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Science treats only the general; there is no science of
the individual.
—Aristotle[1]

Dynamical systems is the study of the long-term be-
haviour of evolving systems. The foundations were
set by the innovative work of Henri Poincaré (1854–
1912), Les Méthodes Nouvelles de la Mécanique Céleste
(1892–1899), with fundamental questions concerning
the stability of the solar system. Attempts to answer
those questions revealed the incapacity of solving ex-
actly the mathematical questions arising from phys-
ical systems. It appeared that understanding typical
systems, or systems in general, was mathematically
more fruitful.

The aim of the modern theory of dynamical sys-
tems is thus to describe the behaviour of typical trajec-
tories, for typical evolution laws. Furthermore, when
dealing with real-world systems, neither the initial
data nor the evolution law are known exactly. For
these reasons, one is most interested in properties
that are stable, i.e., that are persistent under small per-
turbations of the evolution law.

1 What is a generic behaviour?

Ce qui limite le vrai, ce n’est pas le faux, c’est
l’insignifiant.
—René Thom[2]

One of the oldest aspirations of humanity is to under-
stand the motion of celestial bodies–the sun, moons,
planets and visible stars of the solar system. The first
complete mathematical formulation of the classical 𝑛𝑛-
Body Problem was presented by Isaac Newton (1643–
1727) in his masterpiece Philosophiae Naturalis Prin-
cipia Mathematica, first published in 1687. Informally,
the 𝑛𝑛-Body Problem can be stated as (see [15]): Given
only the present positions and velocities of a group of 𝑛𝑛
celestial bodies, predict their motions for all future time
and deduce them for all past time. The Two-Body Prob-
lem is known as the Kepler problem, in honor of Jo-
hannes Kepler (1571–1630), who provided inspiration
for Newton’s gravitational model, with his laws on
planetary motions deduced from the astronomical ob-
servational data of Tycho Brahe (1546–1601). Unfor-
tunately, the Kepler problem revealed to be the only
easy case among the 𝑛𝑛-Body Problem.

Most of the great mathematicians of the eigh-

[1] Quoted in Itinerary for a Science of the Detail, René Thom.
[2] In Prédire n’est pas expliquer.
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teenth and nineteenth century tackled the equations
of the Three-Body Problem but were unable to make
much progress. Until the final decade of the nine-
teenth century, the goal was to obtain exact re-
sults, to integrate equations and obtain complete so-
lutions. But physical phenomena are in general non-
linear and some are even chaotic. At the end of
the nineteenth century, a new qualitative era was
opened by Poincaré, who introduced geometric, to-
pological and probabilistic methods in order to un-
derstand qualitatively the complex behaviour of most
of the solutions of the Three-Body Problem (see [13]).
Poincaré’s work on this problem provided a glimpse
of chaotic behaviour in a dynamical system, a fea-
ture entirely understood by the mathematical com-
munity only three quarters of a century later, after
George D. Birkhoff (1884–1944) and then Stephen
Smale (1930–) show its importance.

At the end of the fifties, the development of dy-
namical systems as a theory was greatly influenced
by the program of classifying singularities of differen-
tial mappings. One of the main goals of this program
was to classify functions from ℝ𝑛𝑛 to ℝ𝑝𝑝 by the kind of
singularities exhibited. But since such a characteriza-
tion for all such functions is impossible, mathemati-
cians settle for a classification of almost all functions.
The approach was then to derive the type of singula-
rities a certain prototype function can have, and then
prove that any other function could be approximated
by the prototype. This property of prototypes was
expressed by René Thom (1923–2002) in terms of a
generic property. Thom picked up the term generic
from Italian algebraic geometers, who had already de-
fined a generic property as a property that is satisfied
for all points of a space except for the points of a thin
submanifold of that particular space (see [12]). As did
Thom in [34, p. 357], consider the space 𝐿𝐿𝑚𝑚

𝑛𝑛𝑛𝑝𝑝 of func-
tions of class 𝐶𝐶𝑚𝑚 from ℝ𝑛𝑛 to ℝ𝑝𝑝 equipped with the
𝐶𝐶𝑚𝑚 topology, which is a Baire space. Thom defined
a generic property (𝑃𝑃 𝑃 in the space 𝐿𝐿𝑚𝑚

𝑛𝑛𝑛𝑝𝑝 as a property
that holds for all functions belonging to this space,
except for a rare subset of that space. A generic pro-
perty was then known as a property that is satisfied
by the elements that form an open and dense subspace
of the domain, which is the complement of a closed
subspace without interior points (see [12]).

In the context of dynamical systems theory, the
term generic (borrowed from Thom) was used for the
first time by Mauricio Peixoto (1921–2019) in [25], mo-
tivated by his interest on structural stability.

In 1967, Smale presented in [31] the advances of the

theory of dynamical systems so far. At that moment,
the mathematical definitions needed to be adapted to
a new classification program. Smale proposes that the
term generic should be associated with a behaviour
that holds for a residual subset of systems. Given a
topological space 𝑀𝑀 , a subset of the space is called
residual or topologically generic if it contains a count-
able intersection of open and dense sets. Note that if
𝑀𝑀 is a Baire space—for example, if 𝑀𝑀 is completely
metrizable—a countable intersection of dense open
subsets is still dense. A property (𝑃𝑃 𝑃 is generic if it is
verified on a residual subset. We observe that a count-
able intersection of residual sets is a residual set.

2 Two main theories in dynamical systems

In the 1960s two main theories in dynamical systems
were developed: the hyperbolic theory for general sys-
tems and the KAM (for Kolmogorov–Arnold–Moser)
theory for a distinguished class of conservative sys-
tems.

In the study of physical systems which evolve
in time as solutions of certain differential equations
one is led naturally to the consideration of mea-
sure preserving—conservative—systems. These con-
servative (or incompressible) flows are associated
to divergence-free vector fields, they preserve a vol-
ume form on the ambient manifold and thus come
equipped with a natural invariant measure 𝜇𝜇 which
we call Lebesgue measure.

The hyperbolic theory was initiated by Smale, in
the west, and Dmitri Anosov (1936–2014), Yakov
Sinai (1935–) and Vladimir Arnold (1937–2010), in the
former Soviet Union. It was part of a revolution in
our vision of determinism, providing a mathematical
foundation for the fact that deterministic systems of-
ten present chaotic behaviour in a robust way. Let
𝑀𝑀 be a compact smooth Riemannian manifold and
𝑓𝑓 𝑓 𝑀𝑀 𝑓 𝑀𝑀 be a diffeomorphism. Recall that, an
invariant (i.e. 𝑓𝑓(𝑓𝑃 𝑓 𝑓) compact set 𝑓 ⊂ 𝑀𝑀 is a
uniformly hyperbolic set for 𝑓𝑓 if the tangent bundle
over 𝑓 admits a continuous decomposition 𝑇𝑇𝑓𝑀𝑀 𝑓
𝐸𝐸𝑢𝑢⊕𝐸𝐸𝑠𝑠, invariant under the derivative, and for which
there are constants 𝐶𝐶 𝐶 𝐶 and 𝜆𝜆 𝜆 (𝐶𝑛 𝜆𝑃 so that
‖𝐷𝐷𝑓𝑓 −𝑛𝑛(𝑥𝑥𝑃𝑥𝐸𝐸𝑢𝑢

𝑥𝑥
‖ ≤ 𝐶𝐶𝜆𝜆𝑛𝑛 and ‖𝐷𝐷𝑓𝑓 𝑛𝑛(𝑥𝑥𝑃𝑥𝐸𝐸𝑠𝑠

𝑥𝑥
‖ ≤ 𝐶𝐶𝜆𝜆𝑛𝑛, for

every 𝑥𝑥 𝜆 𝑓 and 𝑛𝑛 𝑛 𝜆. The diffeomorphism 𝑓𝑓
is called Anosov (or globally hyperbolic) if the whole
manifold 𝑀𝑀 is a uniformly hyperbolic set. The def-
inition of uniform hyperbolicity for a smooth flow
𝑓𝑓 𝑡𝑡 𝑓 𝑀𝑀 𝑓 𝑀𝑀 , 𝑡𝑡 𝜆 ℝ, is analogous except that (unless
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Λ consists of equilibria) the previous decomposition
becomes 𝑇𝑇Λ𝑀𝑀 𝑀 𝑀𝑀𝑢𝑢 ⊕ 𝑀𝑀0 ⊕ 𝑀𝑀𝑠𝑠, where 𝑀𝑀0 is a line
bundle tangent to the flow lines.

3 Generic dynamical behaviours

The properties of generic dynamical systems depend
mostly on the dimension of the manifold and of the
𝐶𝐶𝑟𝑟-topology considered, 𝑟𝑟 𝑟 0. We refer the reader
to [11], for a recent overview on the subject.

3.1 Generic dynamics in low regularity

3.1.1 Metric and topological transitivity

Before Poincaré’s work, the founders of statistical
mechanics, James Maxwell (1831–1879) and Ludwig
Boltzmann (1844–1906) tried to provide a rigorous
formulation of the kinetic theory of gases and statis-
tical mechanics. A key ingredient was Boltzmann’s
Fundamental Principle, which asserts that the time
and space averages of an observable (a function on
the phase space) can be set equal (see [22, 19]). The
ergodic theorems of Birkhoff and John von Neumann
(1903–1957) (“time averages exist a.e.”) set the founda-
tion for the current definition of ergodicity: any in-
variant set has zero measure or full measure. If this
holds, then time averages coincide with space ave-
rages at least for typical points—Boltzmann’s Funda-
mental Principle.

An important question in the 1930s was then: Is er-
godicity with respect to volume a typical property? The
question was first addressed by John Oxtoby (1910–
1991) and Stanisław Ulam (1909–1984) in [24], who
proved that a generic volume-preserving homeomor-
phism of a compact manifold is ergodic. A natural
question, still open in general, is whether such a re-
sult extends to the space of volume-preserving 𝐶𝐶1 dif-
feomorphisms. If one considers the other extreme of
regularity, 𝐶𝐶∞ diffeomorphisms, ergodicity is not a
typical property at all: KAM theory assures that there
are open sets of volume-preserving 𝐶𝐶∞ diffeomor-
phisms that are not ergodic (see [35, 1]).

In their 1912 article, Paul (1880–1933) and Tatiana
(1876–1964) Ehrenfest discussed questions related
with the ergodic hypothesis and then proposed the al-
ternative quasi-ergodic hypothesis (see [22]): some orbit
of the system will pass arbitrarily close to every point of
the phase space, i.e., the system is (topologically) tran-
sitive. It is the topological counterpart of an ergodic

system.
Concerning the continuous-time counterpart of

the Oxtoby-Ulam theorem, there is a lack in the lite-
rature. Motivated by this, the main goal in [10] was to
study the abundance of transitivity-like properties of
𝐶𝐶0 conservative flows generated by Lipschitz vector
fields and to establish a weaker (topological) counter-
part of the Oxtoby-Ulam theorem: 𝐶𝐶0-generic flows
are strongly transitive: the shortest hitting time from
a ball to any other ball of the same radius is uniformly
bounded above by a constant depending only on the ra-
dius. For Lipschitz divergence-free vector fields with-
out singularities it was proved in [10, Theorem A]
that:

Theorem 1.— 𝐶𝐶0-generic non-singular Lipschitz
divergence-free vector fields generate conservative
flows that are strongly transitive.

It was also proved that 𝐶𝐶0-generic Lipschitz
divergence-free vector fields generate transitive flows
(see [10, Theorem B]).

3.1.2 Perturbation of orbits: Closing lemma

The problem of closing a nonperiodic trajectory is a
well-known problem in the theory of dynamical sys-
tems, whose origin remounts to Poincaré (see [26, vol
1, p.82]). We want to close, in the sense that we trans-
form into a periodic orbit, a given orbit with some re-
turn property (for example, non-trivial recurrence or
non-wandering) by performing a small perturbation
on the original system.

Poincaré believed that such a closing could be
done in quite general situations. However, until
now, there are positive answers only if the perturba-
tions are with respect to coarse topologies like e.g.,
𝐶𝐶0, Hölder, Sobolev-(1, 𝑝𝑝𝑝 and 𝐶𝐶1. The 𝐶𝐶0 closing
lemma can readily be proved, except perhaps for the
geodesic flows. But the 𝐶𝐶1 closing lemma reveals
some fundamental difficulties. The 𝐶𝐶1 closing lemma
for non-conservative systems was first established by
Pugh [27] in the late 1960s and for conservative sys-
tems was prove by Pugh and Robinson [28] in the
early 1980s. A non-conservative version of the clos-
ing lemma for the Sobolev-(1, 𝑝𝑝𝑝 topology was re-
cently presented in [17]. In [2], it was given a sim-
pler and different proof of the Sobolev closing lemma
which also works in the conservative case.

More precisely, let 𝑈𝑈 be an open bounded subset
of ℝ𝑛𝑛 with Lipschitz boundary and let 1 ≤ 𝑝𝑝, 𝑝𝑝 ≤ ∞.
A measurable map 𝑓𝑓 𝑀 (𝑓𝑓1, … , 𝑓𝑓𝑛𝑛𝑝∶𝑈𝑈 𝑈 ℝ𝑛𝑛 is in
the Sobolev class 𝑊𝑊 1,𝑝𝑝(𝑈𝑈, ℝ𝑛𝑛𝑝 if, for all 𝑖𝑖 𝑀 1, … , 𝑛𝑛,
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𝑓𝑓𝑖𝑖 and all its distributional partial derivatives 𝜕𝜕𝑓𝑓𝑖𝑖/𝜕𝜕𝜕𝜕𝑗𝑗
are in 𝐿𝐿𝑝𝑝(𝑈𝑈𝑈. We are interested only in Sobolev maps
that are continuous up to the boundary, i.e., we con-
sider the space 𝑊𝑊 1,𝑝𝑝(𝑈𝑈, ℝ𝑛𝑛𝑈 Z 𝐶𝐶0(𝑈𝑈, ℝ𝑛𝑛𝑈 . Finally we
define 𝕎𝕎1,𝑝𝑝(𝑈𝑈𝑈 as the set of all homeomorphisms
𝑓𝑓 𝑓 𝑈𝑈 𝑓 𝑈𝑈 such that 𝑓𝑓 𝑓 𝑊𝑊 1,𝑝𝑝(𝑈𝑈, ℝ𝑛𝑛𝑈 Z 𝐶𝐶0(𝑈𝑈, ℝ𝑛𝑛𝑈.
We also define 𝕎𝕎1,𝑝𝑝,𝑝𝑝(𝑈𝑈𝑈 as the set of all elements in
𝕎𝕎1,𝑝𝑝(𝑈𝑈𝑈 whose inverse is in 𝕎𝕎1,𝑝𝑝(𝑈𝑈𝑈. In 𝕎𝕎1,𝑝𝑝(𝑈𝑈𝑈 and
𝕎𝕎1,𝑝𝑝,𝑝𝑝(𝑈𝑈𝑈 we consider the natural metrics defined by
𝑑𝑑∞,𝑝𝑝(𝑓𝑓 , 𝑓𝑓𝑈 𝑓 𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓∞ + 𝑓𝐷𝐷(𝑓𝑓 𝑓 𝑓𝑓𝑈𝑓𝑝𝑝 and (𝑓𝑓 , 𝑓𝑓𝑈 𝑓
𝑑𝑑∞,𝑝𝑝(𝑓𝑓 , 𝑓𝑓𝑈+𝑑𝑑∞,𝑝𝑝(𝑓𝑓 𝑓1, 𝑓𝑓𝑓1𝑈, respectively. We consider
also the subspaces 𝕎𝕎1,𝑝𝑝

𝜇𝜇 (𝑈𝑈𝑈 and 𝕎𝕎1,𝑝𝑝,𝑝𝑝
𝜇𝜇 (𝑈𝑈𝑈 of volume

preserving elements. The spaces 𝕎𝕎1,𝑝𝑝(𝑈𝑈𝑈, 𝕎𝕎1,𝑝𝑝
𝜇𝜇 (𝑈𝑈𝑈,

𝕎𝕎1,𝑝𝑝,𝑝𝑝(𝑈𝑈𝑈 and 𝕎𝕎1,𝑝𝑝,𝑝𝑝
𝜇𝜇 (𝑈𝑈𝑈 satisfy the Baire property.

Recall that a point 𝜕𝜕 𝑓 𝑈𝑈 is said to be a non-
wandering point for 𝑓𝑓 if for any neighbourhood 𝑉𝑉
of 𝜕𝜕 there exists 𝑛𝑛 𝑓 ℕ such that 𝑓𝑓 𝑛𝑛(𝑉𝑉 𝑈 intersects
𝑉𝑉 . The set of non-wandering points Ω(𝑓𝑓𝑈 contains
the set Per(𝑓𝑓 𝑈 of periodic points. It was proved in [2,
Theorem A] the Sobolev-(1, 𝑝𝑝𝑈 closing lemma:

Theorem 2.— Let 𝑛𝑛 𝑛 𝑛. Consider 𝑋𝑋 to be any of
the spaces 𝕎𝕎1,𝑝𝑝(𝑈𝑈𝑈, 𝕎𝕎1,𝑝𝑝

𝜇𝜇 (𝑈𝑈𝑈, 𝕎𝕎1,𝑝𝑝,𝑝𝑝(𝑈𝑈𝑈, 𝕎𝕎1,𝑝𝑝,𝑝𝑝
𝜇𝜇 (𝑈𝑈𝑈,

where 𝑝𝑝, 𝑝𝑝 𝑓 𝑝1, ∞𝑝. Let 𝑓𝑓 𝑓 𝑋𝑋 and 𝑧𝑧 𝑓 Ω(𝑓𝑓𝑈. Then,
for all 𝜀𝜀 𝜀 0 there exists 𝑦𝑦𝜀𝜀 𝑓 𝑈𝑈 and ℎ𝜀𝜀 𝑓 𝑋𝑋 such that
lim
𝜀𝜀𝑓0

|𝑦𝑦𝜀𝜀 𝑓𝑧𝑧| 𝑓 0, lim
𝜀𝜀𝑓0

𝑓ℎ𝜀𝜀 𝑓𝑓𝑓𝑓𝑋𝑋 𝑓 0 and 𝑦𝑦𝜀𝜀 𝑓 Per(ℎ𝜀𝜀𝑈.

3.1.3 Density of periodic orbits

Another fundamental result in the theory of dynami-
cal systems is the general density theorem. It asserts
that generically the closure of the set of periodic orbits is
the set where the dynamics is truly relevant: in the non-
conservative case this set is the non-wandering set
and in the conservative case this set is the whole ma-
nifold. The general density theorem has been proved
in many different settings and there is a vast literature
on the subject (see [2] and references therein).

The general density theorem is a direct conse-
quence of the combination of the closing lemma and
the stability of the closed orbits. As a consequence,
the general density theorem turns out to be easier
in the 𝐶𝐶1 case when compared to the 𝐶𝐶0 one, be-
cause in the differentiable case the stability of pe-
riodic points can be expressed through hyperbolicity
but in the topological case is more subtle. Within
Sobolev homeomorphisms, in order to use hyperboli-
city we had to request for differentiability at least for
a map arbitrarily close from the Sobolev perspective.
But this bypass through a differentiable map is very
difficult to obtain. In fact, regularization of Sobolev-
(1, 𝑝𝑝𝑈 homeomorphisms is available only for planar

domains. In [2, Theorem B], it was proved the pla-
nar general density theorem for Sobolev-(1, 𝑝𝑝𝑈 maps:

Theorem 3.— Let 𝑈𝑈 𝑈 ℝ𝑛. There exists a 𝕎𝕎1,𝑝𝑝-
residual subset ℛ 𝑈 𝕎𝕎1,𝑝𝑝(𝑈𝑈𝑈 such that if 𝑓𝑓 𝑓 ℛ,
then 𝑃𝑃 𝑃𝑃𝑃𝑃(𝑓𝑓𝑈 𝑓 Ω(𝑓𝑓𝑈.

3.2 Smooth Generic Dynamics

3.2.1 Palis-Smale stability conjecture

Structural stability is one of the most fundamental
topics in dynamical systems and contains some of
the hardest conjectures in the area. The concept of
structural stability was introduced in the mid 1930s
by Andronov and Pontryagin. Roughly speaking it
means that under small perturbations the whole orbit
structure remains the same: there exists a homeomor-
phism of the ambient manifold mapping orbits of the
initial system into orbits of the modified one. The aim
of Smale’s program in the early 1960s was to prove
the genericity of structurally stable systems. Although
Smale’s program was proved to have serious flaws
one decade later, it played a major role in the deve-
lopment of the theory of smooth dynamical systems.
It led to the construction of hyperbolic theory, study-
ing uniform hyperbolicity, and characterizing structu-
ral stability as being essentially equivalent to uniform
hyperbolicity. Indeed, one of the high points in the
development of smooth dynamics is the proof by
Robbin, Robinson, Mañé and Hayashi [21, 29, 30, 20]
that structural stability indeed characterizes hyper-
bolic dynamical systems. For 𝐶𝐶1-diffeomorphisms
this was achieved in the 1980s, for flows in the 1990s.
The 𝐶𝐶𝑃𝑃 structural stability conjecture for 𝑃𝑃 𝑛 𝑛 re-
mains wide open. In the conservative setting we high-
light the seminal paper of Newhouse [23] where it was
proved that a symplectic diffeomorphisn of a compact
manifold is structurally stable if and only if it is Anosov.
In the continuous-time setting, similar results were
obtained for conservative flows in [7] and for Hamil-
tonian flows in [6], but in lower dimension (three and
four, respectively). These results were generalized
in [18] and [8] for arbitrary dimension, respectively.
Let us describe the Hamiltonian framework.

A Hamiltonian system can be seen as the apotheosis
of mathematical models of classical mechanics. The
mathematician William R. Hamilton (1805–1865) de-
veloped a formalism for the equations of the dynam-
ics, which played a major role in the development of
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the theory of classical dynamical systems. The Hamil-
tonian formalism was originally formulated combin-
ing the formulation of mechanics of Joseph-Louis
Lagrange (1736–1813) (itself deduced from Newton’s
laws) with variational methods (see [16]). In the mod-
ern language, Hamiltonian systems are a part of sym-
plectic geometry.

Let (𝑀𝑀𝑀 𝑀𝑀𝑀 be a symplectic manifold, where 𝑀𝑀 is
a 2𝑛𝑛-dimensional (𝑛𝑛 𝑛 2), closed,[3] connected and
smooth Riemannian manifold, endowed with a sym-
plectic structure, i.e. a closed and nondegenerate 2-
form 𝑀𝑀. A Hamiltonian is a real-valued 𝐶𝐶𝑟𝑟 function
on 𝑀𝑀 , 2 ≤ 𝑟𝑟 ≤ 𝑟. The associated Hamiltonian vector
field 𝑋𝑋𝐻𝐻 is defined by 𝑀𝑀(𝑋𝑋𝐻𝐻 (𝑝𝑝𝑀𝑀 𝑝𝑝𝑀 𝑝 𝑝𝑝𝐻𝐻𝑝𝑝(𝑝𝑝𝑀, for all
𝑝𝑝 𝑢 𝑢𝑢𝑝𝑝𝑀𝑀 ; this vector field generates the Hamiltonian
flow 𝑋𝑋𝑡𝑡

𝐻𝐻 . From now on, we shall be restricted to the
𝐶𝐶2-topology and thus we set 𝑟𝑟 𝑝 2. Observe that 𝐻𝐻
is 𝐶𝐶2 if and only if the associated Hamiltonian vector
field 𝑋𝑋𝐻𝐻 is 𝐶𝐶1. A scalar 𝑒𝑒 𝑢 𝐻𝐻(𝑀𝑀𝑀 𝑒 ℝ is called
an energy of 𝐻𝐻 . An energy hypersurface ℰ𝐻𝐻𝑀𝑒𝑒 is a con-
nected component of 𝐻𝐻−1({𝑒𝑒}𝑀 and it is regular if it
does not contain singularities. Observe that a regular
energy hypersurface is a 𝑋𝑋𝑡𝑡

𝐻𝐻-invariant, compact and
(2𝑛𝑛−1𝑀-dimensional manifold. A Hamiltonian system
is a triple (𝐻𝐻𝑀 𝑒𝑒𝑀 ℰ𝐻𝐻𝑀𝑒𝑒𝑀, where 𝐻𝐻 is a Hamiltonian, 𝑒𝑒
is an energy and ℰ𝐻𝐻𝑀𝑒𝑒 is a regular connected compo-
nent of 𝐻𝐻−1({𝑒𝑒}𝑀. Fixing a small neighbourhood 𝒲𝒲
of a regular ℰ𝐻𝐻𝑀𝑒𝑒, there exist a small neighbourhood
𝒰𝒰 of 𝐻𝐻 and 𝜖𝜖 𝜖 𝜖 such that, for all �̃�𝐻 𝑢 𝒰𝒰 and

̃𝑒𝑒 𝑢 (𝑒𝑒 − 𝜖𝜖𝑀 𝑒𝑒 𝑒 𝜖𝜖𝑀, �̃�𝐻−1({ ̃𝑒𝑒}𝑀 Z 𝒲𝒲 𝑝 ℰ�̃�𝐻𝑀 ̃𝑒𝑒. We call
ℰ�̃�𝐻𝑀 ̃𝑒𝑒 the analytic continuation of ℰ𝐻𝐻𝑀𝑒𝑒. In the space of
Hamiltonian systems we consider the topology gene-
rated by a fundamental systems of neighbourhoods.
Given a Hamiltonian system (𝐻𝐻𝑀 𝑒𝑒𝑀 ℰ𝐻𝐻𝑀𝑒𝑒𝑀 we say that
𝒱𝒱 (𝒰𝒰𝑀 𝜖𝜖𝑀 is a neighbourhood of (𝐻𝐻𝑀 𝑒𝑒𝑀 ℰ𝐻𝐻𝑀𝑒𝑒𝑀 if there ex-
ist a small neighbourhood 𝒰𝒰 of 𝐻𝐻 and 𝜖𝜖 𝜖 𝜖 such that
for all �̃�𝐻 𝑢 𝒰𝒰 and ̃𝑒𝑒 𝑢 (𝑒𝑒 − 𝜖𝜖𝑀 𝑒𝑒 𝑒 𝜖𝜖𝑀 one has that the
analytic continuation ℰ�̃�𝐻𝑀 ̃𝑒𝑒 of ℰ𝐻𝐻𝑀𝑒𝑒 is well-defined. A
Hamiltonian system (𝐻𝐻𝑀 𝑒𝑒𝑀 ℰ𝐻𝐻𝑀𝑒𝑒𝑀 is said to be Anosov
if ℰ𝐻𝐻𝑀𝑒𝑒 is uniformly hyperbolic for the Hamiltonian
flow 𝑋𝑋𝑡𝑡

𝐻𝐻 associated to 𝐻𝐻 . We say that the Hamilto-
nian system (𝐻𝐻𝑀 𝑒𝑒𝑀 ℰ𝐻𝐻𝑀𝑒𝑒𝑀 is structurally stable if there
exists a neighbourhood 𝒱𝒱 of (𝐻𝐻𝑀 𝑒𝑒𝑀 ℰ𝐻𝐻𝑀𝑒𝑒𝑀 such that,
for any (�̃�𝐻𝑀 ̃𝑒𝑒𝑀 ℰ�̃�𝐻𝑀 ̃𝑒𝑒𝑀 𝑢 𝒱𝒱 , there exists a homeomor-
phism ℎ�̃�𝐻𝑀 ̃𝑒𝑒 between ℰ𝐻𝐻𝑀𝑒𝑒 and ℰ�̃�𝐻𝑀 ̃𝑒𝑒, preserving orbits
and their orientations. Moreover, ℎ�̃�𝐻𝑀 ̃𝑒𝑒 is continuous
on the parameters �̃�𝐻 and ̃𝑒𝑒, and converges to 𝑖𝑖𝑝𝑝 when
�̃�𝐻 𝐶𝐶2-converges to 𝐻𝐻 and ̃𝑒𝑒 converges to 𝑒𝑒. The stabi-

lity conjecture for Hamiltonians was established in [8,
Theorem 2]:

Theorem 4.— If (𝐻𝐻𝑀 𝑒𝑒𝑀 ℰ𝐻𝐻𝑀𝑒𝑒𝑀 is a structurally stable
Hamiltonian system, then (𝐻𝐻𝑀 𝑒𝑒𝑀 ℰ𝐻𝐻𝑀𝑒𝑒𝑀 is Anosov.

3.2.2 Shades of hyperbolicity

The characterization of structurally stable systems us-
ing topological and geometrical dynamical properties
has been one of the main objects of interest in the
global qualitative theory of dynamical systems in the
last 4𝜖 years. Here, we shall focus on tracing orbit pro-
perties, namely, the shadowing and specification pro-
perties (see [9] where the topological stability and ex-
pansiveness properties were also considered).

A dynamical system has the shadowing property if
for any almost orbit (obtained, for example, by a nu-
merical method with good accuracy) there is a close
true orbit. In this case, an approximate pattern of tra-
jectories given by numerical modeling reflects the ex-
act structure of trajectories. A dynamical system has
the specification property if one can shadow distinct
𝑛𝑛 pieces of orbits, which are sufficiently time-spaced,
by a single orbit. We say that the specification pro-
perty is weak if 𝑛𝑛 𝑝 2.

Let (𝑀𝑀𝑀 𝑝𝑝𝑀 be a compact metric space and let
(𝑋𝑋𝑡𝑡𝑀𝑡𝑡𝑢ℝ be a continuous flow on 𝑀𝑀 . Fix real numbers
𝛿𝛿𝑀 𝑢𝑢 𝜖 𝜖. We say that a pair of sequences ((𝑥𝑥𝑖𝑖𝑀𝑀 (𝑡𝑡𝑖𝑖𝑀𝑀𝑖𝑖𝑢ℤ
(𝑥𝑥𝑖𝑖 𝑢 𝑀𝑀𝑀 𝑡𝑡𝑖𝑖 𝑢 ℝ𝑀 𝑡𝑡𝑖𝑖 𝑛 𝑢𝑢 𝑀 is a (𝛿𝛿𝑀 𝑢𝑢 𝑀-pseudo-orbit if
𝑝𝑝(𝑋𝑋𝑡𝑡𝑖𝑖(𝑥𝑥𝑖𝑖𝑀𝑀 𝑥𝑥𝑖𝑖𝑒1𝑀 < 𝛿𝛿 for all 𝑖𝑖 𝑢 ℤ. For the sequence
(𝑡𝑡𝑖𝑖𝑀𝑖𝑖𝑢ℤ we write 𝜎𝜎(𝑛𝑛𝑀 𝑝 𝑡𝑡𝜖 𝑒 𝑡𝑡1 𝑒 … 𝑒 𝑡𝑡𝑛𝑛−1 if 𝑛𝑛 𝜖 𝜖,
𝜎𝜎(𝑛𝑛𝑀 𝑝 −(𝑡𝑡𝑛𝑛 𝑒 … 𝑒 𝑡𝑡−2 𝑒 𝑡𝑡−1𝑀 if 𝑛𝑛 < 𝜖, and 𝜎𝜎(𝜖𝑀 𝑝 𝜖.
Let 𝑥𝑥𝜖 ⋆ 𝑡𝑡 denote a point on a (𝛿𝛿𝑀 𝑢𝑢 𝑀-chain 𝑡𝑡 units
time from 𝑥𝑥𝜖. More precisely, for 𝑡𝑡 𝑢 ℝ, 𝑥𝑥𝜖 ⋆ 𝑡𝑡 𝑝
𝑋𝑋𝑡𝑡−𝜎𝜎(𝑖𝑖𝑀(𝑥𝑥𝑖𝑖𝑀 if 𝜎𝜎(𝑖𝑖𝑀 ≤ 𝑡𝑡 < 𝜎𝜎(𝑖𝑖 𝑒 1𝑀𝜎 In continuous-
time setting the shadowing property should reflect
the speed at which different points travel in their tra-
jectories. For that reason we need to consider orbits
up to reparametrization. By Rep we denote the set
of all increasing homeomorphisms 𝛼𝛼 𝛼 ℝ → ℝ, such
that 𝛼𝛼(𝜖𝑀 𝑝 𝜖, called (time) reparameterizations. Fix-
ing 𝜀𝜀 𝜖 𝜖, we define the set

Rep(𝜀𝜀𝑀 𝑝 {𝛼𝛼 𝑢 𝛼𝛼𝛼𝛼 |
𝛼𝛼(𝑡𝑡𝑀 − 𝛼𝛼(𝛼𝛼𝑀

𝑡𝑡 − 𝛼𝛼
− 1| < 𝜀𝜀𝑀 𝛼𝛼𝑀 𝑡𝑡 𝑢 ℝ}𝑀

of the reparameterizations 𝜀𝜀-close to the identity.
The flow (𝑋𝑋𝑡𝑡𝑀𝑡𝑡 satisfies the shadowing property if for
any 𝜀𝜀 𝜖 𝜖 there exist 𝛿𝛿𝑀 𝑢𝑢 𝜖 𝜖 such that for any

[3] That is, compact and without boundary.
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(𝛿𝛿𝛿 𝛿𝛿 𝛿-pseudo-orbit ((𝑥𝑥𝑖𝑖𝛿𝛿 (𝑡𝑡𝑖𝑖𝛿𝛿𝑖𝑖𝑖ℤ there exist a point
𝑧𝑧 𝑖 𝑧𝑧 and a reparametrization 𝛼𝛼 𝑖 Rep(𝜀𝜀𝛿 such that
𝑑𝑑(𝑑𝑑𝛼𝛼(𝑡𝑡𝛿(𝑧𝑧𝛿𝛿 𝑥𝑥0 ⋆ 𝑡𝑡𝛿 𝑡 𝜀𝜀, for every 𝑡𝑡 𝑖 ℝ.

The flow (𝑑𝑑𝑡𝑡𝛿𝑡𝑡𝑖ℝ has the specification property if
for any 𝜀𝜀 𝜀 0 there exists a 𝛿𝛿 𝑇 𝛿𝛿 (𝜀𝜀𝛿 𝜀 0 such that:
given any finite collection 𝜏𝜏 of intervals 𝐼𝐼𝑖𝑖 𝑇 [𝑎𝑎𝑖𝑖𝛿 𝑏𝑏𝑖𝑖]
(𝑖𝑖 𝑇 𝑖 𝑖 𝑖𝑖𝛿 of the real line satisfying 𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑏𝑏𝑖𝑖 ≥ 𝛿𝛿 (𝜀𝜀𝛿
for every 𝑖𝑖 and every map 𝑃𝑃 𝑃 �

𝐼𝐼𝑖𝑖𝑖𝜏𝜏 𝐼𝐼𝑖𝑖 → 𝑧𝑧 such
that 𝑑𝑑𝑡𝑡2(𝑃𝑃 (𝑡𝑡𝑖𝛿𝛿 𝑇 𝑑𝑑𝑡𝑡𝑖(𝑃𝑃 (𝑡𝑡2𝛿𝛿 for any 𝑡𝑡𝑖𝛿 𝑡𝑡2 𝑖 𝐼𝐼𝑖𝑖 there
exists 𝑧𝑧 𝑖 𝑧𝑧 so that 𝑑𝑑(𝑑𝑑𝑡𝑡(𝑧𝑧𝛿𝛿 𝑃𝑃 (𝑡𝑡𝛿𝛿 𝑡 𝜀𝜀 for all
𝑡𝑡 𝑖 �

𝑖𝑖 𝐼𝐼𝑖𝑖.
It is well-known that Anosov systems, and thus,

structurally stable Hamiltonian systems, satisfy the
shadowing property. Moreover, mixing Anosov sys-
tems satisfy the specification property. In the context
of Hamiltonian systems, it was proved in [9, Theo-
rem 1] that if one requires the stability of shadowing
(or weak specification) property under perturbation,
then the Hamiltonian system is Anosov. Thus, we call
these properties shades of hyperbolicity. We say that a
property stably holds for some system if it holds for
any system in some neighbourhood of that system.

Theorem 5.— Let (𝐻𝐻𝛿 𝐻𝐻𝛿 𝐻𝐻𝐻𝛿𝐻𝐻𝛿 be a Hamiltonian sys-
tem. If any of the following statements hold:

(1) (𝐻𝐻𝛿 𝐻𝐻𝛿 𝐻𝐻𝐻𝛿𝐻𝐻𝛿 is stably shadowable;

(2) (𝐻𝐻𝛿 𝐻𝐻𝛿 𝐻𝐻𝐻𝛿𝐻𝐻𝛿 has the stable weak specification
property,

then the Hamiltonian system (𝐻𝐻𝛿 𝐻𝐻𝛿 𝐻𝐻𝐻𝛿𝐻𝐻𝛿 is Anosov.

A natural question is whether these results are exten-
sible to the subclass of Hamiltonians formed by the
geodesic flows. Let (𝑧𝑧𝛿 𝑀𝑀𝛿 be a Riemannian mani-
fold, where 𝑧𝑧 is a closed, connected, Riemannian
manifold of dimension ≥ 2 and 𝑀𝑀 𝑖 𝑔𝑟𝑟. Here 𝑔𝑟𝑟

stands for the set of 𝐶𝐶𝑟𝑟 Riemannian metrics, 2 ≤
𝑟𝑟 ≤ 𝑟. Given a tangent vector 𝑣𝑣 𝑖 𝛿𝛿𝑥𝑥𝑧𝑧 at a
point 𝑥𝑥 𝑖 𝑧𝑧 , denote by 𝛾𝛾𝑥𝑥𝛿𝑣𝑣 𝑃 ℝ → 𝑧𝑧 the geodesic
such that 𝛾𝛾𝑥𝑥𝛿𝑣𝑣(0𝛿 𝑇 𝑥𝑥 and ̇𝛾𝛾𝑥𝑥𝛿𝑣𝑣(0𝛿 𝑇 𝑣𝑣. The geodesic
flow of 𝑀𝑀 is the flow on 𝛿𝛿 𝑧𝑧 defined by 𝜑𝜑𝑡𝑡

𝑀𝑀(𝑥𝑥𝛿 𝑣𝑣𝛿 𝑇
(𝛾𝛾𝑥𝑥𝛿𝑣𝑣(𝑡𝑡𝛿𝛿 ̇𝛾𝛾𝑥𝑥𝛿𝑣𝑣(𝑡𝑡𝛿𝛿𝑡 Since geodesics travel with constant
speed, the unit tangent bundle 𝑆𝑆𝑀𝑀𝑧𝑧 𝑇 𝑀(𝑥𝑥𝛿 𝑣𝑣𝛿 𝑖
𝛿𝛿 𝑧𝑧 𝑃 𝑀𝑀𝑥𝑥(𝑣𝑣𝛿 𝑣𝑣𝛿 𝑇 𝑖𝑣 is preserved by 𝜑𝜑𝑡𝑡

𝑀𝑀 . It is widely
known that the geodesic flow is a Hamiltonian flow
given by (𝑥𝑥𝛿 𝑣𝑣𝛿 𝑥 𝑖

2
𝑀𝑀𝑥𝑥(𝑣𝑣𝛿 𝑣𝑣𝛿 on 𝛿𝛿 𝑧𝑧 for a symplec-

tic form depending on 𝑀𝑀. The perturbation tools for
geodesic flows are very delicate as opposed to the ge-
neral Hamiltonian case. We can only perturb the me-
tric, hence the perturbation is never a local issue in
phase space. This is the main reason why it is not

known a closing lemma and a general density theo-
rem for geodesic flows in the 𝐶𝐶𝑖 topology, i.e. 𝐶𝐶2 in
the metric. As a consequence, the hyperbolic struc-
ture of the closure of the periodic orbits cannot be
extrapolated to the whole energy level and we are
not able to assure global hyperbolicity. It was proved
in [4] that:

Theorem 6.— There is a set 𝒢𝒢𝑖 ⊂ 𝑔2 where 𝒢𝒢𝑖 is 𝐶𝐶2-
open in 𝑔2 and 𝒢𝒢𝑖 Z ℝ𝑟 is 𝐶𝐶𝑟-dense in 𝑔𝑟 such
that if 𝑀𝑀 𝑖 𝒢𝒢𝑖 and the geodesic flow satisfies any of
the properties:

(1) is stably shadowable;

(2) has the stable weak specification property,

then Per(𝑀𝑀𝛿 is a uniformly hyperbolic set.

Notice that we were only able to show the result for
a residual set of metrics, in contrast to the Hamilto-
nian case and also in contrast to the 2-dimensional
case (for geodesic flows) previously considered in [5].

3.2.3 Topological entropy

The complexity of a dynamical system can be mea-
sured by the topological entropy. The topological
entropy is a nonnegative real number that, roughly
speaking, measures the rate of exponential growth of
the number of distinguishable orbits with finite but
arbitrary precision as time advances.

Let (𝑧𝑧𝛿 𝑑𝑑𝛿 be a compact metric space and
𝑓𝑓 𝑃 𝑧𝑧 → 𝑧𝑧 be a continuous map. For each 𝑛𝑛 ≥ 𝑖,
let 𝑑𝑑𝑛𝑛(𝑥𝑥𝛿 𝑥𝑥𝛿 𝑇 𝑥𝑥𝑥𝑀𝑑𝑑(𝑓𝑓 𝑖𝑖(𝑥𝑥𝛿𝛿 𝑓𝑓 𝑖𝑖(𝑥𝑥𝛿𝛿𝑃 0 ≤ 𝑖𝑖 𝑡 𝑛𝑛 − 𝑖𝑣.
A subset 𝐹𝐹 of the phase space 𝑧𝑧 is said to be (𝑛𝑛𝛿 𝑛𝑛𝛿-
spanning if 𝑧𝑧 is covered by the union of the dyna-
mical balls 𝑀𝑥𝑥𝑃 𝑑𝑑𝑛𝑛(𝑥𝑥𝛿 𝑥𝑥𝛿 𝑡 𝑛𝑛𝑣 centered at the points
𝑥𝑥 𝑖 𝐹𝐹 . Denote by 𝑁𝑁(𝑛𝑛𝛿 𝑛𝑛𝛿 the minimal cardinality
of a (𝑛𝑛𝛿 𝑛𝑛𝛿-spanning set. Roughly, this gives the num-
ber of orbit segments that one can distinguish up to
some precision. The topological entropy is then the ex-
ponential growth rate of this number as the precision
increases,

ℎ𝑡𝑡𝑡𝑡𝑡𝑡(𝑓𝑓 𝛿 𝑇 𝑓𝑓𝑥
𝑛𝑛→0 (𝑓𝑓𝑥 sup

𝑛𝑛→𝑟

𝑖
𝑛𝑛

𝑓og 𝑁𝑁(𝑛𝑛𝛿 𝑛𝑛𝛿) 𝑡

If a manifold has negative sectional curvature, its
geodesic flow is Anosov and hence it has positive
topological entropy. On manifolds with non nega-
tive curvature it is not so clear that one can perturb
the metric to obtain positive topological entropy. Re-
cently, Contreras proved in [14] that positive topolo-
gical entropy is a generic property among geodesic
flows on any closed manifold with dimension ≥ 2.
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Very recently, it was obtained in [3] a similar result
for billiards in generic convex bodies.

Tell me these things, Olympian Muses, tell
From the beginning, which came first to be?
Chaos was first of all
—Hesiod, Theogeny, II, 114-116[4]
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