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Abstract.—I will introduce some concepts in linear control theory, and how to adapt and use 
them to control some problems modelled by nonlinear partial differential equations appearing 
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or linear PDEs can be explored to solve nonlinear complex problems from applications. This 
is a brief exposition of some of the results in [4] and [10].
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Control theory is a branch of applied mathematics
and systems engineering which considers dynamical
systems, usually ordinary or partial differential equa-
tions (ODE/PDEs), and studies the development —
or design — of algorithms whose goal is to drive these
systems to a desired state while minimising any costs,
delays, overshoots, or errors.

The mathematical theory of (feedback) control is
outlined in [16, 23], where control of (linear and non-
linear) ordinary differential equations is considered,
and where the authors introduce concepts such as
controllability (any state can be reached by any start-
ing point), stabilisability (it is possible to drive the
system to have stable dynamics), and sufficient con-
ditions for these to be possible. One can also intro-
duce the Linear Quadratic Regulator (LQR), an exam-
ple of an optimal control problem, where in addition
to controlling the system, one also minimises a cost
functional, usually penalising deviations from the de-
sired state and the cost of the control. An optimal con-
trol problem is solved using the Pontryagin maximum
principle, which is similar to the first-order optimal-
ity conditions (or Karush-Kuhn-Tucker, KKT, condi-
tions) in traditional optimisation.

More recently, the theory of optimal control has
been extended to problems modelled by PDEs [21],
where one minimises a cost functional subject to the
target solution solving a PDE. In this case, when
applying the Pontryagin maximum principle, one
needs to compute Fréchet derivatives of a Lagrangian,
which involves several tools in functional analysis,
and so proving existence of optimal controls is a
harder task.

While the theory of feedback and optimal control
has received extensive attention for systems governed

by ODEs and (linear) PDEs, it was only recently that
mathematicians started to target more complex sys-
tems, such as, for example, turbulence in fluid dynam-
ics, and in this case, they often resort to the use of
reduced-order models (ROM) which use techniques
such as principal component analysis (PCA) to sim-
plify the (infinite dimensional) state space into a fi-
nite dimensional and tractable vector or Hilbert space.
However, in certain applications, we can obtain sim-
plified models based on physical assumptions of the
problem, and use these for control design. I will in-
troduce an example in fluid dynamics, falling liquid
films, that, by being comparatively simple to the full
problem modelled by the Navier–Stokes equations,
allows us to construct feedback controls that stabilise
the full system with a lower computational cost and
with no need for the use of ROMs.

In what follows, I will first introduce the basic con-
cepts and results on feedback control needed to do
this, followed by a short section describing the physi-
cal problem and the various models I consider. I will
conclude with a survey of recent results on the con-
trol of falling liquid films, thus illustrating how some-
times one can obtain several useful (albeit numerical)
results that can have an influence on practical appli-
cations, even when we cannot prove analytical results
because we do not have the necessary assumptions on
the problem (such as global well-posedness), and fin-
ish with some open problems.

1 A short introduction to control theory

In this section, I summarise the main results in (feed-
back) control theory which I will use later on. I will
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start with an ODE example and illustrate how these
results translate to PDEs.

Consider, for simplicity, the example a scalar ODE

̇𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦 (1)

where the dot represents derivatives with respect to
time. One can easily show that the solution of (1)
is the function 𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑒𝑒𝑦𝑦𝑦𝑦, and in particular, that
𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦 if 𝑦𝑦 𝜆 𝑦 and 𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦 if 𝑦𝑦 is positive.

An intuitive thing to do to stabilise the system (i.e.,
to drive it towards the solution 𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦), is to intro-
duce a control (or forcing) term to equation (1), i.e.,
rewrite the controlled equation as

̇𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦 𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦. (2)

We can then choose 𝑦𝑦 in such a way that the solution
is stabilised, and it is easy to see that it suffices to use
a simple proportional feedback control: 𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦
for some positive constant 𝑓𝑓 so that 𝑦𝑦𝑓𝑓𝑓 𝜆 𝑦. In this
case, we say that the control 𝑦𝑦𝑦𝑦𝑦𝑦 stabilises the solu-
tion to the ODE. The term feedback is used because
the control uses information on the current state of
the system; the control is called proportional since it
is proportional to the current solution.

Building up on this idea, we can consider the prob-
lem of controlling a system of ODEs, i.e., a problem
of the form

�̇�𝐲 𝑦 𝐲𝐲𝐲𝐲 𝑦 𝐲𝐲𝑦 𝐲𝐲𝑦𝑦𝑦 𝑦 𝐲𝐲𝟎𝟎𝑦 (3)

where now 𝐲𝐲𝑦 𝐲𝐲𝟎𝟎𝑦 𝐲𝐲 𝐟 ℝ𝑑𝑑 and 𝐲𝐲 is a 𝑑𝑑 𝑑 𝑑𝑑 matrix.
It can be shown that in this case, when 𝐲𝐲 𝑦 𝟎𝟎, if all
the eigenvalues of 𝐲𝐲 have negative real part, the solu-
tion is asymptotically stable, i.e., 𝐲𝐲𝑦𝑦𝑦𝑦 𝑦 𝟎𝟎 as 𝑦𝑦 𝑦 𝑦.
The analogue of the previous control here is to use
𝐲𝐲𝑦𝑦𝑦𝑦 𝑦 𝑓𝑓𝑓𝐲𝐲𝑦𝑦𝑦𝑦 𝑦 𝑓𝑓𝑓𝐟𝐟𝐲𝐲𝑦𝑦𝑦𝑦, where 𝐟𝐟 is the 𝑑𝑑𝑑𝑑𝑑 identity
matrix. A simple calculation can be used to find the
smallest 𝑓𝑓 necessary to stabilise the system, namely,
choose 𝑓𝑓 such that the eigenvalues of 𝐲𝐲 𝑓 𝑓𝑓𝐟𝐟 all have
negative real part.

While this is an easy thing to do, often in appli-
cations we can use information about the problem to
obtain more efficient controls. Alternatively, it can be
necessary to apply controls only to certain variables.
This can be achieved by modifying the problem state-
ment as follows:

�̇�𝐲 𝑦 𝐲𝐲𝐲𝐲 𝑦 𝐲𝐲𝐲𝐲𝑦 𝐲𝐲𝑦𝑦𝑦 𝑦 𝐲𝐲𝑦. (4)

Here, 𝐲𝐲 is a 𝑑𝑑 𝑑 𝑑𝑑 matrix that encodes some infor-
mation about how one applies the controls—for ex-
ample, one can have 𝑑𝑑 control actuators (where each
column of 𝐲𝐲 represents the effect of one control), or
have different controls affect some rows of the system
and not others. In this case, the controls are 𝐲𝐲 𝐟 ℝ𝑑𝑑

(i.e. there are 𝑑𝑑 of them). Note that we can have
𝑑𝑑 𝑦 𝑑𝑑 and 𝐲𝐲 𝑦 𝐟𝐟 , which is the case outlined above.
It can be shown that under some assumptions on the
matrices 𝐲𝐲 and 𝐲𝐲 (namely, the Kalman rank condi-
tion [23]), one can find a matrix 𝐾𝐾 such that the eigen-
values of 𝐲𝐲𝑦𝐲𝐲𝐾𝐾 all have negative real part, and there-
fore the controls 𝐲𝐲 𝑦 𝐾𝐾𝐲𝐲 stabilise the system. The
matrix 𝐾𝐾 can be computed using a pole placement al-
gorithm [12] or by solving a linear-quadratic regulator
problem [23].

In several complex systems relevant to applica-
tions, the interest is to control nonlinear dynamics,
and we instead have a nonlinear system of ODEs,

�̇�𝐲 𝑦 𝐲𝐲 𝑦𝐲𝐲𝑦 𝑦 𝐲𝐲𝐲𝐲𝑦 𝐲𝐲𝑦𝑦𝑦 𝑦 𝐲𝐲𝑦𝑦 (5)

where 𝐲𝐲 is some nonlinear function of 𝑦𝑦. Simi-
lar controllability or stabilisability results can be ob-
tained (under assumptions on 𝐲𝐲 such as Lipschitz
continuity) by considering a linearisation of the non-
linear operator and using Lyapunov function type ar-
guments [23].

Finally, for several applications there is interest
in controlling (linear or nonlinear) partial differential
equations (PDEs); for example a reaction-diffusion
equation for the evolution of a population, tumour
growth or other biological and chemical applications.
Such PDEs take the general form

𝑢𝑢𝑦𝑦 𝑦 ℒ 𝑢𝑢 𝑦 𝐲𝐲 𝑦𝑢𝑢𝑦 𝑦 𝑦𝑦𝑦 (6)

along with appropriate initial and boundary condi-
tions. The subscript 𝑦𝑦 denotes time derivative, and
ℒ𝑦 𝐲𝐲 are linear and nonlinear spatial differential op-
erators, respectively. By projecting this equation to
an appropriate basis (e.g., taking Fourier transforms),
one can write the PDE as an infinite-dimensional sys-
tem of ODEs such as (5). Alternatively, one can also
discretise the problem (e.g. using finite differences)
to rewrite it as a finite dimensional system of equa-
tions. This approach is commonly known as “discre-
tise then optimise”. Passing to the PDE limit is not
straightforward, even for linear PDEs [23]. However,
in certain cases, this is possible; this is done for sev-
eral linear PDEs (see [21]), and I will show a particular
case of a nonlinear PDE in the next section.

2 Falling liquid films and how to control
them

I will now introduce the problem of a falling liquid
film, which is a canonical setting in fluid dynamics
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Figure 1.—Diagram of a thin film flowing down an inclined plane and allowing for blow-
ing and suction controls. The dynamics of the interface y=h(x,t) are controlled by some 
fluid parameters, as well as the inclination angle θ and the imposed control values 
v=F(x,t) at y=0 in the coordinate system shown in the figure.

with applications such as coating of LCD screens or
manufacturing of microchips.

2.1 A hierarchy of models for falling liquid films

Falling liquid films are thin films of a viscous fluid
flowing down an inclined plane, as shown in Figure 1.
This problem has been studied extensively both the-
oretically (accurate model development, see, for ex-
ample, [3, 11, 15]) and experimentally ([6]) and pro-
vides a set of models which is amenable to control
development. The goal here is to control the interface
towards a desired shape; for example, while the un-
controlled system evolves towards a travelling wave
such as the one depicted in Figure 1, or more com-
plex, and even chaotic, solutions, in applications such
as LCD screen coating one would want the interface
to be flat, whereas for microchip cooling we would
desire a wavy interface with a suitable profile, to en-
hance heat transfer. For the models I will show, the
flat solution will correspond to ℎ(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥 unless oth-
erwise stated. To control the resulting interface, we
will allow for fluid to be inserted or removed from
the system via slots at the plate that the film is flow-
ing over, as depicted in Figure 1, and this will appear
as a boundary condition, or as a coefficient in the dif-
ferent models we will consider. We will see how to
design the controls, i.e., how to prescribe how much
fluid is inserted or removed from the system at each
slot, as well as how many of these controls we need,

using variations of the feedback control theory out-
lined in the previous section.

This physical problem is modelled by the (two-
dimensional) Navier–Stokes equations;[1] in particu-
lar by modelling the interaction between the fluid and
the air via the interface at 𝑦𝑦 𝑥 ℎ(𝑥𝑥𝑥 𝑥𝑥𝑥. After an ap-
propriate non-dimensionalisation, the system param-
eters are reduced to two non-dimensional groupings:
the Reynolds number 𝑅𝑅𝑅𝑅 measuring the relative im-
portance between inertia and viscosity, and the cap-
illary number 𝐶𝐶𝐶𝐶 which measures the importance of
surface tension. The Navier–Stokes equations con-
sist of the momentum equations for 𝑢𝑢𝑥 𝑢𝑢, and 𝑝𝑝 the
stramwise (parallel to the plane) and transverse (per-
pendicular to the plane) velocities, and pressure, re-
spectively.

𝑅𝑅𝑅𝑅(𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑢𝑢𝑦𝑦𝑥 𝑥 −𝑝𝑝𝑥𝑥 + 2 + 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑦𝑦𝑥 (7)

𝑅𝑅𝑅𝑅(𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑢𝑢𝑦𝑦𝑥 𝑥 −𝑝𝑝𝑦𝑦 − 2 cot 𝜃𝜃 + 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑦𝑦𝑥 (8)

which are coupled to the continuity equation given
by

𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑦𝑦 𝑥 0. (9)

In addition, the system is completed by its boundary
conditions. We consider periodic boundaries in the
𝑥𝑥-direction[2], no-slip and fluid injection/removal at
the wall,

𝑢𝑢 𝑥 0𝑥 𝑢𝑢 𝑥 𝑢𝑢 (𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 (10)

the nonlinear dynamic stress balance (or momentum

[1] It is possible to generalise the problem to three dimensions, but this is much more computationally expensive, and for the purposes of this
problem, a 2D description is often enough.

[2] This is a modelling assumption, which simplifies the analytical computations that follow. If the domain is sufficiently long, this is a good
enough approximation, but different approaches can consider different boundary conditions.

3
CIM Bulletin December 2023.45 57



jump) at the interface, 𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦,
𝑦𝑣𝑣𝑦𝑦 + 𝑢𝑢𝑦𝑦𝑦𝑦1 − 𝑦2

𝑦𝑦𝑦 + 2𝑦𝑦𝑦𝑦𝑣𝑣𝑦𝑦 − 𝑢𝑢𝑦𝑦𝑦 𝑦 0𝑦 (11)

𝑝𝑝 −
2𝑦𝑣𝑣𝑦𝑦 + 𝑢𝑢𝑦𝑦𝑦2

𝑦𝑦 − 𝑦𝑦𝑦𝑦𝑣𝑣𝑦𝑦 + 𝑢𝑢𝑦𝑦𝑦𝑦

1 + 𝑦2
𝑦𝑦

𝑦

𝑦 − 1
𝐶𝐶𝐶𝐶

𝑦𝑦𝑦𝑦𝑦

𝑦1 + 𝑦2
𝑦𝑦𝑦3/2

𝑦
(12)

and finally the kinematic boundary condition

𝑦𝑦𝑦 𝑦 𝑣𝑣 − 𝑢𝑢𝑦𝑦𝑦. (13)

The uncontrolled system admits a uniform flat film
solution known as the Nusselt solution [11], given by
𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 𝑦 1 and a semi-parabolic in 𝑦𝑦 horizontal fluid
velocity, which can be used to obtain simplified mod-
els.

It is well-known that full models such as the
Navier–Stokes equations are computationally expen-
sive to simulate, and therefore if one wants to solve it
for several values of the relevant parameters (or, for
example, perform optimal control using these mod-
els), it becomes prohibitively expensive. However, in
the case of thin liquid films, the mean interface height
is much smaller than the length of the domain, 𝐿𝐿, and
this makes it possible to define a long wave parameter
𝜖𝜖 𝑦 1/𝐿𝐿 𝜖 1. This disparity of scales facilitates a
multiscale approach to derive from first principles hi-
erarchies of simplified models. [3] To be able to derive
these models, we need the following assumptions:

(A1) (long-wave assumption) the geometrical aspect
ratio 𝜖𝜖 is small;

(A2) The Reynolds number 𝑅𝑅𝑅𝑅 is 𝒪𝒪𝑦1𝑦;

(A3) Surface tension is sufficiently strong to appear
at leading order, i.e., the capillary number is
small, and 𝐶𝐶𝐶𝐶 𝑦 𝒪𝒪𝑦𝜖𝜖2𝑦 is the appropriate dis-
tinguished limit;

(A4) The controls 𝐹𝐹 are small 𝐹𝐹 𝑦 𝒪𝒪𝑦𝜖𝜖𝑦, implying
weak injection or removal of fluid via the con-
trol actuators.

Using assumptions (A1)-(A4) and asymptotic anal-
ysis techniques, Thompson et al. [20] derived two dif-
ferent long-wave models for falling liquid films us-
ing this type of control (long-wave models for uncon-
trolled falling liquid films were explored earlier in the
literature, see [11]). Both models satisfy a mass conser-
vation equation

𝑦𝑦𝑦 + 𝑞𝑞𝑦𝑦 𝑦 𝐹𝐹 𝑦𝑦𝑦𝑦 𝑦𝑦𝑦𝑦 (14)

which is coupled with an equation for the flux
𝑞𝑞𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 𝑦 ∫𝑦

0 𝑢𝑢𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 𝑦𝑦𝑦 𝑢𝑦𝑦. In the first model, the Ben-
ney equation, they obtain an explicit expression for
𝑞𝑞𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 and the model is a single PDE for the interfa-
cial height 𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦:

𝑞𝑞𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 𝑦 𝑦3

3 (2 − 2𝑦𝑦𝑦 cot 𝜃𝜃 +
𝑦𝑦𝑦𝑦𝑦𝑦𝑦
𝐶𝐶𝐶𝐶 ) +

+𝑅𝑅𝑅𝑅
(

8𝑦6𝑦𝑦𝑦
15

− 2𝑦4𝐹𝐹
3 )

.
(15)

The second model is the weighted residuals model,
which describes the evolution of the interfacial height
𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 and the flux 𝑞𝑞𝑦𝑦𝑦𝑦 𝑦𝑦𝑦:
2𝑅𝑅𝑅𝑅

5
𝑦2𝑞𝑞𝑦𝑦 + 𝑞𝑞 𝑦 𝑦3

3 (2 − 2𝑦𝑦𝑦 cot 𝜃𝜃 +
𝑦𝑦𝑦𝑦𝑦𝑦𝑦
𝐶𝐶𝐶𝐶 ) +

+𝑅𝑅𝑅𝑅 (
18𝑞𝑞2𝑦𝑦𝑦

35
−

34𝑦𝑞𝑞𝑞𝑞𝑦𝑦
35

+ 𝑦𝑞𝑞𝐹𝐹
5 ) .

(16)

We note that the controls appear as an inhomoge-
neous term 𝐹𝐹 𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 in the mass conservation equation
(14), and this structure plays a crucial role in the effi-
ciency of these controls.

Due to the asymptotic reduction, these models
only provide us with the interface height 𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 and
downstream flux 𝑞𝑞𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 and do not directly provide
the solution to the Navier–Stokes equations (i.e. 𝑢𝑢,
𝑣𝑣, and 𝑝𝑝). However, if needed, these can be recov-
ered from 𝑦 and 𝑞𝑞, thus allowing for comparison with
direct numerical simulations of the Navier–Stokes
equations when necessary.

The above long-wave models are significantly
more accessible computationally than the full Navier–
Stokes equations, but they are still highly nonlinear.
This means that it is hard (if not impossible) to treat
them analytically, and to the best of my knowledge
there are no analytical results beyond linear stability
analysis of the flat solution (and some results on soli-
tary waves for some special cases) [11]. Because of this,
there is some interest in applying further simplifica-
tions in order to make analytical progress. For very
small but nonlinear perturbations of the flat solution,
one can perform weakly nonlinear analysis to derive
a Kuramoto-Sivashinsky (KS) equation [11, 19]. The
KS equation is a fourth-order nonlinear PDE having
the same form as (6), and is given by

𝜂𝜂𝑦𝑦 + 𝜈𝜈𝜂𝜂𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜂𝜂𝑦𝑦𝑦𝑦 + 𝜂𝜂𝜂𝜂𝑦𝑦 𝑦 𝑓𝑓𝑦𝑦𝑦𝑦 𝑦𝑦𝑦𝑦
where 𝜂𝜂 is a small perturbation of a flat interface
and 𝜈𝜈 𝜈 0 is a parameter that encodes some of the

[3] We often call these reduced-order models, but I will not use this terminology, to avoid confusion with ROMs obtained via, e.g., PCA.
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Figure 2.—Bifurcation diagram of the solutions of the KS equation. Full blue lines cor-
respond to steady state solutions while dashed red lines are travelling waves. Not all 
branches are included, and most solutions depicted here are unstable.

geometry of the problem[4]. This problem is posed
with periodic boundary conditions and we have 𝑥𝑥 𝑥
[0, 2𝜋𝜋𝜋. In this case, a flat interface corresponds to
𝜂𝜂 𝜂 0.

The KS equation appears in several applications
and is widely studied since it is one of the simplest
model PDEs exhibiting spatiotemporal chaotic be-
haviour. Over the last few decades, existence and
uniqueness of solutions have been explored [17], dif-
ferent types of attractors have been characterised [5],
and the route to chaos for solutions of the KS equa-
tion have been reported [13], to show a small subset of
the range of interesting analytical and computational
results that can be achieved even at this lowest mem-
ber of the model hierarchy. It is possible to compare
the results from these models to direct numerical sim-
ulations of the Navier–Stokes equations, and some
relevant comparisons can be seen in [6]. While the
long-wave models provide a very good approxima-
tion of the full system, in most cases the KS equation
solution differs significantly from it (see Figure 2 in
[4]). However, its simplicity and existing analytical re-
sults have allowed us to develop efficient controls (see
[2, 8]) which were then extended to controlling long-
wave models [19] and eventually the full model [4, 10].
For the rest of this article, I will summarise our results
in this direction.

2.2 Feedback control of falling liquid films

I will start outlining our results towards control of
falling liquid films by showing the (analytical and nu-
merical) results on controlling the KS equation. As
mentioned above, while there is significant model er-
ror when considering this PDE to model interfaces of
falling liquid films, the analytical insights can provide
us with enough information to motivate control de-
velopment on the more complicated long wave mod-
els, and eventually design controls that drive the so-
lution to the full system towards a desired state.

The controlled KS equation, rewritten so that con-
trols reflect a finite number of control actuators that
inject and remove fluid through slots is given by

𝜂𝜂𝑡𝑡 + 𝜈𝜈𝜂𝜂𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝜂𝜂𝑥𝑥𝑥𝑥 + 𝜂𝜂𝜂𝜂𝑥𝑥 𝜂
𝑀𝑀

∑
𝑗𝑗𝜂𝑗

𝛿𝛿𝛿𝑥𝑥 𝛿 𝑥𝑥𝑗𝑗)𝑓𝑓𝑗𝑗𝛿𝑡𝑡)𝑡 (17)

For the uncontrolled problem, it is easy to check that
if 𝜈𝜈 𝜈 𝑗, the zero solution is linearly unstable. With-
out the nonlinear term 𝜂𝜂𝜂𝜂𝑥𝑥, the solution would grow
exponentially in time; however, the nonlinearity pro-
motes exchange of energy between Fourier modes
and instead we see a “zoo” of solutions, from steady
states, to travelling waves, but more generally we ob-
serve chaotic behaviour. This can be seen in Figure 2,
where we plot the bifurcation diagram of possible
solutions of the KS equation, with steady states de-
picted in full blue lines, and travelling waves by red

[4] Most of the geometry of the problem, however, is encoded in the change of variables used to arrive at this equation; in particular, the so-
lutions of this equation sit on a moving frame, and so even “steady-state” solutions correspond to travelling waves of the original problem.

5
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dashed lines. The 𝑦𝑦 axis plots the 𝐿𝐿2 norm of differ-
ent solutions (here 𝑢𝑢 should be replaced by 𝜂𝜂). The
figure is taken from [8].

Armaou and Christofides showed in [2] that the
zero solution of the KS equation in small domains
(𝜈𝜈 close to 1) can be controlled using 𝑀𝑀 𝑀 𝑀 con-
trol actuators. More recently, we were able to show
that we can stabilise any unstable solution (any of the
branches depicted in Figure 2) of the KS equation us-
ing as many control actuators as unstable modes in
the system (see [8, 9]).

To show this, it is useful to consider a discretisa-
tion of the KS equation. Let any solution be written
as

𝜂𝜂𝑡𝑡 𝑀 𝜂𝜂0(𝑡𝑡𝑡 𝑡
∞

∑
𝑘𝑘𝑀0

𝜂𝜂𝑠𝑠
𝑘𝑘(𝑡𝑡𝑡 𝑡𝑡𝑡(𝑘𝑘𝑡𝑡𝑡 𝑡 𝜂𝜂𝑐𝑐

𝑘𝑘(𝑡𝑡𝑡 𝑡𝑡𝑡(𝑘𝑘𝑡𝑡𝑡𝑡

We can then write the KS equation as an infinite sys-
tem of ODEs for the coefficients 𝜂𝜂∗

𝑘𝑘 (where ∗ stands
for 𝑐𝑐 or 𝑠𝑠). Defining 𝜼𝜼 𝑀 (𝜂𝜂0, 𝜂𝜂𝑠𝑠

1, 𝜂𝜂𝑐𝑐
1, … 𝑡, this system

is written as:

̇𝜼𝜼 𝑀 𝜼𝜼𝜼𝜼 𝑡 𝜼𝜼 (𝜼𝜼𝑡 𝑡 𝜼𝜼𝜼𝜼 ,
where 𝜼𝜼 is a diagonal matrix whose entries are
−𝜈𝜈𝑘𝑘4 𝑡 𝑘𝑘2, 𝜼𝜼 is given by a convolution, 𝜼𝜼 includes
the discretisation of the control actuators (𝜼𝜼𝑘𝑘𝑘𝑘 𝑀
∫2𝜋𝜋

0 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑘𝑘𝑡 𝑡𝑡𝑡(𝑘𝑘𝑡𝑡𝑡 𝑘𝑘𝑡𝑡, equivalently for the coeffi-
cient corresponding to 𝑡𝑡𝑡(𝑘𝑘𝑡𝑡𝑡), and 𝜼𝜼 encodes the
contol action.

Proposition 1.— Let ̄𝜂𝜂 be a linearly unstable steady
state or travelling wave solution of the KS equation
(17) and let 2ℓ 𝑡 1 be the number of unstable eigen-
values of the operator 𝜼𝜼 , i.e., ℓ 𝑡 1 ≥ 1/√𝜈𝜈 𝜈 ℓ.
Additionally, let 𝐴𝐴𝑢𝑢 be the 𝑀𝑀 𝑀 𝑀𝑀 submatrix consist-
ing of coefficients corresponding to unstable modes,
and define 𝜼𝜼𝑢𝑢 similarly. If 𝑀𝑀 𝑀 2ℓ 𝑡 1, then there
exists a matrix 𝐾𝐾 𝐾 ℝ𝑀𝑀𝑀𝑀𝑀 such that all of the eigen-
values of the matrix 𝐴𝐴𝑢𝑢 𝑡𝜼𝜼𝑢𝑢𝐾𝐾 have negative real part,
and the state feedback controls 𝜼𝜼 𝑀 𝐾𝐾(𝜼𝜼− ̄𝜼𝜼𝑡 stabilise

̄𝜂𝜂.

Proof.— I will only sketch the proof of this result;
for more details see [7]. First, consider the problem
of controlling the system of 𝑀𝑀 ODEs

�̇�𝐲 𝑀 𝐴𝐴𝑢𝑢𝐲𝐲 𝑡 𝜼𝜼𝑢𝑢𝜼𝜼 𝑡
If each control actuator has a different location (i.e.
𝑡𝑡𝑖𝑖 ≠ 𝑡𝑡𝑘𝑘), then it is easy to show that the columns of
𝜼𝜼𝑢𝑢 are linearly independent, and therefore it can be
shown that the matrices 𝐴𝐴𝑢𝑢 and 𝜼𝜼𝑢𝑢 satisfy the Kalman
rank condition and the system is controllable. There-
fore, we can guarantee that there exists a matrix 𝐾𝐾

such that 𝐴𝐴𝑢𝑢 𝑡 𝜼𝜼𝑢𝑢𝐾𝐾 has negative eigenvalues. We can
then use an algorithm such as pole placement [12] to
find 𝐾𝐾 – in particular, we will choose 𝐾𝐾 such that all
eigenvalues of 𝐴𝐴𝑢𝑢 𝑡 𝜼𝜼𝑢𝑢𝐾𝐾 have real part smaller than
− 𝑡𝑡f |𝜂𝜂𝑡𝑡|/2.

Now we define the perturbation 𝑣𝑣 𝑀 ̄𝜂𝜂 − 𝜂𝜂 and
write a PDE for 𝑣𝑣:

𝑣𝑣𝑡𝑡 𝑡 𝜈𝜈𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡 𝑣𝑣𝑡𝑡𝑡𝑡 𝑡 𝑣𝑣𝑣𝑣𝑡𝑡 𝑡 ( ̄𝜂𝜂𝑣𝑣𝑡𝑡𝑡 𝑀
𝑀𝑀

∑
𝑘𝑘𝑀0

𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑘𝑘𝑡𝑓𝑓𝑘𝑘(𝑡𝑡𝑡𝑡

Multiplying this equation by 𝑣𝑣 and integrating by
parts, we obtain, formally,

1
2

𝑘𝑘𝑑𝑣𝑣𝑑2

𝑘𝑘𝑡𝑡
𝑀 ∫

2𝜋𝜋

0
𝑣𝑣(𝜼𝜼 𝑡 𝜼𝜼𝐾𝐾𝑡𝑣𝑣 𝑘𝑘𝑡𝑡𝑡

𝑡 ∫

2𝜋𝜋

0
𝑣𝑣2𝑣𝑣𝑡𝑡 𝑡 𝑣𝑣( ̄𝜂𝜂𝑣𝑣𝑡𝑡𝑡 𝑘𝑘𝑡𝑡𝑡

The integral of 𝑣𝑣2𝑣𝑣𝑡𝑡 vanishes due to periodic bound-
ary conditions. Furthermore, we can show that the
term ∫ 𝑣𝑣(𝜂𝜂𝑣𝑣𝑡𝑡𝑡 𝑘𝑘𝑡𝑡 is bounded by 𝑡𝑡f |𝜂𝜂𝑡𝑡|𝑑𝑣𝑣𝑑2/2, and
therefore it can be shown from the choice of eigen-
values that the right-hand side is bounded by −𝜆𝜆𝑑𝑣𝑣𝑑2

where 𝜆𝜆 is the largest eigenvalue of 𝐴𝐴𝑢𝑢 𝑡 𝜼𝜼𝑢𝑢𝐾𝐾 , show-
ing that 𝑑𝑣𝑣𝑑2 is a Lyapunov function for this system,
and therefore 𝑣𝑣 𝑀 0 is a stable solution, meaning
𝜂𝜂 𝑀 ̄𝜂𝜂 is stabilised using the controls 𝜼𝜼 𝑀 𝜼𝜼𝐾𝐾𝑣𝑣 𝑀
𝜼𝜼𝐾𝐾(𝜂𝜂 − ̄𝜂𝜂𝑡.

It can also be shown (see [8]) that the controls are ro-
bust to uncertainty in the problem parameters, as well
as to small changes in the number of controls used.
For an example of a controlled solution see Figure 3.

Motivated by the similar linear stability properties
between the KS equation and the Benney equation
(the simplest long-wave model), we studied the con-
trol problem for two long-wave models: the Benney
equation and the weighted residual model in Thomp-
son et al. [19]. We started by showing that in the un-
realistic scenario where one can observe the whole
interface and actuate everywhere, the simplest propor-
tional controls of the form

𝑓𝑓(𝑡𝑡, 𝑡𝑡𝑡 𝑀 −𝑓𝑓(𝑓(𝑡𝑡, 𝑡𝑡𝑡 − 1𝑡, (18)

for some constant 𝑓𝑓 𝜈 0 to be determined, efficiently
drive the system towards the flat solution 𝑓(𝑡𝑡, 𝑡𝑡𝑡 𝑀 1
(or indeed any desired solution 𝐻𝐻(𝑡𝑡, 𝑡𝑡𝑡, by replacing
1 by 𝐻𝐻(𝑡𝑡, 𝑡𝑡𝑡). The critical value

𝑓𝑓𝑐𝑐 𝑀
16𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶 − 𝑀

4
𝑡𝑡t 𝜃𝜃𝑡

7𝑀
can be computed from linear stability analysis of the
Benney equation or the weighted residuals model,

6
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Figure 3.—Control of the KS equation for ν=0.01. Uncontrolled solution showing chaotic behaviour (top left), 
and controlled solution towards: a 1-pulse travelling wave (top right), a 2-pulse travelling wave (bottom left), 
and a 3-pulse travelling wave (bottom right). We used M=21 equidistant controls.

and it depends only on the Reynolds and capillary
numbers. Using linear stability analysis, we can also
calculate the number of unstable modes (see [10]) to
be

𝑀𝑀 𝑀 𝑀 𝑀 𝑀𝑀 𝑀

𝑀 𝑀 𝑀 𝑀
⌊

𝐿𝐿
𝑀𝜋𝜋 √𝐶𝐶𝐶𝐶 (

8
5

𝑅𝑅𝑅𝑅 𝑅 𝑀 𝑅𝑅𝑅 𝑅𝑅)⌋
. (19)

It is also shown in [19] that the critical 𝛼𝛼 for the
Benney equation is sufficient to obtain linear sta-
bility of the weighted residuals model and indeed
the full Navier–Stokes equations, by solving an Orr–
Sommerfeld system. As mentioned before, in this
case, because of the nonlinearities of the system, we
cannot prove that linear stability of the controlled so-
lutions guarantees that the solution of the long wave
models or the Navier–Stokes equations will indeed be
stabilised. However, we can confirm nonlinear stabil-
ity of these solutions by numerical simulations of the
initial value problem.

Similarly to the KS equation, one can compute
point actuated controls assuming we can observe the
whole interface (using pole placement or solving an
LQR problem), and unsurprisingly controls of this
type also stabilise the flat solution. A more interesting
(and realistic) case is when we not only actuate at a fi-
nite number of locations, but can also only observe
the interface at a finite number of points. In this case,
in [19] we use proportional feedback controls of the
form

𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓 𝑀 𝑅𝛼𝛼
𝑀𝑀

∑
𝑗𝑗𝑀𝑀

𝛿𝛿𝑓𝑓𝑓 𝑅 𝑓𝑓𝑗𝑗𝑓𝑓ℎ𝑓𝑓𝑓𝑗𝑗 𝑅 𝜙𝜙𝑓 𝑓𝑓𝑓 𝑅 𝑀𝑓𝑓 (20)

where 𝛿𝛿𝑓𝛿𝑓 is the Dirac delta function, the control ac-
tuators are located at the positions 𝑓𝑓𝑗𝑗𝑓 𝑗𝑗 𝑀 𝑀𝑓 𝑗 𝑓 𝑀𝑀𝑓
and observations of the interface are made at 𝑓𝑓 𝑀
𝑓𝑓𝑗𝑗 𝑅 𝜙𝜙 for some displacement 𝜙𝜙. Figure 4 shows pre-
dictions of whether these controls stabilise the non-
linear dynamics for 𝐿𝐿 𝑀 𝐿𝐿, 𝑅𝑅 𝑀 𝜋𝜋𝜃𝜃, 𝑅𝑅𝑅𝑅 𝑅 𝑀5 and
𝐶𝐶𝐶𝐶 𝑅 𝐶.𝐶𝐶𝑀 (3 unstable modes) using 𝑀𝑀 𝑀 𝜃𝑓 5𝑓 𝑀𝑓 or
9 and 𝑃𝑃 𝑀 𝑀𝑀 observers with a displacement 𝜙𝜙 from
the corresponding actuator. We observe that positive
𝜙𝜙, i.e. observations upstream of actuation, are benefi-
cial; this makes sense intuitively, since if we observe
upstream, we can predict where the wave will be by
the time the control effects reach it.

Again, linear stability does not guarantee the solu-
tion of the nonlinear equation will be stabilised, but
for most cases, we can confirm numerically that this
is the case. I will show examples of this when applied
to the full model (the Navier–Stokes equations) in the
next section.

2.3 Applying the controls to the full model

Now that we have efficient controls that stabilise
the KS equation and the long wave models, we are
ready to apply these to the full Navier-Stokes equa-
tions. As mentioned previously, the full system is
quite complex, and hard to simulate. To test the
controls, we perform direct numerical simulations
(DNS) of the Navier-Stokes equations using the open-
source software Gerris [14] and its extension Basilisk,
which solve the Navier-Stokes equations on an adap-
tive quadtree grid using a volume-of-fluid approach.

The control strategies developed in the previous

7
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Figure 5.—Comparison between the solution, (u ,v), of the Navier–Stokes equations using approx-
imations obtained from the weighted residuals model (left) and DNS (middle), and the difference 
between the two (right) for the horizontal velocity u (top) and the vertical velocity v (bottom), imme-
diately after application of controls. For details on the parameters used, see [4].

Figure 4.—Regions of stability of controls of the form (20) for several number of controls M and 
displacement φ. Left: Benney equation, and right: weighted residuals model. Inside each curve, we 
predict the controls to stabilise the flat solution, while outside we predict them to not be sufficient 
for stability.

section are efficient in stabilising the flat solution
for the Benney equation and the weighted residuals
model, and linear stability analysis predicts they also
(linearly) stabilise the full problem. Naively, we could
try to use them directly in the Navier-Stokes equa-
tions; however, we observe that we cannot simply
“translate” the controls directly to the full problem,
i.e., simply take the numerical value from the simpli-
fied models and apply it to the Navier-Stokes equa-
tions: while they seem to work on the first few time
steps, after a while the differences between the full
problem and the simplified models become too big,
the controls stop working, and the solution eventu-

ally returns to the original uncontrolled state. This is
to be expected, since there are physical effects that ap-
pear at the DNS level which are not fully resolved in
the weighted residuals model because of the physical
assumptions we made to derive the models.

To illustrate this, we show a comparison in Fig-
ure 5 between the solution, (𝑢𝑢𝑢 𝑢𝑢𝑢, of the Navier-
Stokes equations using approximations obtained
from the model (left) and DNS (middle), as well
as the difference between the two (right) for the
horizontal velocity 𝑢𝑢 (top) and the vertical ve-
locity 𝑢𝑢 (bottom), immediately after application

8
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Figure 6.—Stability predictions (top) 
and direct numerical simulations (bot-
tom) for the controlled solution of the 
Navier–Stokes equations for several 
values of α.

of controls. We can see that even though the error on
the horizontal velocity is small, there are significant
differences in the vertical velocity.

However, we can use the linear stability analysis
predictions (such as the control strategy in (20) with
the predictions for 𝛼𝛼 visible in Figure 4) and apply
these controls based on observations of the numeri-
cal solution obtained via the direct numerical simula-
tions.

We tested this methodology for several cases, with
𝐿𝐿 𝐿 𝐿𝐿, 𝜃𝜃 𝐿 𝜃𝜃𝜃𝜃 and including 𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅 𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅
(case 1), and 𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅 𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅 (case 2), with the
results shown in Figure 6, where we show the stability
predictions for case 1 in blue, and case 2 in orange (top
figure). The different curves correspond to a differ-
ent number of control actuators and observers vary-
ing from 𝑀𝑀 𝐿 𝜃 (full lines) to 𝑀𝑀 𝐿 𝑀 (dotted lines).
In the bottom figure, we pick case 2 and 𝑀𝑀 𝐿 𝑀 con-

trols, and apply controls with varying 𝜙𝜙 and fixed 𝛼𝛼.
Each curve corresponds to a dot on the vertical line in
the top figure, where orange dots signify a stabilised
solution, while black dots correspond to a failed con-
trol. We see that the direct numerical simulations con-
firm that controls predicted to linearly stabilise the
weighted residuals model do indeed stabilise the full
problem. We also performed similar tests for fixed 𝜙𝜙
and varying 𝛼𝛼 with similar results.

Our final result concerns applying the controls de-
rived for the long wave models to direct numerical
simulations of the Navier-Stokes equations. As above,
we use the control “rule” derived from linear stability
analysis (in this case, solving an LQR Problem for the
weighted residuals model), but where we use observa-
tions of the DNS solution. Motivated by the success
of the controls in Figure 6, we expect the same philos-
ophy to be applicable. We tested a range of Reynolds

9CIM Bulletin December 2023.45 63



Figure 7.—The minimum number of actuators required to stabilise the Navier-Stokes 
film compared to the number of unstable modes of the linearised weighted- residual 
system (red). The number of controls needed to stabilise the uniform film never exceeds 
the number of unstable modes of the linear system M as given in (19). The ranges for 
the two parameters cover a broad range of different fluids. For more details, see [10].

numbers 𝑅𝑅𝑅𝑅 and capillary numbers 𝐶𝐶𝐶𝐶 which corre-
spond to several physically motivated fluids (see [10]
for more details). For each case, we predicted the
number of unstable modes — and therefore the num-
ber of necessary controls — using (19) and computed
the matrix 𝐾𝐾 from the weighted residuals model. We
then applied the controls to the full model using ob-
servations from the DNS. The results are summarised
in Figure 7: the red lines show the predicted num-
ber of controls, and the numbers in each square show
how many controls were needed to stabilise the flat
solution. We observe that in almost every case, we
did not need as many controls as linear stability sug-
gests, thus showing the efficiency of the controls we
designed.

3 Discussion

I presented a control methodology based on a hier-
archy of models, which I used to control a canon-
ical problem in fluid dynamics: falling liquid films.
This is a complex problem for which control is hard
due to the computational and analytical complexity of
the models involved. Using a hierarchy of models al-
lowed me to start from a weakly nonlinear model (the

Kuramoto-Sivashinsky equation), where it is possible
to derive controls analytically that stabilise the flat so-
lution, and any other unstable solution.

While the KS equation is not a very good approx-
imation to the original problem, the results at this
level provide crucial information to guide us in the
right direction for controlling the more accurate long
wave models (Benney equation and weighted resid-
uals model), and eventually the Navier–Stokes equa-
tions.

The results I presented are based on linear feed-
back control theory, and can be thought of as a
“discretise-then-optimise” framework. Other ap-
proaches can be used; for example, we can first op-
timise and then discretise, as seen, e.g., in [1], or we
can use optimal control methodologies (see [22]). We
can also use other forms of control such as electric
fields [22] or temperature [18].

This illustrates how simple mathematical models
are key players in mathematical studies and help us
push conceptual boundaries to the point where the
developed methodologies can be applied higher up in
the model hierarchy. Often in control theory, several
problems are not explored enough due to their non-
linearity, which makes analytical progress impossible,
and I hope this example shows the value of mathe-
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matical modelling and numerical simulation working
together with control theory to advance our under-
standing of complex phenomena in fluid dynamics.
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