑 diverges only for
𝑑𝑑 𝑛 𝑛 and 𝑑 to convince oneself that Pólya’s theorem
indeed holds.

1.1 Potential kernel

Before starting the discussion on conditioned ran-
dom walks, we need some technical preparations. Let
us denote by

𝜏𝜏𝐴𝐴 𝑛 min𝟏𝑛𝑛 𝑘 0 𝑛 𝑆𝑆𝑛𝑛 𝑥 𝐴𝐴}𝑥 (2)

and

𝜏𝜏+
𝐴𝐴 𝑛 min𝟏𝑛𝑛 𝑘 𝑛 𝑛 𝑆𝑆𝑛𝑛 𝑥 𝐴𝐴} (3)

the entrance and the hitting times of a set 𝐴𝐴. Let 𝜕𝜕𝐴𝐴 𝑛
𝟏𝑥𝑥 𝑥 𝐴𝐴 𝑛 𝑥𝑥𝑥 𝑥 𝐴𝐴∁ such that 𝑥𝑥 𝑥 𝑥𝑥} be the boundary
of 𝐴𝐴 𝐴 ℤ𝑑, and 𝜕𝜕𝑒𝑒𝐴𝐴 𝑛 𝜕𝜕𝐴𝐴∁ be its external boundary.
Denote by 𝖡𝖡(𝑥𝑥𝑥 𝖡𝖡𝑥 𝑛 𝟏𝑥𝑥 𝑛 𝖡𝑥𝑥 − 𝑥𝑥𝖡 𝑑 𝖡𝖡} 𝐴 ℤ𝑑; 𝖡𝖡(𝖡𝖡𝑥

[2] We can put the expectation inside the sum because of the Monotone Convergence Theorem.
[3] A site is called even if the sum of its coordinates is even; observe that the origin is even.
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stands for 𝖡𝖡𝖡𝖡𝖡 𝖡𝖡𝖡.
For transient random walks, a very important ob-

ject is the Green’s function, defined by 𝐺𝐺𝖡𝐺𝐺𝖡 𝐺𝐺𝖡 𝐺
∑∞

𝑚𝑚𝐺𝖡 𝑝𝑝𝑚𝑚𝖡𝐺𝐺𝖡 𝐺𝐺𝖡, so that 𝐺𝐺𝖡𝐺𝐺𝖡 𝐺𝐺𝖡 is the expected num-
ber of visits to 𝐺𝐺 starting from 𝐺𝐺. Its usefulness stems
from the fact that 𝐺𝐺𝖡𝐺𝐺𝖡 𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝐺𝐺

𝖡 is a martingale, and mar-
tingales are really effective (see [9] for some interest-
ing examples). However, for recurrent random walks
that definition does not work since, as we know, the
mean visit count equals infinity in that case. Fortu-
nately, there is a way to amend that, essentially by
considering the difference between mean visit counts
starting from two different sites (of course, defining
it properly). So, in two dimensions, let us define the
potential kernel 𝑎𝑎𝖡𝑎𝖡 by

𝑎𝑎𝖡𝐺𝐺𝖡 𝐺
∞

∑
𝑘𝑘𝐺𝖡

(ℙ𝖡[𝐺𝐺𝑘𝑘 𝐺 𝖡] − ℙ𝐺𝐺[𝐺𝐺𝑘𝑘 𝐺 𝖡])𝖡 (4)

where 𝐺𝐺 𝑥 ℤ2. By definition, it holds that 𝑎𝑎𝖡𝖡𝖡 𝐺 𝖡,
and one can show that the above series converges and
that the resulting value is strictly positive for all 𝐺𝐺 𝑥 𝖡
(here and in the sequel we refer to Section 4.4 of [7]).
Also, the function 𝑎𝑎 is harmonic outside the origin,
i.e.,

𝑎𝑎𝖡𝐺𝐺𝖡 𝐺 1
4 ∑

𝐺𝐺𝑦𝐺𝐺
𝑎𝑎𝖡𝐺𝐺𝖡 for all 𝐺𝐺 𝑥 𝖡𝑥 (5)

It is possible to prove that, as 𝐺𝐺 𝑥 ∞,

𝑎𝑎𝖡𝐺𝐺𝖡 𝐺 2
𝜋𝜋

ln ‖𝐺𝐺‖ 𝑥 𝑥𝑥′ 𝑥 𝑂𝑂𝖡‖𝐺𝐺‖−2𝖡𝖡 (6)

where 𝑥𝑥′ 𝐺 𝜋𝜋−1𝖡2𝑥𝑥 𝑥 ln 𝛾𝖡, with 𝑥𝑥 𝐺 𝖡𝑥𝛾𝛾𝛾21 𝛾 the
Euler-Mascheroni constant, cf. Theorem 4.4.4 of [7].
Another important observation is that 𝑎𝑎𝖡𝐺𝐺𝖡 𝐺 1 if 𝐺𝐺 is
a neighbor of the origin.

Observe that the harmonicity of 𝑎𝑎 outside the
origin immediately implies that the following result
holds:

Proposition 2.— The process 𝑎𝑎𝖡𝐺𝐺𝑘𝑘𝑛𝑛𝑛𝖡
𝖡 is a martin-

gale.

Besides, note that, due to (6),

𝑎𝑎𝖡𝐺𝐺 𝑥 𝐺𝐺𝖡 − 𝑎𝑎𝖡𝐺𝐺𝖡 𝐺 𝑂𝑂( ‖𝐺𝐺‖
‖𝐺𝐺‖) (7)

for all 𝐺𝐺𝖡 𝐺𝐺 𝑥 ℤ2 such that (say) ‖𝐺𝐺‖ 𝑥 2‖𝐺𝐺‖.
With some (slight) abuse of notation, we also con-

sider the function

𝑎𝑎𝖡𝖡𝖡𝖡 𝐺 2
𝜋𝜋

ln 𝖡𝖡 𝑥 𝑥𝑥′

of a real argument 𝖡𝖡 𝑟 1. Note that, in general, 𝑎𝑎𝖡𝐺𝐺𝖡
need not be equal to 𝑎𝑎𝖡‖𝐺𝐺‖𝖡, although they are of
course quite close for large 𝐺𝐺. The advantage of using

this notation is e.g. that, due to (6) and (7), we may
write (for fixed 𝐺𝐺 or at least 𝐺𝐺 such that 2‖𝐺𝐺‖ 𝑥 𝖡𝖡)

∑
𝐺𝐺𝑥𝑦𝑦𝖡𝖡𝖡𝐺𝐺𝖡𝖡𝖡𝖡

𝜈𝜈𝖡𝐺𝐺𝖡𝑎𝑎𝖡𝐺𝐺𝖡 𝐺 𝑎𝑎𝖡𝖡𝖡𝖡 𝑥 𝑂𝑂(‖𝐺𝐺‖𝑥1
𝖡𝖡 ) (8)

as 𝖡𝖡 𝑥 ∞, for any probability measure 𝜈𝜈 on 𝑦𝑦𝖡𝖡𝖡𝐺𝐺𝖡 𝖡𝖡𝖡.
We need the following result for the probability of

going a long distance before revisiting the origin:

Lemma 3.— Assume that 𝐺𝐺 𝑥 𝖡𝖡𝖡𝖡𝖡𝖡 and 𝐺𝐺 𝑥 𝖡. Then

ℙ𝐺𝐺[𝑛𝑛𝑦𝑦𝖡𝖡𝖡𝖡𝖡𝖡 < 𝑛𝑛𝑥
𝖡 ] 𝐺 𝑎𝑎𝖡𝐺𝐺𝖡

𝑎𝑎𝖡𝖡𝖡𝖡 𝑥 𝑂𝑂𝖡𝖡𝖡−1𝖡
𝖡 (9)

as 𝖡𝖡 𝑥 ∞.

Proof.— Indeed, use Proposition 2, and the optional
stopping theorem to write (recall that 𝑎𝑎𝖡𝖡𝖡 𝐺 𝖡)

𝑎𝑎𝖡𝐺𝐺𝖡 𝐺 ℙ𝐺𝐺[𝑛𝑛𝑦𝑦𝖡𝖡𝖡𝖡𝖡𝖡 < 𝑛𝑛𝑥
𝖡 ]𝔼𝔼𝐺𝐺(𝑎𝑎𝖡𝐺𝐺𝑛𝑛𝑦𝑦𝖡𝖡𝖡𝖡𝖡𝖡

𝖡 ∣ 𝑛𝑛𝑦𝑦𝖡𝖡𝖡𝖡𝖡𝖡 < 𝑛𝑛𝑥
𝖡 )𝖡

and then use (8). ∎

Note that Lemma 3 implies that (since, from the ori-
gin, on the next step the walk will go to a neighbor of
the origin where the potential kernel equals 1)

ℙ𝖡[𝑛𝑛𝑦𝑦𝖡𝖡𝖡𝖡𝖡𝖡 < 𝑛𝑛𝑥
𝖡 ] 𝐺 1

𝑎𝑎𝖡𝖡𝖡𝖡 𝑥 𝑂𝑂𝖡𝖡𝖡−1𝖡
𝑥 (10)

With the technical facts established above, we are now
ready to pass to the main subject of this note.

2 Random walk conditioned on never
hitting the origin

2.1 Doob’s ℎ-transforms

Let us start with a one-dimensional example.
Let 𝖡𝐺𝐺𝑛𝑛𝖡 𝑛𝑛 𝑟 𝖡𝖡 be the simple random walk in di-
mension 1. It is well known that for any 𝖡 < 𝐺𝐺 < 𝑥𝑥

ℙ𝐺𝐺[𝑛𝑛𝑥𝑥 < 𝑛𝑛𝖡] 𝐺 𝐺𝐺
𝑥𝑥

(11)

— this is the solution of Gambler’s Ruin Problem
for players of equal strength, and note also that it is
straightforward to obtain it from the optional stop-
ping theorem using the fact that 𝐺𝐺𝑛𝑛 is a martingale.
Now, how will the walk behave if we condition it to
reach 𝑥𝑥 before reaching the origin? Using (11), we
write

ℙ𝐺𝐺[𝐺𝐺1 𝐺 𝐺𝐺 𝑥 1 ∣ 𝑛𝑛𝑥𝑥 < 𝑛𝑛𝖡]

𝐺
ℙ𝐺𝐺[𝐺𝐺1 𝐺 𝐺𝐺 𝑥 1𝖡 𝑛𝑛𝑥𝑥 < 𝑛𝑛𝖡]

ℙ𝐺𝐺[𝑛𝑛𝑥𝑥 < 𝑛𝑛𝖡]

𝐺
ℙ𝐺𝐺[𝐺𝐺1 𝐺 𝐺𝐺 𝑥 1]ℙ𝐺𝐺𝑥1[𝑛𝑛𝑥𝑥 < 𝑛𝑛𝖡]

ℙ𝐺𝐺[𝑛𝑛𝑥𝑥 < 𝑛𝑛𝖡]

3
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=
1
2

× 𝑥𝑥𝑥1
𝑅𝑅

𝑥𝑥
𝑅𝑅

= 1
2

× 𝑥𝑥 𝑥 1
𝑥𝑥

,

which also implies that

ℙ𝑥𝑥[𝑆𝑆1 = 𝑥𝑥 𝑥 1 𝑥 𝑥𝑥𝑅𝑅 < 𝑥𝑥0] = 1
2

× 𝑥𝑥 𝑥 1
𝑥𝑥

.

The above calculation does not yet formally show that
the conditioned walk is a Markov process (we would
have needed to condition on the whole history), but
let us forget about that for now, and examine the new
transition probabilities we just obtained,

̂𝑝𝑝𝑝𝑥𝑥, 𝑥𝑥 𝑥 1𝑝 = 1
2

× 𝑥𝑥 𝑥 1
𝑥𝑥

and
̂𝑝𝑝𝑝𝑥𝑥, 𝑥𝑥 𝑥 1𝑝 = 1

2
× 𝑥𝑥 𝑥 1

𝑥𝑥
.

First, it is remarkable that they do not depend on 𝑅𝑅,
which suggests that we can just send 𝑅𝑅 to infinity and
obtain “the random walk conditioned on never re-
turning to the origin”. Secondly, look at the argu-
ments of ̂𝑝𝑝’s and the second fraction in the right-hand
sides: these new transition probabilities are related to
the old ones (which are 𝑝𝑝𝑝𝑥𝑥, 𝑝𝑝𝑝 = 1𝑝2 for 𝑥𝑥 𝑥 𝑝𝑝) in a
special way:

̂𝑝𝑝𝑝𝑥𝑥, 𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑥𝑥, 𝑝𝑝𝑝 × ℎ𝑝𝑝𝑝𝑝
ℎ𝑝𝑥𝑥𝑝

(12)

with ℎ𝑝𝑥𝑥𝑝 = 𝑥𝑥𝑥𝑥 (soon it will be clear why do we pre-
fer to keep the function nonnegative). What is special
about this function ℎ is that it is harmonic outside the
origin, so that ℎ𝑝𝑆𝑆𝑛𝑛𝑛𝑥𝑥0

𝑝 is a martingale. It is precisely
this fact that permitted us to obtain (11) with the help
of the optional stopping theorem.

Keeping the above discussion in mind, we pass to
a more general setup. Consider a countable Markov
chain on a state space Σ, and let 𝐴𝐴 𝐴 Σ be finite.
Let ℎ ∶ Σ → ℝ𝑥 be a nonnegative function which
is zero on 𝐴𝐴 and strictly positive and harmonic out-
side 𝐴𝐴, i.e., ℎ𝑝𝑥𝑥𝑝 = ∑𝑝𝑝 𝑝𝑝𝑝𝑥𝑥, 𝑝𝑝𝑝ℎ𝑝𝑝𝑝𝑝 for all 𝑥𝑥 𝑥 𝐴𝐴. We
assume also that ℎ𝑝𝑥𝑥𝑝 → 𝑥 as 𝑥𝑥 → 𝑥; this implies
that the Markov chain is recurrent (this follows e.g.
from Theorem 2.4 of [12]).

Definition 4.— The new Markov chain with transi-
tion probabilities defined as in (12) is called Doob’s ℎ-
transform of the original Markov chain with respect
to ℎ.

Observe that the harmonicity of ℎ implies that ̂𝑝𝑝’s are
transition probabilities indeed:

∑
𝑝𝑝

̂𝑝𝑝𝑝𝑥𝑥, 𝑝𝑝𝑝 = 1
ℎ𝑝𝑥𝑥𝑝 ∑

𝑝𝑝
𝑝𝑝𝑝𝑥𝑥, 𝑝𝑝𝑝ℎ𝑝𝑝𝑝𝑝 = 1

ℎ𝑝𝑥𝑥𝑝
×ℎ𝑝𝑥𝑥𝑝 = 1.

To the best of the author’s knowledge, this kind of
object first appeared in [4], in the continuous-space-
and-time context. Further information can be found
e.g. in [1, 8, 14], and the book [5] provides a systematic
treatment of the subject in full generality.

Note the following simple calculation: for any
𝑥𝑥 𝑥 𝐴𝐴Y𝜕𝜕𝑒𝑒𝐴𝐴, we have (note that ℎ𝑝𝑝𝑝𝑝 𝑦 0 for all 𝑝𝑝 𝑥 𝑥𝑥
then)

𝔼𝔼𝑥𝑥
1

ℎ𝑝𝑋𝑋1𝑝
= ∑

𝑝𝑝𝑥𝑥𝑥
̂𝑝𝑝𝑝𝑥𝑥, 𝑝𝑝𝑝 1

ℎ𝑝𝑝𝑝𝑝

= ∑
𝑝𝑝𝑥𝑥𝑥

𝑝𝑝𝑝𝑥𝑥, 𝑝𝑝𝑝 ℎ𝑝𝑝𝑝𝑝
ℎ𝑝𝑥𝑥𝑝

1
ℎ𝑝𝑝𝑝𝑝

= 1
ℎ𝑝𝑥𝑥𝑝 ∑

𝑝𝑝𝑥𝑥𝑥
𝑝𝑝𝑝𝑥𝑥, 𝑝𝑝𝑝

= 1
ℎ𝑝𝑥𝑥𝑝

,

which implies the following:

Proposition 5.— The process 1𝑝ℎ𝑝𝑋𝑋𝑛𝑛𝑛𝑥𝑥𝐴𝐴Y𝜕𝜕𝑒𝑒𝐴𝐴
𝑝 is a mar-

tingale and the Markov chain 𝑋𝑋 is transient.

(The last statement follows from Theorem 2.5 of [12]
since 1𝑝ℎ𝑝𝑥𝑥𝑝 → 0 as 𝑥𝑥 → 𝑥.)

Now let us try to get an idea about what the ℎ-
transformed chain really does. For technical reasons,
let us make another assumption: there exists 𝑐𝑐 𝑐 0
such that 𝑥ℎ𝑝𝑥𝑥𝑝 𝑥 ℎ𝑝𝑝𝑝𝑝𝑥 𝑥 𝑐𝑐 for all 𝑥𝑥 𝑥 𝑝𝑝 (for general
Markov chains, 𝑥𝑥 𝑥 𝑝𝑝 means 𝑝𝑝𝑝𝑥𝑥, 𝑝𝑝𝑝 𝑥 𝑝𝑝𝑝𝑝𝑝, 𝑥𝑥𝑝 𝑐 0).

For 𝑅𝑅 𝑐 0, let us define

Λ𝑅𝑅 = {𝑥𝑥 𝑥 Σ ∶ ℎ𝑝𝑥𝑥𝑝 𝑥 𝑅𝑅𝑥𝑥
under the previous assumptions, Λ𝑅𝑅 is finite for
any 𝑅𝑅. Note that the optional stopping theorem im-
plies that, for 𝑥𝑥0 𝑥 Λ𝑅𝑅 ⧵ 𝐴𝐴

ℎ𝑝𝑥𝑥0𝑝 = ℙ𝑥𝑥0
[𝑥𝑥Λ∁

𝑅𝑅
< 𝑥𝑥𝐴𝐴]𝔼𝔼𝑥𝑥0(ℎ𝑝𝑋𝑋𝑥𝑥Λ∁

𝑅𝑅
𝑝 𝑥 𝑥𝑥Λ∁

𝑅𝑅
< 𝑥𝑥𝐴𝐴),

(recall that 𝔼𝔼𝑥𝑥0
𝑝ℎ𝑝𝑋𝑋𝑥𝑥𝐴𝐴

𝑝 𝑥 𝑥𝑥𝐴𝐴 < 𝑥𝑥Λ∁
𝑅𝑅
𝑝 = 0 because ℎ

vanishes on 𝐴𝐴) and, since the second factor in the pre-
ceding display is in [𝑅𝑅, 𝑅𝑅 𝑥 𝑐𝑐], we have

ℙ𝑥𝑥0
[𝑥𝑥Λ∁

𝑅𝑅
< 𝑥𝑥𝐴𝐴] =

ℎ𝑝𝑥𝑥0𝑝
𝑅𝑅 (1 𝑥 𝑂𝑂𝑝𝑅𝑅𝑥1𝑝). (13)

Then, we consider another countable Markov
chain 𝑋𝑋 on the state space Σ⧵𝐴𝐴 with transition prob-
abilities ̂𝑝𝑝𝑝𝑝, 𝑝𝑝 defined as in (12) for 𝑥𝑥 𝑥 𝐴𝐴.

Now, consider a path ℘ = 𝑝𝑥𝑥0, … , 𝑥𝑥𝑛𝑛𝑥1, 𝑥𝑥𝑛𝑛𝑝,
where 𝑥𝑥0, … , 𝑥𝑥𝑛𝑛𝑥1 𝑥 Λ𝑅𝑅 ⧵ 𝐴𝐴 and 𝑥𝑥𝑛𝑛 𝑥 Σ ⧵ Λ𝑅𝑅 (see
Figure 2 (next page); here, path is simply a sequence
of neighbouring sites; in particular, it need not be self-
avoiding). The original weight of that path (i.e., the
probability that the Markov chain 𝑋𝑋 follows it start-
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ing from 𝑥𝑥0) is

𝑃𝑃℘ = 𝑝𝑝𝑝𝑥𝑥0, 𝑥𝑥1)𝑝𝑝𝑝𝑥𝑥1, 𝑥𝑥2) … 𝑝𝑝𝑝𝑥𝑥𝑛𝑛𝑛1, 𝑥𝑥𝑛𝑛),
and the weight of the path for the new Markov
chain 𝑋𝑋 will be

𝑃𝑃℘ = 𝑝𝑝𝑝𝑥𝑥0, 𝑥𝑥1)
ℎ𝑝𝑥𝑥1)
ℎ𝑝𝑥𝑥0)

… 𝑝𝑝𝑝𝑥𝑥𝑛𝑛𝑛1, 𝑥𝑥𝑛𝑛)
ℎ𝑝𝑥𝑥𝑛𝑛)

ℎ𝑝𝑥𝑥𝑛𝑛𝑛1)

= 𝑝𝑝𝑝𝑥𝑥0, 𝑥𝑥1) … 𝑝𝑝𝑝𝑥𝑥𝑛𝑛𝑛1, 𝑥𝑥𝑛𝑛)
ℎ𝑝𝑥𝑥𝑛𝑛)
ℎ𝑝𝑥𝑥0)

= 𝑃𝑃℘
ℎ𝑝𝑥𝑥𝑛𝑛)
ℎ𝑝𝑥𝑥0)

. (14)

Here comes the key observation: the last term in (2.1)
actually equals 𝑝1 + 𝑂𝑂𝑝𝑂𝑂𝑛1))𝑂𝑂𝑅ℎ𝑝𝑥𝑥0), that is, it is al-
most inverse of the expression in the right-hand side
of (13). So, we have

𝑃𝑃℘ =
𝑃𝑃℘

ℙ𝑥𝑥0
[𝜏𝜏Λ∁

𝑂𝑂
< 𝜏𝜏𝐴𝐴](1 + 𝑂𝑂𝑝𝑂𝑂𝑛1)),

that is, the probability that the 𝑋𝑋 chain follows a path
is almost the conditional probability that that the orig-
inal chain 𝑋𝑋 follows that path, under the condition
that it goes out of Λ𝑂𝑂 before reaching 𝐴𝐴 (and the
relative error goes to 0 as 𝑂𝑂 𝑅 𝑅). Now, the (de-
creasing) sequence of events {𝜏𝜏Λ∁

𝑂𝑂
< 𝜏𝜏𝐴𝐴} converges

to {𝜏𝜏𝐴𝐴 = 𝑅} as 𝑂𝑂 𝑅 𝑅. Therefore, we can rightfully
call 𝑋𝑋 the Markov chain conditioned on never reach-
ing 𝐴𝐴, even though the probability of the latter event
equals zero.

2.2 The conditioned SRW in two dimensions

Now, we will consider the two-dimensional SRW
conditioned on never entering the origin, which
is the Doob’s ℎ-transform of (unconditional) two-
dimensional SRW with respect to its potential ker-
nel 𝑎𝑎. It turns out that the conditioned walk 𝑆𝑆 is quite
an interesting object on its own — some of its surpris-
ing properties are described later in this section.

By (5), the potential kernel 𝑎𝑎 can play the role of
the ℎ (the one of the previous section), so let us de-
fine another random walk 𝑝𝑆𝑆𝑛𝑛, 𝑛𝑛 𝑛 0) on ℤ2 ⧵ {0}
in the following way: its transition probability matrix
equals

̂𝑝𝑝𝑝𝑥𝑥, 𝑝𝑝) =
⎧⎪
⎨
⎪⎩

𝑎𝑎𝑝𝑝𝑝)
4𝑎𝑎𝑝𝑥𝑥)

, if 𝑥𝑥 𝑥 𝑝𝑝, 𝑥𝑥 𝑥 0,

0, otherwise.
(15)

The discussion of the previous section then means
that the random walk 𝑆𝑆 is the Doob ℎ-transform of
the simple random walk, under the condition of not
hitting the origin. Let ̂𝜏𝜏 and ̂𝜏𝜏+ be the entrance and
the hitting times for 𝑆𝑆; they are defined as in (1.1)
and (1.1), only with 𝑆𝑆 . We summarize the basic prop-
erties of the random walk 𝑆𝑆 in the following:

Proposition 6.— The following statements hold:

(i) The walk 𝑆𝑆 is reversible, with the reversible
measure 𝜇𝜇𝑝𝑥𝑥) = 𝑎𝑎2𝑝𝑥𝑥).

(ii) In fact, it can be represented as a random walk
on the two-dimensional lattice with the set of
conductances (𝑎𝑎𝑝𝑥𝑥)𝑎𝑎𝑝𝑝𝑝), 𝑥𝑥, 𝑝𝑝 𝑎 ℤ2, 𝑥𝑥 𝑥 𝑝𝑝).

(iii) The process 1𝑅𝑎𝑎𝑝𝑆𝑆𝑛𝑛𝑛 ̂𝜏𝜏𝒩𝒩
) is a martingale.[4]

(iv) The walk 𝑆𝑆 is transient.

Proof.— Indeed, for (i) and (ii) note that

𝑎𝑎2𝑝𝑥𝑥) ̂𝑝𝑝𝑝𝑥𝑥, 𝑝𝑝) = 𝑎𝑎𝑝𝑥𝑥)𝑎𝑎𝑝𝑝𝑝)
4

= 𝑎𝑎2𝑝𝑝𝑝) ̂𝑝𝑝𝑝𝑝𝑝, 𝑥𝑥)

for all adjacent 𝑥𝑥, 𝑝𝑝 𝑎 ℤ2 ⧵ {0}, and, since 𝑎𝑎 is har-
monic outside the origin,

𝑎𝑎𝑝𝑥𝑥)𝑎𝑎𝑝𝑝𝑝)
∑𝑧𝑧𝑥𝑥𝑥 𝑎𝑎𝑝𝑥𝑥)𝑎𝑎𝑝𝑧𝑧)

= 𝑎𝑎𝑝𝑝𝑝)
4 ∑𝑧𝑧𝑥𝑥𝑥

1
4
𝑎𝑎𝑝𝑧𝑧)

= 𝑎𝑎𝑝𝑝𝑝)
4𝑎𝑎𝑝𝑥𝑥)

= ̂𝑝𝑝𝑝𝑥𝑥, 𝑝𝑝).

Items (iii) and (iv) are Proposition 5. ∎

The Green’s function of the conditioned walk
(which is transient) is defined in the usual way: for
𝑥𝑥, 𝑝𝑝 𝑎 ℤ2 ⧵ {0}

𝐺𝐺𝑝𝑥𝑥, 𝑝𝑝) = 𝔼𝔼𝑥𝑥

𝑅

∑
𝑘𝑘=0

𝟏𝟏{𝑆𝑆𝑘𝑘 = 𝑝𝑝}. (16)

[4] 𝒩𝒩 is the set of the four neighbours of the origin.

5

A
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xn

Figure 2.— Comparing the weights of the path..
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One can calculate this function in terms of the po-
tential kernel 𝑎𝑎 (this is Theorem 1.1 of [11]): for all
𝑥𝑥𝑥 𝑥𝑥 𝑥 ℤ2 ⧵ {0} it holds that

𝐺𝐺𝐺𝑥𝑥𝑥 𝑥𝑥𝐺 𝐺 𝑎𝑎𝐺𝑥𝑥𝐺
𝑎𝑎𝐺𝑥𝑥𝐺(𝑎𝑎𝐺𝑥𝑥𝐺 𝑎 𝑎𝑎𝐺𝑥𝑥𝐺 𝑎 𝑎𝑎𝐺𝑥𝑥 𝑎 𝑥𝑥𝐺). (17)

Now, we are able to obtain exact expressions (in
terms of Green’s function) for one-site escape proba-
bilities, and probabilities of (not) hitting a given site.
Indeed, since, under ℙ𝑥𝑥, the number of visits (count-
ing the one at time 0) to 𝑥𝑥 is geometric with success
probability ℙ𝑥𝑥[ ̂𝜏𝜏𝑥𝑥 𝐺 ∞], we have

ℙ𝑥𝑥[ ̂𝜏𝜏𝑎
𝑥𝑥 < ∞] 𝐺 1 𝑎 1

𝐺𝐺𝐺𝑥𝑥𝑥 𝑥𝑥𝐺
𝐺 1 𝑎 1

2𝑎𝑎𝐺𝑥𝑥𝐺
(18)

for 𝑥𝑥 𝑥 0. Also, since

𝐺𝐺𝐺𝑥𝑥𝑥 𝑥𝑥𝐺 𝐺 ℙ𝑥𝑥[ ̂𝜏𝜏𝑎
𝑥𝑥 < ∞]𝐺𝐺𝐺𝑥𝑥𝑥 𝑥𝑥𝐺 for 𝑥𝑥 𝑥 𝑥𝑥, 𝑥𝑥𝑥 𝑥𝑥 𝑥 0

(one needs to go to 𝑥𝑥 first, to start counting visits
there), we have

ℙ𝑥𝑥[ ̂𝜏𝜏𝑥𝑥 < ∞] 𝐺 𝐺𝐺𝐺𝑥𝑥𝑥 𝑥𝑥𝐺
𝐺𝐺𝐺𝑥𝑥𝑥 𝑥𝑥𝐺

𝐺 𝑎𝑎𝐺𝑥𝑥𝐺 𝑎 𝑎𝑎𝐺𝑥𝑥𝐺 𝑎 𝑎𝑎𝐺𝑥𝑥 𝑎 𝑥𝑥𝐺
2𝑎𝑎𝐺𝑥𝑥𝐺

.

(19)
Let us also observe that (19) (together with (6)) implies
the following surprising[5] fact: for any 𝑥𝑥 𝑥 0,

lim
𝑥𝑥𝑦∞

ℙ𝑥𝑥[ ̂𝜏𝜏𝑥𝑥 < ∞] 𝐺 1
2

. (20)

It is interesting to note that this fact permits us to ob-
tain a criterion for recurrence of a set with respect
to the conditioned walk. We say that a set is recur-
rent with respect to a (transient) Markov chain, if it
is visited infinitely many times almost surely; a set
is called transient, if it is visited only finitely many
times almost surely (note that, trivially, for a transient
Markov chain every finite set is transient). Recall that,
for SRW in dimensions 𝑑𝑑 𝑑 𝑑, the characterization
of recurrent/transient sets is provided by Wiener’s cri-
terion (see e.g. Corollary 6.5.9 of [7]) formulated in
terms of capacities of intersections of the set with ex-
ponentially growing annuli. Although this result does
provide a complete classification, it may be difficult to
apply it in practice, because it is not always trivial to
calculate (even to estimate) capacities. Now, it turns
out that for the conditioned two-dimensional walk 𝑆𝑆
the characterization of recurrent and transient sets is
particularly simple:

Theorem 7 ([6]).— A set 𝐴𝐴 𝐴 ℤ2 is recurrent with re-
spect to 𝑆𝑆 if and only if 𝐴𝐴 is infinite.

Proof.— We only need to prove that every infinite
subset of ℤ𝑑𝑑 is recurrent for 𝑆𝑆 . As mentioned be-
fore, this is basically a consequence of (20). Indeed,
let 𝑆𝑆0 𝐺 𝑥𝑥0; since 𝐴𝐴 is infinite, by (20) one can
find 𝑥𝑥0 𝑥 𝐴𝐴 and 𝑅𝑅0 such that {𝑥𝑥0𝑥 𝑥𝑥0} 𝐴 𝖡𝖡𝐺𝑅𝑅0𝐺 and

ℙ𝑥𝑥0[ ̂𝜏𝜏𝑥𝑥0
< ̂𝜏𝜏𝜕𝜕𝖡𝖡𝐺𝑅𝑅0𝐺] 𝑑 1

𝑑
.

Then, for any 𝑥𝑥1 𝑥 𝜕𝜕𝖡𝖡𝐺𝑅𝑅0𝐺, we can find 𝑥𝑥1 𝑥 𝐴𝐴
and 𝑅𝑅1 > 𝑅𝑅0 such that 𝑥𝑥1 𝑥 𝖡𝖡𝐺𝑅𝑅1𝐺 ⧵ 𝖡𝖡𝐺𝑅𝑅0𝐺 and

ℙ𝑥𝑥1[ ̂𝜏𝜏𝑥𝑥1
< ̂𝜏𝜏𝜕𝜕𝖡𝖡𝐺𝑅𝑅1𝐺] 𝑑 1

𝑑
.

Continuing in this way, we can construct a sequence
𝑅𝑅0 < 𝑅𝑅1 < 𝑅𝑅2 < … (depending on the set 𝐴𝐴) such
that, for each 𝑘𝑘 𝑑 0, the walk 𝑆𝑆 hits 𝐴𝐴 on its way
from 𝜕𝜕𝖡𝖡𝐺𝑅𝑅𝑘𝑘𝐺 to 𝜕𝜕𝖡𝖡𝐺𝑅𝑅𝑘𝑘𝑎1𝐺 with probability at least 1

𝑑
,

regardless of the past. This clearly implies that 𝐴𝐴 is a
recurrent set. ∎

Next, we state an even more surprising result,
which attests the “fractal” behaviour of 𝑆𝑆 ’s trajecto-
ries. For a set 𝑇𝑇 𝐴 ℤ𝑎 (thought of as a set of time
moments) let

𝑆𝑆𝑇𝑇 𝐺
�
𝑚𝑚𝑥𝑇𝑇

{𝑆𝑆𝑚𝑚}

be the range of the walk 𝑆𝑆 with respect to that set,
i.e., it is made of sites that are visited by 𝑆𝑆 over 𝑇𝑇 .
For simplicity, we assume in the following that the
walk 𝑆𝑆 starts at a fixed neighbour 𝑥𝑥0 of the origin,
and we write ℙ for ℙ𝑥𝑥0

. For a nonempty and finite
set 𝐴𝐴 𝐴 ℤ2, let us consider the random variable

ℛ𝐺𝐴𝐴𝐺 𝐺 |𝐴𝐴 Z 𝑆𝑆[0𝑥∞𝐺|
|𝐴𝐴|

;

that is, ℛ𝐺𝐴𝐴𝐺 is the proportion of visited sites of 𝐴𝐴
by the walk 𝑆𝑆 (and, therefore, 1 𝑎 ℛ𝐺𝐴𝐴𝐺 is the pro-
portion of unvisited sites of 𝐴𝐴). A natural question is:
how should ℛ𝐺𝐴𝐴𝐺 behave for “large” sets? By (20), in
average approximately half of 𝐴𝐴 should be covered,
i.e., 𝔼𝔼ℛ𝐺𝐴𝐴𝐺 should be close to 1/2. Surprisingly, for a
“typical” large set (e.g., a disk, a rectangle, a segment)
the random variable ℛ𝐺𝐴𝐴𝐺 does not concentrate, and
instead the following holds: the proportion of visited
sites is a random variable which is close in distribu-
tion to Uniform[0𝑥 1]. The paper [6] contains the cor-
responding results in greater generality, but here we
content ourselves in stating the result for a particular
case of a large disk which does not “touch” the origin:

[5] We know that the conditioned walk is transient and there is “a lot of space” in ℤ2, so one would rather expect that the probability to
eventually hit a very distant site would go to zero.
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Theorem 8.— Let 𝐷𝐷 𝐷 ℝ2 be a closed disk such that
0 ∉ 𝐷𝐷, and denote 𝐷𝐷𝑛𝑛 = 𝑛𝑛𝐷𝐷 Z ℤ2. Then, for all
𝑠𝑠 𝑠 𝑠0𝑠 𝑠𝑠, we have, with positive constant 𝑐𝑐𝑠 depend-
ing only on 𝐷𝐷,

|ℙ𝑠ℛ(𝐷𝐷𝑛𝑛) ≤ 𝑠𝑠𝑠 𝑠 𝑠𝑠| ≤ 𝑐𝑐𝑠(
ln ln 𝑛𝑛
ln 𝑛𝑛 )

𝑠/3
. (21)

The last result we mention here is a quantitative
assessment of how fast the transience of 𝑆𝑆 happens.
Let us define the future minima process

𝑀𝑀𝑛𝑛 ∶= min
𝑚𝑚𝑚𝑛𝑛

|𝑆𝑆𝑚𝑚|;

so far, we only know that 𝑀𝑀𝑛𝑛 → ∞ a.s. by transience.
It is possible to obtain some finer asymptotic proper-
ties of 𝑀𝑀𝑛𝑛:

Theorem 9 ([13]).— For every 0 < 𝛿𝛿 < 𝑠
2

we have,
almost surely,

𝑀𝑀𝑛𝑛 ≤ 𝑛𝑛𝛿𝛿 i.o. but 𝑀𝑀𝑛𝑛 𝑚 √𝑛𝑛
ln𝛿𝛿 𝑛𝑛

i.o.

The above result means that the transience of the con-
ditioned SRW is “very irregular”: sometimes it goes
to infinity in the usual “diffusive” way, but sometimes
slows down quite dramatically.

As a concluding remark, we also mention that
in [2] even finer results were obtained for the contin-
uous analogue of the conditioned SRW (which is the
Brownian motion conditioned on never hitting the
unit disk — one is then able to use the fact that it is
radially symmetric, something that does not hold in
the discrete setting). We are now working on extend-
ing the results of [2] to the discrete case.
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