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Abstract.—There are three complete plane geometries of constant curvature: spherical, Eu-
clidean and hyperbolic geometry. We explain how a closed oriented surface can carry a geom- 
etry which locally looks like one of these. Focussing on the hyperbolic case we describe how 
to obtain all hyperbolic structures on a given topological surface, and how to parametrise 
them. Finally we introduce Higgs bundles and explain how they relate to hyperbolic surfaces.

1 Introduction

The idea of considering geometry on a surface is well
known to inhabitants of Planet Earth. Indeed, as any
explorer knows, spherical geometry is appropriate.
In this geometry distance is measured along arcs of
great circles. These are the geodesics of spherical ge-
ometry, just like the geodesics of plane Euclidean ge-
ometry are segments of straight lines.

The spherical surface and the Euclidean plane are
both complete, meaning that any geodesic can be ex-
tended indefinitely. Moreover they both have con-
stant curvature, positive in the case of the sphere, and
zero in the case of the plane. There is also a complete
2-dimensional geometry of constant negative curva-
ture, namely the hyperbolic plane (which we shall in-
troduce below).

The sphere is an example of a closed surface, i.e.,
a surface which is compact and has no boundary (as
opposed to a closed disk, for example). Topologically,
closed orientable surfaces are classified by the genus
𝑔𝑔, a non-negative integer: a surface of genus 𝑔𝑔 can be
realised inside 3-space as a 𝑔𝑔-holed torus as illustrated
in Figure 1. We have seen that the genus zero sur-
face supports spherical geometry but what about the
other surfaces? Our first main goal in this article is
to explain how the torus (genus one) supports a com-

plete geometry which locally looks like the Euclidean
plane, while a surface of genus 𝑔𝑔 𝑔 2 can be given a
complete locally hyperbolic geometry. This involves
considering certain special subgroups of the matrix
group SL(2, ℝ). We shall then see how the algebra
and geometry of the matrix group SL(2, ℝ) interact
in interesting ways, and how this sheds light on the
question of which subgroups give rise to hyperbolic
surfaces.

Our second main goal is to explain how consider-
ing the set of all possible hyperbolic structures on a
fixed topological surface of genus 𝑔𝑔 𝑔 2 leads to inter-
esting and beautiful mathematics. Thus we introduce
moduli spaces and explore some of their properties.

Finally, we shall give an introduction to Higgs bun-
dles. We shall show how they can be used to shed
new light on the theme of hyperbolic structures on
surfaces and indicate their role in recent generalisa-
tions of some of the results explained earlier in the
article.

The paper is mostly expository, only the final Sec-
tion 8.4 includes some results in which the author has
been involved.

For reasons of space the references are by no
means complete, but we hope the interested reader
will be able to use them as a starting point for further
exploration.
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Figure 1.— Genus of a surface Figure 2.—A Euclidean surface

2 Euclidean surfaces

We want to explain how to do Euclidean geometry on
a closed surface, in a way which makes the generali-
sation to the hyperbolic case natural.

2.1 The Euclidean plane

Using Cartesian coordinates we identify the Eu-
clidean plane 𝔼𝔼2 with the coordinate plane ℝ2. Dis-
tance is determined by calculating the length of a
parametrised curve 𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼 𝛼𝛼𝛼 𝛼 ℝ2 in the usual way:
𝑙𝑙𝑙𝛼𝛼𝑙 𝑙 ∫𝛼𝛼

𝛼𝛼 |𝛼𝛼′𝑙𝑡𝑡𝑙|𝑡𝑡𝑡𝑡. This is usually expressed by say-
ing that in Cartesian coordinates 𝑙𝑥𝑥𝛼 𝑥𝑥𝑙 𝑥 ℝ2 on 𝔼𝔼2

the Euclidean element of arc length 𝑡𝑡𝑑𝑑 is given by

𝑡𝑡𝑑𝑑2 𝑙 𝑡𝑡𝑥𝑥2 + 𝑡𝑡𝑥𝑥2. (1)

Moreover, the distance preserving transformations
form a group, Isom𝑙𝔼𝔼2𝑙, which is called the isome-
try group of 𝔼𝔼2. An example of isometries are trans-
lations. Using coordinates 𝔼𝔼2 ≅ ℝ2, the translation
𝐴𝐴𝛼 𝔼𝔼2 𝛼 𝔼𝔼2 by the vector a 𝑥 ℝ2 can be written

𝐴𝐴𝑙𝐴𝐴 𝑙 𝑙 𝐴𝐴 + 𝐴𝐴.

2.2 Euclidean surfaces

The Euclidean plane 𝔼𝔼2 is obviously not a closed sur-
face. However, we can build a closed surface by tak-
ing a parallellogram in the plane and gluing its oppo-

site sides, as illustrated in Figure 2: sides labeled with
the same letter are to be glued with the orientation in-
dicated by the arrows. We can carry out this process
in 3-space — in a non-distance preserving way! — to
convince ourselves that the resulting surface is really
a topological torus.

More formally, we take linearly independent vec-
tors a and 𝐛𝐛 generating the sides labeled 𝛼𝛼 and 𝛼𝛼. Let
𝐴𝐴 and 𝐵𝐵 be the translations by the vectors a and b,
respectively, and consider the subgroup

Γ 𝑙 ⟨𝐴𝐴𝛼 𝐵𝐵𝐴 𝐴 Isom𝑙𝔼𝔼2𝑙
generated by them inside the isometry group of 𝔼𝔼2.
This is just the group of translations by vectors of the
form 𝑛𝑛a + 𝑚𝑚b, where 𝑚𝑚𝛼 𝑛𝑛 𝑥 ℤ. Since translations
commute, the generators of Γ satisfy the single rela-
tion

𝛼𝐴𝐴𝛼 𝐵𝐵𝛼 𝑙 𝐴𝐴𝛼

where 𝛼𝐴𝐴𝛼 𝐵𝐵𝛼 𝛼𝑙 𝐴𝐴𝐵𝐵𝐴𝐴−1𝐵𝐵−1 is the commutator and
𝐴𝐴 is the identity. The orbit space

𝔼𝔼2/Γ
is obtained identifying points 𝐴𝐴 𝛼 𝑃𝑃 𝑥 𝔼𝔼2 if there is a
𝛾𝛾 𝑥 Γ such that 𝑃𝑃 𝑙 𝛾𝛾𝑙𝐴𝐴 𝑙. Its points correspond to
orbits Γ ⋅ 𝑃𝑃 𝑙 𝑄𝛾𝛾𝑙𝑃𝑃𝑙 | 𝛾𝛾 𝑥 Γ𝑄. Thus each point of
the interior of the paralellogram generated by a and
𝐛𝐛 corresponds to a unique point of 𝔼𝔼2/Γ, and pairs
of points on opposite sides are identified via the cor-
responding translation, thus realising the desired glu-
ing. Hence 𝔼𝔼2/Γ is a locally Euclidean surface, which
is topologically a torus.
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Figure 3.—Four copies of P

As illustrated in Figure 3 the four vertices of the paral-
lelogram 𝑃𝑃 get identified in 𝔼𝔼2/Γ. Moreover, there
are four copies of the parallelogram meeting there,
which fit together because of the relation [𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴 𝐴𝐴 ;
the Euclidean metric is not distorted because the sum
of the internal angles of the parallelogram is exactly
2𝜋𝜋.

From a more abstract point of view, a key point is
that the group Γ has the following property: for ev-
ery point 𝑃𝑃 in 𝔼𝔼2, there is an open neighbourhood
𝑈𝑈 such that 𝛾𝛾𝛾𝑈𝑈𝛾 Z 𝑈𝑈 𝐴 𝑈 for all 𝛾𝛾 different from
the identity. We say the action of Γ on 𝔼𝔼2 is prop-
erly discontinuous. This property ensures that for each
𝑄𝑄 𝑄 𝑈𝑈 its orbit Γ ⋅ 𝑄𝑄 𝐴 𝑄𝛾𝛾𝛾𝑄𝑄𝛾 𝑄 𝛾𝛾 𝑄 Γ𝑄 has
a unique representative (namely 𝑄𝑄 itself) in 𝑈𝑈 , so
that 𝑈𝑈 works as a coordinate patch for 𝔼𝔼/Γ around
Γ ⋅ 𝑃𝑃 . This, together with the fact that the elements
of Γ are isometries, means that 𝔼𝔼2/Γ has a well de-
fined distance function: indeed, the arc length of a
parametrised curve in 𝔼𝔼2/Γ can be calculated using
the formula (1) which is invariant under isometries.

Note that we can also construct non-compact sur-
faces in this way. For example, if we take Γ to be the
subgroup generated by a single translation, we obtain
a cylinder. This is a locally Euclidean surface which,
unlike the Euclidean torus, can be easily visualised in
3-space by rolling up a sheet of paper.

The so-called Killing–Hopf Theorem implies that
any complete connected locally Euclidean surface can
be represented as 𝔼𝔼2/Γ, where Γ acts freely and prop-
erly discontinuously on 𝔼𝔼2 (see, for example, Still-

well [16]).

3 Hyperbolic surfaces

3.1 The hyperbolic plane

We start by describing the hyperbolic plane ℍ2. Hy-
perbolic geometry is different from spherical and Eu-
clidean geometry in that it is not possible to embed
(smoothly) ℍ2 in Euclidean 3-space in a distance pre-
serving way. Instead we consider the upper half plane
model, defined by

ℍ2 𝐴 𝑄𝑧𝑧 𝐴 𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧 𝑄 ℂ 𝑄 𝑧𝑧 𝑦 𝑦𝑄
with element of arc length

𝑑𝑑𝑑𝑑2 𝐴 𝑑𝑑𝑧𝑧2 𝑧 𝑑𝑑𝑧𝑧2

𝑧𝑧2 .

In the model ℍ2 geodesics are open arcs of semi-
circles orthogonal to the real axis ℝ 𝐴 𝑄𝑧𝑧 𝐴 𝑦𝑄 𝑦 ℂ
together with open half-lines orthogonal to ℝ. Note
that the hyperbolic plane is complete, so these curves
do in fact have infinite hyperbolic length. Moreover,
orientation preserving isometries can be represented
by Möbius transformations

𝑧𝑧 𝑧 𝐴𝐴 ⋅ 𝑧𝑧 𝐴 𝑎𝑎𝑧𝑧 𝑧 𝑎𝑎
𝑐𝑐𝑧𝑧 𝑧 𝑑𝑑

𝐴

where

𝐴𝐴 𝐴 (
𝑎𝑎 𝑎𝑎
𝑐𝑐 𝑑𝑑) 𝑄 SL𝛾2𝐴 ℝ𝛾
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is a real 2×2-matrix of determinant one. As examples
we can take

𝐴𝐴 𝐴 (
𝜌𝜌 𝜌
𝜌 𝜌𝜌)

which gives a hyperbolic translation whose axis is the
imaginary axis in ℍ2, and

𝐴𝐴 𝐴 (
cos 𝜃𝜃 𝜃 s𝜃𝜃 𝜃𝜃
s𝜃𝜃 𝜃𝜃 cos 𝜃𝜃 )

which gives a hyperbolic rotation about 𝑖𝑖 𝑖 ℍ2 by the
angle 2𝜃𝜃.

We note that 𝐴𝐴 and 𝜃𝐴𝐴 define the same Möbius
transformation, so the group of orientation pre-
serving isometries is really the quotient group
PSL(2, ℝ) 𝐴 SL(2, ℝ)/{±𝐼𝐼𝐼. We shall mostly ignore
this distinction in what follows but it will become rel-
evant in Section 7 below.

We finish this section by commenting on the topol-
ogy of SL(2, ℝ). Identifying the set of all 2 × 2-
matrices

(
𝑎𝑎 𝑎𝑎
𝑐𝑐 𝑐𝑐)

with ℝ4, the group SL(2, ℝ) is the subset cut out by
the equation 𝑎𝑎𝑐𝑐 𝜃 𝑎𝑎𝑐𝑐 𝐴 𝑎. Thus it has a topology
inherited from ℝ4. In fact the Implicit Function The-
orem applied to this equation shows that SL(2, ℝ) is
a 3-dimensional Lie group, meaning that it can be cov-
ered by local coordinate systems in 3-space and that
the group operations are differentiable in these coor-
dinates.

3.2 Hyperbolic surfaces

As we shall see, a closed orientable topological surface
of genus 𝑔𝑔 can be given a hyperbolic structure for any
𝑔𝑔 𝑔 2. In the case of 𝑔𝑔 𝐴 2, take an octagon with
gluing instructions to create a surface as illustrated in
Figure 4. If we cut the octagon along the diameter in-
dicated, we see that indeed the resulting surface has
genus 2, as desired.

In order to get a nice hyperbolic surface, the oc-
tagon should be taken in the hyperbolic plane (it will
look very different from that of 4). And, in a manner

analogous to the Euclidean case, we require that pairs
of sides which are to be glued have the same length.
Moreover, the vertices of the octagon all get identi-
fied to one point in the surface, so the internal angles
should add up to 2𝜋𝜋. This condition sounds strange
to our Euclidean wired brains but, it is a fact that such
an octagon exists.[1]

In order to write the surface as ℍ2/Γ for a suit-
able subgroup Γ ⊂ SL(2, ℝ) we take hyperbolic trans-
lations 𝐴𝐴𝑖𝑖 and 𝐵𝐵𝑖𝑖 giving the required identifications,
and let Γ be the group generated by these translations.
The octagon then becomes a fundamental domain for
the action of Γ. The condition that the interior angles
add up to 2𝜋𝜋 is equivalent to the identity

[𝐴𝐴𝑎, 𝐵𝐵𝑎][𝐴𝐴2, 𝐵𝐵2] 𝐴 𝐼𝐼
in SL(2, ℝ). In general, we let Γ𝑔𝑔 be the abstract group

Γ𝑔𝑔 𝐴 ⟨𝑎𝑎𝑎, 𝑎𝑎𝑎, … , 𝑎𝑎𝑔𝑔, 𝑎𝑎𝑔𝑔 |
𝑔𝑔

∏
𝑖𝑖𝐴𝑎

[𝑎𝑎𝑖𝑖, 𝑎𝑎𝑖𝑖] 𝐴 𝑎⟩.

This group is known as a surface group.[2] In view of
the genus 2 example it is hopefully not a surprise that
genus 𝑔𝑔 surfaces can be obtained from subgroups of
SL(2, ℝ) isomorphic to Γ𝑔𝑔 . In order to study all such
subgroups we consider homomorphisms 𝜌𝜌𝜌 Γ𝑔𝑔 →
SL(2, ℝ) (often also called representations). We say
that 𝜌𝜌 is Fuchsian if it is injective and its image is dis-
crete, i.e., consists of isolated points.[3] When 𝜌𝜌 is
Fuchsian it can be proved that the action of Γ𝑔𝑔 on ℍ2

is properly discontinuous. Hence the orbit space

𝑆𝑆𝜌𝜌 𝜌𝐴 ℍ2/𝜌𝜌(Γ𝑔𝑔),
is a nice hyperbolic surface of genus 𝑔𝑔 with charts
coming from ℍ2. Conversely, the Killing–Hopf The-
orem again tells us that any closed orientable hyper-
bolic surface is of this form.[4]

However, it is certainly not true that any homo-
morphism 𝜌𝜌𝜌 Γ𝑔𝑔 → SL(2, ℝ) defines a closed hyper-
bolic surface: for example, the trivial homorphism
clearly does not! This leaves us with the following

Question: Let 𝜌𝜌𝜌 Γ𝑔𝑔 → SL(2, ℝ) be a representation.
How can we tell if 𝜌𝜌 defines a closed hyperbolic sur-
face?

[1] In fact, in hyperbolic geometry the sum of the internal angles of a polygon depends on its area!
[2] The group Γ𝑔𝑔 can be identified wth the fundamental group of a topological surface of genus 𝑔𝑔.
[3] Recall that topological notions make sense viewing SL(2, ℝ) ⊆ ℝ4.
[4] As already noted, we should really consider representations to PSL(2, ℝ). However, it turns out that representations defining closed

hyperbolic surfaces can always be lifted to SL(2, ℝ).
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Figure 4.—Genus 2 surface from an octagon

4 Topology and algebra of SL(2, ℝ)

In order to answer the question at the end of the last
section we shall define an invariant of representations
𝜌𝜌𝜌 𝜌 𝜌 SL(2, ℝ). For that we shall need to under-
stand how the topology and algebra of SL(2, ℝ) inter-
act.

The subgroup SO(2) ⊆ SL(2, ℝ) of rotation ma-
trices

𝐸𝐸(𝐸𝐸) 𝐸 [
cos 𝐸𝐸 𝜃 s𝜃𝜃 𝐸𝐸
s𝜃𝜃 𝐸𝐸 cos 𝐸𝐸 ]

can be identified with a circle.
The map 𝐸𝐸 𝜌 ℝ 𝜌 SO(2), 𝐸𝐸 𝜃 𝐸𝐸(𝐸𝐸) wraps the

real line around the circle, and it satisfies 𝐸𝐸(𝐸) 𝐸 𝐸𝐸
and 𝐸𝐸(𝐸𝐸1 + 𝐸𝐸2) 𝐸 𝐸𝐸(𝐸𝐸1)𝐸𝐸(𝐸𝐸2). In other words, 𝐸𝐸 is a
group homomorphism from the additive group ℝ to
SO(2).

Now, thinking of SO(2) inside SL(2, ℝ), we want
to extend this picture and find a group S̃L(2, ℝ) con-
taining ℝ, with a surjective group homomorphism
𝑝𝑝𝜌 S̃L(2, ℝ) 𝜌 SL(2, ℝ) which restricts to 𝐸𝐸 𝜌 ℝ 𝜌
SO(2), i.e., making the diagram

ℝ 𝜃𝜃𝜃𝜃𝜌 S̃L(2, ℝ)
⏐⏐⏐↓𝐸𝐸

⏐⏐⏐↓𝑝𝑝

SO(2) 𝜃𝜃𝜃𝜃𝜌 SL(2, ℝ)
commutative (the horizontal maps are inclusions). In
fact it follows from general theory that such a group
exists and is essentially unique; it is known as the uni-
versal covering group of SL(2, ℝ). We shall explain
how it can be constructed explicitly, following [13,
§1.8], using the action of SL(2, ℝ) on the hyperbolic

plane ℍ2.
So let

𝐴𝐴 𝐸 [
𝑎𝑎 𝑎𝑎
𝑐𝑐 𝑐𝑐] ∈ SL(2, ℝ).

Write
𝑗𝑗(𝐴𝐴, 𝑗𝑗) 𝐸 𝑐𝑐𝑗𝑗 + 𝑐𝑐

for the denominator of 𝐴𝐴 𝐴 𝑗𝑗. Note that

𝑗𝑗(𝐸𝐸(𝐸𝐸), 𝑗𝑗) 𝐸 𝑗𝑗 s𝜃𝜃 𝐸𝐸 + cos 𝐸𝐸 𝐸 𝑗𝑗𝑗𝑗𝐸𝐸,
which indicates that this function can used to keep
track of the phase 𝐸𝐸. For each fixed 𝐴𝐴, we can con-
sider the holomorphic function

ℍ2 𝜌 ℂ ∖ {𝐸}
𝑗𝑗 𝜃 𝑗𝑗(𝐴𝐴, 𝑗𝑗) 𝐸 𝑐𝑐𝑗𝑗 + 𝑐𝑐.

Observe that 𝑐𝑐𝑗𝑗 + 𝑐𝑐 𝑐 𝐸 for 𝑗𝑗 ∈ ℍ. Therefore, since
ℍ2 is simply connected, there is a continuous deter-
mination of the logarithm of 𝑗𝑗(𝐴𝐴, 𝑗𝑗) 𝐸 𝑐𝑐𝑗𝑗 + 𝑐𝑐, i.e., a
continuous map 𝜙𝜙𝜌 ℍ2 𝜌 ℂ such that

𝑗𝑗𝜙𝜙(𝑗𝑗) 𝐸 𝑐𝑐𝑗𝑗 + 𝑐𝑐.
We want to make the point that such a 𝜙𝜙 can be ex-
plicitly calculated: simply choose a value 𝐸𝐸 for the
argument arg(𝑐𝑐𝑗𝑗 + 𝑐𝑐), write 𝑐𝑐𝑗𝑗 + 𝑐𝑐 𝐸 𝑐𝑐𝑗𝑗𝑗𝑗𝐸𝐸 and let
𝜙𝜙(𝑗𝑗) 𝐸 𝜙og(𝑐𝑐) + 𝑗𝑗𝐸𝐸. Then

𝜙𝜙(𝑗𝑗) 𝜃 𝜙𝜙(𝑗𝑗) 𝐸 ∫𝛾𝛾

𝑐𝑐𝑗𝑗
𝑗𝑗

𝐸 ∫

1

𝐸

𝑐𝑐(𝑗𝑗 𝜃 𝑗𝑗)𝑐𝑐𝑐𝑐
𝑐𝑐(𝑗𝑗 + 𝑐𝑐(𝑗𝑗 𝜃 𝑗𝑗)) + 𝑐𝑐

(here 𝛾𝛾 parametrises the segment joining 𝑐𝑐𝑗𝑗 + 𝑐𝑐 to
𝑐𝑐𝑗𝑗 + 𝑐𝑐). Note that 𝜙𝜙 is not unique, but it is uniquely
determined by the choice of 𝜙𝜙(𝑗𝑗). Thus any two de-
terminations 𝜙𝜙 differ by an integer multiple of 2𝜋𝜋𝑗𝑗.

Now define S̃L(2, ℝ) as the set of pairs (𝐴𝐴, 𝜙𝜙),
where 𝐴𝐴 ∈ SL(2, ℝ) and 𝜙𝜙𝜌 ℍ2 𝜌 ℂ is any contin-

5
CIM Bulletin December 2023.45 29



uous determination of the logarithm of 𝑗𝑗𝑗𝑗𝑗𝑗 𝑗𝑗𝑗. The
product on S̃L𝑗2𝑗 ℝ𝑗 is defined by

𝑗𝑗𝑗1𝑗 𝜙𝜙1𝑗 ⋅ 𝑗𝑗𝑗2𝑗 𝜙𝜙2𝑗 = 𝑗𝑗𝑗1𝑗𝑗2𝑗 ̃𝜙𝜙𝑗𝑗
where

̃𝜙𝜙𝑗𝑗𝑗𝑗 𝜙 𝜙𝜙1𝑗𝑗𝑗2 ⋅ 𝑗𝑗𝑗 𝑧 𝜙𝜙2𝑗𝑗𝑗𝑗𝑧
It is an easy calculation to check that

𝑗𝑗𝑗𝑗𝑗1𝑗𝑗2𝑗 𝑗𝑗𝑗 = 𝑗𝑗𝑗𝑗𝑗1𝑗 𝑗𝑗2 ⋅ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗2𝑗 𝑗𝑗𝑗
which implies that indeed

𝑒𝑒 ̃𝜙𝜙𝑗𝑗𝑗𝑗 = 𝑗𝑗𝑗𝑗𝑗1𝑗𝑗2𝑗 𝑗𝑗𝑗
as required. It is not hard to check that this defines a
group structure on S̃L𝑗2𝑗 ℝ𝑗. For example, for 𝑗𝑗 = 𝐴𝐴 ,
the identity matrix, we can take 𝜙𝜙𝑗𝑗𝑗𝑗 = 𝜙 and 𝑗𝑗𝑗𝑗 𝜙𝑗 is
the neutral element. Moreover, 𝑗𝑗𝑗𝑗 𝜙𝜙𝑗−1 = 𝑗𝑗𝑗−1𝑗 ̃𝜙𝜙𝑗,
where

̃𝜙𝜙𝑗𝑗𝑗𝑗 = −𝜙𝜙𝑗𝑗𝑗−1 ⋅ 𝑗𝑗𝑗𝑧 (2)

The projection 𝑝𝑝𝑝 S̃L𝑗2𝑗 ℝ𝑗 → SL𝑗2𝑗 ℝ𝑗 is of course
just 𝑗𝑗𝑗𝑗 𝜙𝜙𝑗 𝐴 𝑗𝑗. The inclusion ℝ ↪ S̃L𝑗2𝑗 ℝ𝑗 is
given by 𝜃𝜃 𝐴 𝑗𝜃𝜃𝑗𝜃𝜃𝑗𝑗 𝜙𝜙𝜃𝜃𝑗𝑗 where 𝜙𝜙𝜃𝜃 is the determi-
nation of log𝑗𝑗𝑗𝑗𝜃𝜃𝑗𝜃𝜃𝑗𝑗 𝑗𝑗𝑗𝑗 which satisfies 𝜙𝜙𝜃𝜃𝑗𝑖𝑖𝑗 = 𝑖𝑖𝜃𝜃
(recall that 𝑗𝑗𝑗𝜃𝜃𝑗𝜃𝜃𝑗𝑗 𝑖𝑖𝑗 = 𝑒𝑒𝑖𝑖𝜃𝜃).

Proposition 1.— The kernel of 𝑝𝑝𝑝 S̃L𝑗2𝑗 ℝ𝑗 →
SL𝑗2𝑗 ℝ𝑗 consists of pairs 𝑗𝐴𝐴𝑗 𝜙𝜙𝑗, where 𝐴𝐴 is the iden-
tity matrix and 𝜙𝜙 is a constant function taking values
in 2𝜋𝜋ℤ ⊂ ℝ.

Proof.— Clearly 𝑝𝑝𝑗𝑗𝑗𝑗 𝜙𝜙𝑗 = 𝐴𝐴 if and only if 𝑗𝑗 = 𝐴𝐴 .
Moreover, 𝑗𝑗𝑗𝐴𝐴𝑗 𝑗𝑗𝑗 = 1, so 𝜙𝜙 is a determination of the
logarithm of the constant function 𝑗𝑗 𝐴 1 𝑧 𝑧𝑧 , i.e., it
is a constant 𝜙𝜙 𝑧 2𝜋𝜋ℤ ⊂ ℝ. ∎

5 The Toledo Invariant

Let 𝜌𝜌𝑝 𝜌 → SL𝑗2𝑗 ℝ𝑗 be a representation. We shall
associate an integer invariant to 𝜌𝜌. This invariant is
known as the Toledo invariant, even though it was
actually introduced by Milnor [14], and sometimes is
referred to as the Euler number. Write

𝑗𝑗𝑖𝑖 = 𝜌𝜌𝑗𝜌𝜌𝑖𝑖𝑗𝑗 𝐵𝐵𝑖𝑖 = 𝜌𝜌𝑗𝜌𝜌𝑖𝑖𝑗
for 𝑖𝑖 = 1𝑗 𝑖 𝑗 𝑖𝑖. Choose lifts ̃𝑗𝑗𝑖𝑖 and ̃𝐵𝐵𝑖𝑖 in S̃L𝑗2𝑗 ℝ𝑗
such that 𝑝𝑝𝑗 ̃𝑗𝑗𝑖𝑖𝑗 = 𝑗𝑗𝑖𝑖 and 𝑝𝑝𝑗 ̃𝐵𝐵𝑖𝑖𝑗 = 𝐵𝐵𝑖𝑖, and define the
Toledo invariant of 𝜌𝜌 to be

𝜏𝜏𝑗𝜌𝜌𝑗 = 1
𝜋𝜋

𝑖𝑖

∏
𝑖𝑖=1

[ ̃𝑗𝑗𝑖𝑖𝑗 ̃𝐵𝐵𝑖𝑖]𝑧

In view of the relation defining 𝜌𝑖𝑖 , the product
∏𝑖𝑖

𝑖𝑖=1[ ̃𝑗𝑗𝑖𝑖𝑗 ̃𝐵𝐵𝑖𝑖] is in the kernel of 𝑝𝑝. Hence Proposition 1
shows that the Toledo invariant is an even integer.[5]

From the description of S̃L𝑗2𝑗 ℝ𝑗 of the preceding
section, it is easy to check that the Toledo invariant
is well defined, i.e., that it does not depend on the
choice of lifts: the main point is that the ambiguity
in the choice of 𝜙𝜙 is canceled by (2), because each lift
occurs together with its inverse in the commutator.
Moreover, the Toledo invariant of a representation
defined by matrices 𝑗𝑗𝑖𝑖 and 𝐵𝐵𝑖𝑖 can be explicitly calcu-
lated.

6 Goldman’s theorem

A celebrated inequality due to Milnor [14] states that

|𝜏𝜏𝑗𝜌𝜌𝑗| 𝜏 2𝑖𝑖 − 2
for every representation 𝜌𝜌𝑝 𝜌𝑖𝑖 → SL𝑗2𝑗 ℝ𝑗. The
following beautiful result shows that representations
with maximal Toledo invariant (known as maximal
representations) have a special geometric significance.

Theorem 2 (Goldman [7]).—
A representation 𝜌𝜌𝑝 𝜌𝑖𝑖 → SL𝑗2𝑗 ℝ𝑗 is Fuchsian if and
only if |𝜏𝜏𝑗𝜌𝜌𝑗| = 2𝑖𝑖 − 2.

Remark 1.— One might wonder about the signifi-
cance of the sign of the Toledo invariant. If we conju-
gate a representation 𝜌𝜌 by the outer automorphism of
SL𝑗2𝑗 ℝ𝑗 given by conjugation by a reflection we ob-
tain a representation ̄𝜌𝜌 with 𝜏𝜏𝑗 ̄𝜌𝜌𝑗 = −𝜏𝜏𝑗𝜌𝜌𝑗. In fact, the
hyperbolic surface 𝑆𝑆 ̄𝜌𝜌 is obtained from 𝑆𝑆𝜌𝜌 by a change
of orientation, i.e., by composing all charts with a re-
flection in ℍ2.

7 The moduli space of representations

Let us now take a global view and consider all repre-
sentations of 𝜌𝑖𝑖 in SL𝑗2𝑗 ℝ𝑗 simultaneously. The rep-
resentation space for representations of 𝜌𝑖𝑖 in SL𝑗2𝑗 ℝ𝑗
is the set of homomorphisms Hom𝑗𝜌𝑖𝑖𝑗 SL𝑗2𝑗 ℝ𝑗𝑗. It
is natural to consider 𝜌𝜌1 and 𝜌𝜌2 equivalent if they dif-
fer by overall conjugation by an element of SL𝑗2𝑗 ℝ𝑗,
corresponding to a change of basis in ℝ2. It also turns

[5] Odd Toledo invariants arise from representations 𝜌𝜌𝑝 𝜌𝑖𝑖 → PSL𝑗2𝑗 ℝ𝑗 which do not lift to SL𝑗2𝑗 ℝ𝑗.
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out that two hyperbolic structures on the same topo-
logical surface are isometric by an isometry which
can be continuously deformed to the identity if and
only if the corresponding Fuchsian representations
are equivalent in this sense. Thus the moduli space
of representations is defined to be the orbit space

ℛ(Γ𝑔𝑔, SL(2, ℝ)) = Hom(Γ𝑔𝑔, SL(2, ℝ))/SL(2, ℝ)
under the conjugation action.[6]

A homomorphism 𝜌𝜌𝜌 Γ𝑔𝑔 → SL(2, ℝ) is deter-
mined by 2𝑔𝑔 matrices

𝐴𝐴𝑖𝑖 = 𝜌𝜌(𝜌𝜌𝑖𝑖), 𝐵𝐵𝑖𝑖 = 𝜌𝜌(𝜌𝜌𝑖𝑖), 𝑖𝑖 = 𝑖, 𝑖 , 𝑔𝑔
satisfying the single relation ∏[𝐴𝐴𝑖𝑖, 𝐵𝐵𝑖𝑖] = 𝐼𝐼 . Hence
Hom(Γ𝑔𝑔, SL(2, ℝ)) can be identified with the sub-
space of ℝ6𝑔𝑔 cut out by the 3 scalar equations given
by ∏[𝐴𝐴𝑖𝑖, 𝐵𝐵𝑖𝑖] = 𝐼𝐼 (the equation takes values in the
3-dimensional group SL(2, ℝ)). It follows that it is a
variety of dimension 6𝑔𝑔 𝑔 3. The conjugation action
by SL(2, ℝ) reduces the dimension by 3, and so the
moduli space has dimension

dim ℛ(Γ𝑔𝑔, SL(2, ℝ)) = 6𝑔𝑔 𝑔 6𝑔
The Toledo invariant separates the moduli space into
subspaces

ℛ𝑑𝑑 ⊆ ℛ(Γ𝑔𝑔, SL(2, ℝ))

corresponding to representations with invariant 𝑑𝑑.
Goldman [8] showed that the ℛ𝑑𝑑 are in fact con-
nected components of the moduli space, except in the
maximal case |𝑑𝑑| = 2𝑔𝑔 𝑔 2. It turns out that ℛ2𝑔𝑔𝑔2
has 22𝑔𝑔 connected components. However, these com-
ponents get identified after projecting onto

ℛ(Γ𝑔𝑔, PSL(2, ℝ)),
which thus has just one connected component with
Toledo invariant 2𝑔𝑔𝑔2. This is not surprising because,
by Goldman’s Theorem 2, the subspace ℛ2𝑔𝑔𝑔2 is ex-
actly the locus of Fuchsian representations and, more-
over, any two Fuchsian representations into SL(2, ℝ)
define the same hyperbolic surface if and only if
they coincide after projecting to PSL(2, ℝ). Accord-
ingly, the corresponding connected component 𝒯𝒯 ⊆
ℛ(Γ𝑔𝑔, PSL(2, ℝ)) is known as the Fuchsian locus. As
we have seen, it parametrises all hyperbolic structures
on the topological surface 𝑆𝑆𝑔𝑔 up to a natural equiva-
lence. It is a classical result that the space of such hy-
perbolic structures can be identified with ℝ6𝑔𝑔𝑔6. In
the next section we shall explain how a parametrisa-
tion of this space can be obtained using Higgs bun-

dles.

8 Higgs bundles

We now describe how the results of the previous sec-
tion can be understood using non-abelian Hodge the-
ory, a subject founded by Hitchin [11] and Simpson
[15].

8.1 Riemann surfaces and holomorphic bundles

A Riemann surface 𝑋𝑋 is a topological surface together
with a family of local charts which together cover the
surface, and are such that changes of coordinates are
holomorphic functions between open sets in ℂ. An
example of this is the Riemann sphere ℂ̂ = ℂ Y ∞:
we use the standard coordinate 𝑧𝑧 in ℂ and around
∞ ∈ ℂ̂ we use the coordinate 𝑤𝑤 = 𝑖/𝑧𝑧. Thus the
change of coordinates 𝑇𝑇 𝜌 ℂ ∖ {0} → ℂ ∖ {0} given
by 𝑤𝑤 = 𝑇𝑇 (𝑧𝑧) = 𝑖/𝑧𝑧 is holomorphic in the domain
where both 𝑧𝑧 and 𝑤𝑤 are defined.

In particular, if we have a hyperbolic surface 𝑆𝑆𝑔𝑔 ≅
ℍ2/Γ for a Fuchsian representation of Γ, then the lo-
cal coordinates in ℍ2 give 𝑆𝑆𝑔𝑔 the structure of a Rie-
mann surface: indeed the changes of coordinates are
Möbius transformations of ℍ2, which are certainly
holomorphic. We write 𝑋𝑋𝜌𝜌 for the Riemann surface
constructed from a Fuchsian representation 𝜌𝜌 in this
way.

Note that not all holomorphic maps define isome-
tries of ℍ2, so the concept of Riemann surface is less
rigid than that of hyperbolic surface. However, the
famous Uniformisation Theorem, due to Köbe and
Poincaré, asserts that any Riemann surface can be rep-
resented as a hyperbolic surface. This means, in par-
ticular, that the space of all Riemann surfaces with
the same underlying topological surface of genus 𝑔𝑔
(up to a suitable equivalence) can be identified with
the Fuchsian locus 𝒯𝒯 . When thought of in this way,
it is known as Teichmüller space.

A holomorphic line bundle 𝐿𝐿 → 𝑋𝑋 on a Riemann
surface 𝑋𝑋 is a holomorphic family of 𝑖-dimensional
complex vector spaces parametrised by 𝑋𝑋. Thus, for
each 𝑝𝑝 ∈ 𝑋𝑋 we have a 𝑖-dimensional complex vector
space 𝐿𝐿𝑝𝑝, which varies holomorphically with 𝑝𝑝. The
simplest example is the trivial bundle 𝐿𝐿 = 𝑋𝑋 𝐿 ℂ →
𝑋𝑋; here the map is projection onto 𝑋𝑋 and the fibre

[6] In order to get a Hausdorff quotient, one should in fact exclude representations whose action on ℝ2 is not semisimple.
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𝐿𝐿𝑝𝑝 = {𝑝𝑝𝑝 𝑝 ℂ for 𝑝𝑝 𝑝 𝑝𝑝 with its vector space struc-
ture coming from ℂ. Locally on 𝑝𝑝, a holomorphic
line bundle is required to look like the product 𝑈𝑈 𝑝ℂ,
where 𝑈𝑈 𝑈 𝑝𝑝 is open. We say that 𝐿𝐿 is trivialised
over 𝑈𝑈 . This means that a holomorphic line bundle
can be given by an open covering {𝑈𝑈𝛼𝛼𝑝 of 𝑝𝑝 and triv-
ialisations

𝐿𝐿|𝑈𝑈𝛼𝛼
≅ 𝑈𝑈𝛼𝛼 𝑝 ℂ

for each 𝛼𝛼. This gives rise to transition functions

𝑔𝑔𝛼𝛼𝛼𝛼 ∶ 𝑈𝑈𝛼𝛼 Z 𝑈𝑈𝛼𝛼 → ℂ ∖ {0𝑝
which compare the isomorphisms 𝐿𝐿𝑝𝑝 ≅ ℂ given by
the trivialisations over 𝑈𝑈𝛼𝛼 and 𝑈𝑈𝛼𝛼 , respectively.

More important than the line bundles themselves
are their sections. These are holomorphic maps
𝑠𝑠∶ 𝑝𝑝 → 𝐿𝐿 such that 𝑠𝑠𝑠𝑝𝑝𝑠 𝑝 𝐿𝐿𝑝𝑝 for all 𝑝𝑝 𝑝 𝑝𝑝. A sec-
tion of the trivial bundle 𝑈𝑈 𝑝 ℂ over 𝑈𝑈 is of course
nothing but a map 𝑠𝑠∶ 𝑈𝑈 → ℂ, and if we have local
trivialisations of a line bundle 𝐿𝐿 as above, a holomor-
phic section 𝑠𝑠 corresponds to a collection of holomor-
phic maps 𝑠𝑠𝛼𝛼 ∶ 𝑈𝑈𝛼𝛼 → ℂ which glue correctly, i.e., sat-
isfy the condition

𝑠𝑠𝛼𝛼𝑠𝑝𝑝𝑠 = 𝑔𝑔𝛼𝛼𝛼𝛼𝑠𝑝𝑝𝑠𝑠𝑠𝛼𝛼𝑠𝑝𝑝𝑠
for 𝑝𝑝 𝑝 𝑈𝑈𝛼𝛼 Z 𝑈𝑈𝛼𝛼 . As an illustrative example, we take
the canonical bundle 𝐾𝐾 → 𝑝𝑝. Its sections are holo-
morphic differentials. In a local coordinate 𝑧𝑧 on 𝑝𝑝 a
holomorphic differential, say 𝛼𝛼, can be written

𝑔𝑔𝑠𝑧𝑧𝑠𝑔𝑔𝑧𝑧
for a holomorphic function 𝑔𝑔𝑠𝑧𝑧𝑠 and if ℎ𝑠𝑤𝑤𝑠𝑔𝑔𝑤𝑤 is the
representation of 𝛼𝛼 in another holomorphic coordi-
nate 𝑤𝑤 = 𝑤𝑤 𝑠𝑧𝑧𝑠, then

𝑔𝑔𝑠𝑧𝑧𝑠𝑔𝑔𝑧𝑧 = ℎ𝑠𝑤𝑤 𝑠𝑧𝑧𝑠𝑠𝑔𝑔𝑠𝑤𝑤 𝑠𝑧𝑧𝑠𝑠 = ℎ𝑠𝑤𝑤 𝑠𝑧𝑧𝑠𝑠𝑤𝑤 ′𝑠𝑧𝑧𝑠𝑔𝑔𝑧𝑧𝑧
Thus a holomorphic differential can be represented
by a collection of holomorphic functions locally de-
fined on coordinate charts which transform accord-
ing to the preceding rule. It turns out that the vec-
tor space of holomorphic differentials on a closed
Riemann surface 𝑝𝑝 of genus 𝑔𝑔, usually denoted by
𝐻𝐻0𝑠𝑝𝑝𝑋 𝐾𝐾𝑠, is finite dimensional, of dimension 2𝑔𝑔 𝑔 2.
More generally, the vector space 𝐻𝐻0𝑠𝑝𝑝𝑋 𝐿𝐿𝑠 of holo-
morphic sections of any holomorphic line bundle
𝐿𝐿 → 𝑝𝑝 is finite dimensional. Any holomorphic line
bundle has a topological invariant called its degree; in
case 𝐿𝐿 has a non-zero holomorphic section, this is
the number of zeroes of such a section, counted with
multiplicity. For example, the degree of the canonical
bundle is 2𝑔𝑔 𝑔 2. The fact that this is the same as the
dimension of 𝐻𝐻0𝑠𝑝𝑝𝑋 𝐾𝐾𝑠 is a consequence of a funda-
mental result known as the Riemann–Roch formula.

We can perform the usual operations of linear al-
gebra, like taking duals and tensor products, fibrewise
on line bundles. Thus, if 𝐿𝐿 and 𝑀𝑀 are line bundles
with transition functions 𝑔𝑔𝛼𝛼𝛼𝛼 and ℎ𝛼𝛼𝛼𝛼 , respectively,
the tensor product 𝐿𝐿 𝐿 𝑀𝑀 has transition functions
𝑔𝑔𝛼𝛼𝛼𝛼ℎ𝛼𝛼𝛼𝛼 (pointwise multiplication in ℂ ∖ {0𝑝) and the
dual bundle 𝐿𝐿∗ has transition functions 𝑔𝑔𝑔1

𝛼𝛼𝛼𝛼 .

8.2 Higgs bundles

A PSL𝑠2𝑋 ℝ𝑠-Higgs bundle on 𝑝𝑝 consists of three
pieces of data

𝑠𝐿𝐿𝑋 𝛼𝛼𝑋 𝐿𝐿𝑠

where, 𝐿𝐿 → 𝑝𝑝 is a holomorphic line bundle, and
𝛼𝛼 𝑝 𝐻𝐻0𝑠𝑝𝑝𝑋 𝐾𝐾 𝐿 𝐿𝐿𝑠 and 𝐿𝐿 𝑝 𝐻𝐻0𝑠𝑝𝑝𝑋 𝐾𝐾 𝐿 𝐿𝐿∗𝑠 can be
seen as holomorphic differentials which take values
in the line bundles 𝐿𝐿 and 𝐿𝐿∗, respectively.

In a manner analogous to the conjugation action
on representations, there is a natural notion of iso-
morphism of Higgs bundles, and the set of isomor-
phism classes of PSL𝑠2𝑋 ℝ𝑠-Higgs bundles forms the
moduli space ℳ𝑠𝑝𝑝𝑋 PSL𝑠2𝑋 ℝ𝑠𝑠. It is a complex alge-
braic variety of complex dimension 3𝑔𝑔 𝑔 3. We note
that in order to get a reasonable moduli space it is nec-
essary to restrict to so-called semistable Higgs bun-
dles. This is analogous to the way in which one re-
stricts to semisimple representations in the moduli
space of representations.

The Non-abelian Hodge Theorem (due to Corlette,
Donaldson, Hitchin and Simpson) for this situation
states the following.

Theorem 3.— There is a real analytic isomorphism

ℛ𝑠Γ𝑔𝑔𝑋 PSL𝑠2𝑋 ℝ𝑠𝑠 ≅ ℳ𝑠𝑝𝑝𝑋 PSL𝑠2𝑋 ℝ𝑠𝑠𝑧

This is a remarkable theorem for many reasons. Here
we just point out that while the character variety ℛ
is real and depends only on the topological surface of
genus 𝑔𝑔 (through its fundamental group), the moduli
space ℳ depends on the Riemann surface structure
𝑝𝑝 given to the topological surface and has a complex
structure.

For fixed 𝑔𝑔 we denote by ℳ𝑔𝑔 the subspace of
PSL𝑠2𝑋 ℝ𝑠-Higgs bundles 𝑠𝐿𝐿𝑋 𝛼𝛼𝑋 𝐿𝐿𝑠 with deg𝑠𝐿𝐿𝑠 = 𝑔𝑔.
Then we have ℛ𝑔𝑔 ≅ ℳ𝑔𝑔 under the non-abelian
Hodge Theorem. In particular, the Fuchsian locus 𝒯𝒯
corresponds to ℳ2𝑔𝑔𝑔2.
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8.3 Hitchin’s parametrisation of 𝒯𝒯

A particular class of PSL(2, ℝ)-Higgs bundles can be
obtained by taking 𝐿𝐿 𝐿 𝐿𝐿 . Then 𝛾𝛾 is a section of
the line bundle 𝐿𝐿 𝐾 𝐿𝐿∗ which is naturally isomor-
phic to the trivial line bundle on 𝑋𝑋. In other words,
𝛾𝛾 is simply a holomorphic function on 𝑋𝑋, so we can
set 𝛾𝛾 𝐿 𝛾 (the constant function). Moreover, 𝛽𝛽 is
a section of 𝐿𝐿2 𝐿 𝐿𝐿 𝐾 𝐿𝐿 . In other words it is a
quadratic differential, so it can locally be written as
𝛽𝛽(𝛽𝛽) 𝐿 𝛽𝛽(𝛽𝛽)(𝛽𝛽𝛽𝛽)2, where 𝛽𝛽(𝛽𝛽) satisfies an appropri-
ate transformation rule under changes of coordinates.
The vector space 𝐻𝐻0(𝑋𝑋, 𝐿𝐿2) of quadratic differentials
on 𝑋𝑋 has complex dimension 3𝑔𝑔 𝑔 3 which equals
the dimension of the moduli space ℳ(𝑋𝑋, PSL(2, ℝ)).
This construction defines a map

Ψ∶ 𝐻𝐻0(𝑋𝑋, 𝐿𝐿2) → ℳ(𝑋𝑋, PSL(2, ℝ)),
𝛽𝛽 𝛽 (𝐿𝐿, 𝛽𝛽, 𝛾)𝛽

The semistability condition alluded to earlier implies
that all Higgs bundles in ℳ2𝑔𝑔𝑔2 arise in this way.
Hence Ψ is an isomorphism onto its image ℳ2𝑔𝑔𝑔2.

From the non-abelian Hodge Theorem we already
knew that ℳ2𝑔𝑔𝑔2 ≅ 𝒯𝒯 is a connected compo-
nent. But the Higgs bundle construction gives an
alternative proof. Using gauge theoretic methods
Hitchin also shows that ℳ2𝑔𝑔𝑔2 parametrises all hyper-
bolic metrics on the topological surface underlying
𝑋𝑋. Moreover, under this parametrisation the Higgs
bundle (𝐿𝐿, 𝛾, 0) corresponds to the hyperbolic met-
ric which uniformises 𝑋𝑋. Thus Hitchin’s approach
gives alternative proofs of Goldman’s theorems and
the Uniformisation Theorem.

8.4 The general Cayley correspondence

Hitchin [12] generalised the construction of the map
Ψ to a map

Ψ∶ ⨁
𝑖𝑖

𝐻𝐻0(𝑋𝑋, 𝐿𝐿𝛽𝛽𝑖𝑖) → ℳ(𝑋𝑋, 𝑋𝑋)

whose image is again a connected component of the
moduli space ℳ(𝑋𝑋, 𝑋𝑋) of 𝑋𝑋-Higgs bundles for any
simple split real Lie group 𝑋𝑋, nowadays known as
a Hitchin component.[7] The domain of Ψ is a direct
sum of spaces of higher holomorphic differentials on
𝑋𝑋; the integers 𝛽𝛽𝑖𝑖 are determined by the Lie group 𝑋𝑋
(in fact they are the exponents of its Lie algebra).

Similar constructions of special connected compo-
nents have later been given for Hermitian groups 𝑋𝑋
of non-compact tube type, such as SU(𝑝𝑝, 𝑝𝑝) (see, for
example, [5, 6, 2]). In this case the domain of the map
Ψ turns out to be a moduli space ℳ𝐿𝐿2(𝑋𝑋, 𝑋𝑋′) of so-
called 𝐿𝐿2-twisted 𝑋𝑋′-Higgs bundles, for a certain real
Lie group 𝑋𝑋′ associated to 𝑋𝑋 (known as its Cayley
partner).

Both Hitchin components and Cayley compo-
nents are special because they are not (as all other
known components of the moduli space) detected
by standard topological invariants of the underlying
bundles and the Higgs fields satisfy a certain non-
degeneracy condition.

Recently (see [1, 4] and the recent survey [3]) both
of these constructions have been unified and gener-
alised. The class of Lie groups 𝑋𝑋 covered are charac-
terised by the fact that their Lie algebras admit a mag-
ical 𝔰𝔰𝔰𝔰2-triple. This new Lie theoretic notion builds
on ideas of Hitchin [12] and generalises that of a prin-
cipal 𝔰𝔰𝔰𝔰2-triple introduced by Kostant. Conjecturally
the generalised Cayley components obtained by this
construction account for all “special” (in the sense
of the previous paragraph) connected components of
the moduli space and thus opens the door to a com-
plete determination of this important topological in-
variant.

One important piece of supporting evidence for
this conjecture comes from the area of Higher Teich-
müller Theory. Higher Teichmüller theory has devel-
oped in parallel with the Higgs bundle story just de-
scribed, and there has been a rich cross-fertilisation
of ideas between the two areas. We cannot do jus-
tice to this fast-growing, rich and important area of
mathematics here but refer the interested reader to
[10, 17] and references therein. Very briefly, a higher
Teichmüller space is a connected component of the
moduli space of representations, which consists ex-
clusively of discrete and injective representations, like
the Fuchsian locus in the PSL(2, ℝ)-case. It turns out
that the generalised Cayley components are indeed
higher Teichmüller spaces [4, 9], and it is expected
that all higher Teichmüller spaces are thus obtained.

[7] In the case of classical matrix groups this means that 𝑋𝑋 is one of the groups SL(𝑛𝑛, ℝ), Sp(2𝑛𝑛, ℝ), SO(𝑝𝑝, 𝑝𝑝) and SO(𝑝𝑝, 𝑝𝑝 𝑝 𝛾).
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