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In this issue of the bulletin, we pay a heartfelt tribute to Isabel Figueiredo, 
who passed away last September. Isabel was the President of CIM and 
a distinguished professor from the department of Mathematics of the 
University of Coimbra, but, more importantly, she was a dear friend, and 
we will miss her and her constant good mood. We have invited João Filipe 
Queiró to write a brief testimony honouring Isabel and her career.
 We publish four scientific papers in different areas including Number 
Theory, Analysis, Geometry and Statistics. Namely, we present an article 
about Diophantine equations, one about control theory applied to fluid 
dynamics, one about geometry on surfaces and Higgs bundles and 
another one linking Bayesian analysis and Hilbert spaces. 
 Inserted in the cycle of historical articles, we feature an article 
dedicated to the work of Francisco de Melo and its applications to optics. 
 We publish two interviews. We interviewed Richard Davis who was the 
distinguished mathematician invited to deliver this year’s Pedro Nunes’ 
lecture, which is an emblematic initiative of CIM with the support of SPM. 
We also include an interview to Bruno Loff, who was awarded with a 
European Research Council starting grant in Computer Science.
 We also count with several summaries and reports of some of the 
activities partially supported by CIM.
 We recall that the bulletin continues to welcome the submission of 
review, feature, outreach and research articles in Mathematics and its 
applications.

Ana Cristina Moreira Freitas

Faculdade de Economia and  
Centro de Matemática da Universidade do Porto
https://www.fep.up.pt/docentes/amoreira/
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IN MEMORIAM 

This is a brief testimony about Isabel Narra de Figueire-
do.
 I met her for the first time 46 years ago, when she 
started her university studies. Hers was a very strong 
class, with several future university professors and re-
searchers. And already she stood out. Later she obtained 
her doctorate in Paris, returning then to Coimbra and to 
a career in which she built a remarkable body of scientific 
work.
 Her subject was always Applied Analysis, moving 
gradually from problems in Mechanics to medical ap-
plications, in imaging and diagnostics, with substantial 
results and national and international recognition.
 I remember the occasion, around 15 years ago, when 
Isabel came to see me, to talk about a letter she had just 
received from an Israeli company that wanted to invest 
in her ideas. I wonder how many Portuguese scientists, 
especially in a fundamental area, may have experienced 
this type of situation. Isabel wished to discuss how to 
deal with the letter. I suggested some people she might 
contact, both inside and outside the University. Shortly 

afterwards, she began her long and fruitful collaboration 
with the firm Critical Software.
 She always had a youthful attitude and the corre-
sponding energy in her scientific work. All those who 
knew her can testify to that.
 In the second part of her career, and particularly in 
the last decade, Isabel added to her research activities 

— which she never interrupted — a dimension of ser-
vice to the academic community. Apart from positions in 
scientific societies, she became President of CIM — the 
International Centre for Mathematics — an important 
organization gathering research units from all over Por-
tugal. She was also the director of the Coimbra Mathe-
matics Library, which can seem a minor position until 
we recall that this is the best mathematical library in the 
country, and probably in the iberian peninsula.
 By her continued efforts, dynamism and scientific 
activity, Isabel reached a high level of recognition, both 
in Portugal and abroad. That is the testimony I wish to 
leave here.

Based on a short improvised speech made at Isabel Nar-
ra de Figueiredo’s funeral on 8 September 2023.

* Universidade de Coimbra

by João Filipe Queiró*

Isabel Maria Narra de Figueiredo 
1959–2023 
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* Grupo de Física-Matemática e Dep. de Matemática do IST, Univ. de Lisboa. Email: ana.cruzeiro@tecnico.ulisboa.pt

** CAMGSD e Dep. de Matemática do IST, Univ. de Lisboa. Email: pgoncalves@tecnico.ulisboa.pt

by Ana Bela Cruzeiro* and Patrícia Gonçalves**

43rd Conference on Stochastic 
Processes and their Applications

The SPA2023 took place at the Faculty of Sciences of 
the University of Lisbon, from 24 to 28 July 2023. SPA 
Conferences are organised under patronage of the Ber-
noulli Society and can justifiably be regarded as the most 
important international scientific meeting on the theory 
and applications of Stochastic processes. They are held 
annually except for the years when the World Congress in 
Probability and Statistics takes place.
 The SPA2023 had a total of 257 talks (13 plenary ses-
sions, 30 invited sessions, 1 public lecture and 51 con-

tributed sessions with 3 speakers each). The 496 partici-
pants represented 44 countries.
 It was supported by the University of Lisbon, the 
Nova School of Science and Technology, the University 
Aberta, as well as by FCT, IST, ISEG, Faculty of Sciences, 
SPM, SPE, CIM and various research centres in the Lis-
bon area.

Local organizers: Fernanda Cipriano, Ana Bela Cruzeiro, Patrícia Gonçalves, Manuel Guerra, 
Maria João Oliveira, António Pacheco, Beatriz Costa Salvador, Jean-Claude Zambrini.

More information can be found at https://www.spa2023.org/

REpORt
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AN INtERvIEw wIth

Bruno Loff
by Carlos Florentino*

* CMAFcIO & FCUL

Bruno Loff is a Mathematician and Computer Scientist working at the Faculty of Sciences at the Uni-
versity of Lisbon (FCUL). Last year, he was awarded with one of the only three European Research 
Council grants for research in Computer Science hosted by a Portuguese institution.
 After completing the Undergraduate and Master degrees in Computer Science and Software En-
gineering at the Instituto Superior Técnico (IST), Bruno earned an FCT fellowship (the Portuguese 
State’s Science Institution), and went on to do his PhD at the University of Amsterdam, under the 
supervision of Prof. Harry Buhrman, on the topic of computational complexity, finishing in 2014.
 During the years 2015 to 2020, he held one postdoc position in Prague and another one in Por-
to. He then obtained a tenure track position at the University of Porto. Returning to Lisbon, in the 
context of his ERC grant, he is now developing an active group on computational complexity with-
in the Research Center LASIGE, based at FCUL.
 I first met Bruno, back in the year 2007, when he was finishing his Master studies at IST, and it is 
with great satisfaction that I see him reaching high international recognition. Moreover, it is a great 
pleasure to have him as our newest colleague at the Mathematics department of FCUL. This became 
the perfect opportunity for an informal interview. In these lines, we delve into the world of Bruno 
Loff, talk about his research journey, and collect his opinions on Mathematics and Computing.
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There is certainly no single path to a successful career 
in research, but everything has a beginning. Can you 
tell us how and when did you discover your interest in 
Mathematics and Computer Science?
Ever since I was 7 or 8 years old, I have had this fascination 
with computers . . . As a child and a teenager, I must 
have spent more hours in front of a computer than doing 
any other thing. Gaming, of course, but also coding, 3D 
modelling, audio editing, and so on. Even today, I’m still in 
awe of them. Time in front of a computer was replaced with 
time thinking about computers. Which is my job, nowadays. 
It just boggles my mind that reality includes these things.

So, during primary and secondary school, did you see 
Mathematics as a profession, as a challenge, or just as 
a fun thing? Did you ever think you would dedicate 
yourself to it?
Neither. The way I was taught Mathematics in high school 
is the reason I decided against pursuing Mathematics in 
university, and opted for computer science instead. In 
my days, and as far as I understand this is still largely the 
case today, high-school mathematics is taught as if it was 
some kind of game, where one learns how to do certain 
calculations.
 I was always reasonably good at this game, but I also 
thought it was a waste of time, because of course: I can just 
program a computer to do the calculations for me. From this 
mistaken perspective, that Mathematics is just calculations, 
one saves a lot of time by learning Computer Science 
instead.
 It was only in my third year of university that I finally 
understood what mathematical proofs are all about (of 
course, I had decent grades in all math courses, but 
understanding proofs is sadly not a requirement for non-
math majors). Ironically, nowadays I have to spend a lot of 
time trying to catch up on all the Mathematics that I didn’t 
learn in my Computer Science education.

I imagine your Master’s degree in Computer Science 
and Software Engineering was very significant for your 
academic training. Some milestones certainly emerged 
along the way, as well as people who played an important, 
or even essential, role in terms of training, or as a source 
of inspiration. Which mathematicians or professors 
deserve such a mention and why?
One name before all others: José Félix Costa, my MSc 
advisor. (José Félix Costa is a professor in the Department 
of Mathematics at Técnico). It was from him that I first 
learned the theory of Computability, and then later 
Computational Complexity. His classes were marvelous: 
clear, compelling, exciting. I remember being aesthetically 
moved to tears by Rice’s theorem. He somehow managed to 
teach the solution to Hilbert’s 10th problem in a first course 
on Computability! (Hilbert’s 10th problem asked for an 
algorithm to solve Diophantine equations, and a long line 
of work by Martin Davis, Hilary Putnam and Julia Robinson, 
culminating with a result of Yuri Matiyasevich, showed that 

such an algorithm does not exist). He is also a formidable 
role model as a researcher, hard working, with a vast 
knowledge of many fields, extremely ethical when it comes 
to collaboration and attribution, and driven by a love of the 
thing itself. Without him, I would be doing something else. 
He is also a really fun and wild person, and a humble guy, if 
you can believe it! We remain good friends to this day.

That explains why you chose him to supervise your 
Master’s degree in Informatics. At this moment, were you 
already thinking about continuing for a PhD?
My mother tells this story . . . When I was 7 years old, my 
parents would hang out with this couple who had a daughter 
my age, Eva. Eva’s mother once turned to me and asked the 
typical question: “So, Bruno, what do you want to do when 
you grow up?” Little 7-year-old Bruno looked up to her and 
said: “First I want to do a PhD in Mathematics, and then I 
want to do a PhD in Physics.”
 My mom says that she hesitated, and said: “Okay . . . so 
in the meantime would you like to go and play with Eva?”
I have since gained some sense and have no plans to do a 
PhD in physics.

Was it obvious that you should obtain the doctorate 
abroad? Was it easy to choose the advisor (Harry 
Buhrman) and the thesis problem? How was your 
adaptation to another country, culture, way of teaching 
and studying?
I was excited to go abroad! New things! An adventure! 
I looked for people doing computational complexity in 
Europe, and Harry’s name came up. I sent him a letter, said I 
would be coming with my own funding, and he took me in. I 
moved to Amsterdam on September 2008.
 And within 4 months, I had entered a deep state of 
depression, including debilitating anxiety, panic attacks, 
mild paranoia and hallucination, and a complete lack of 
concentration, which made it very difficult to work. I also had 
brief periods when I was on top of the world, master of my 
game, had figured it all out, etc. A psychiatrist diagnosed me 
as bipolar, which presumably I had inherited from my mother, 
and which maybe, just maybe, was triggered by an LSD 
trip where I realized, in some deep, undeniable, immediate, 
visceral way, that every moment in time is dying all the time, 
and I myself am going to die some day.
 The psychiatrist prescribed me antipsychotic medication. 
After reading about the side effects of the drug I had been 
prescribed, I decided against taking it, and started doing 
meditation instead. I did a vipassana retreat in August 2009, 
where it became clear that meditation really affects the 
condition I was in.
 So by November 2009, I had all but decided to quit 
my PhD to become a Buddhist monk, when Harry gently 
suggested that I should take a temporary break instead, “do 
the meditation thing for a while”, and see if I wanted to 
come back after that. So I asked for a temporary interruption 
of my grant, which FCT allowed. I did a solitary retreat in 
December 2009, and on the 30th I experienced a shift in my 

6



perception, and was never depressed again in the same way. 
With continued practice, eventually my emotions balanced 
out, and I have not experienced euphoria or depression 
since about 2014.
 But sorry, I got a little sidetracked. I got a lot out of 
working at CWI (Center for Mathematics and Computer 
Science, in Amsterdam). They have a very strong scientific 
culture over there.

A doctoral thesis is the beginning of a research career. 
Right after finishing the thesis, were you prepared for 
this challenge? Do you think that, to gain experience, one 
or two postdoctoral positions are fundamental?
After my PhD, I had a lot of self-doubt and seriously 
considered giving up science. My PhD thesis is entitled A 
Medley for Computational Complexity. I.e., I had a bunch of 
disparate results and I stapled them together. It had always 
felt that every single result I discovered was a stroke of luck. 
I didn’t really think I could turn such random events into a 
career. The word career suggests a straight line, of sorts, a 
natural uphill progression.
 Again Harry offered me good advice: he said that giving 
up was completely fine, but he thought I was doing OK, and 
maybe I should give it a chance? So that was the second 
time a conversation with Harry pulled my career from the 
brink.
 So I decided I should give it a fair shot, and if it flopped, 
then I had done the best I could. I contacted Michal 
Koucký, who had visited Amsterdam a couple of times, and 
proposed that we work on a particular problem (dynamic 
data structures for directed connectivity). I moved to 
Prague, and lived there for two years, with a lifestyle of a 
mathematical monk. I got up early, I went to my Tai Chi 
practice, and went to the office, where I would work until 
late. Next day, repeat. My bipolar disorder was gone at 
this point, so my concentration was back. I learned a huge 
amount. (But we never solved the above problem. It turns 
out to be a formidable problem.) I would never be able to 
do the research I do without those highly focused five years 
of postdoctoral research.
 Oddly, each and every result I discover still feels like a 
stroke of luck. I’m just more used to it, I guess.

What do you consider to be your most relevant scientific 
contribution up to now, and why?
I think my favorite own paper, thus far, is Computing with 
a full memory: catalytic space. Quoting directly from the 
intro: “Imagine the following scenario. You want to perform a 
computation that requires more memory than you currently 
have available on your computer. One way of dealing with 
this problem is by installing a new hard drive. As it turns out 
you have a hard drive but it is full with data, pictures, movies, 
files, etc. You don’t need to access that data at the moment 
but you also don’t want to erase it. Can you use the hard 
drive for your computation, possibly altering its contents 
temporarily, guaranteeing that when the computation is 
completed, the hard drive is back in its original state with all 

the data intact? One natural approach is to compress the 
data on the hard disk as much as possible, use the freed-up 
space for your computation and finally uncompress the data, 
restoring it to its original setting. But suppose that the data is 
not compressible. In other words, your scheme has to always 
work no matter the contents of the hard drive. Can you still 
make good use of this additional space?”
 Surprisingly, the answer is yes! It is possible to use full 
memory in a non-trivial way!

After the post-doctoral positions in Prague and Porto, 
you obtained an Assistant Professor position at the 
Faculty of Sciences of the University of Porto. How was 
the experience in Porto, in particular the need to balance 
teaching and research?
I was very lucky, because I got a CEEC grant (Concurso 
de Estímulo ao Emprego Científico). This grant disallowed 
the university of assigning me more than 6 hours of teach- 
ing duties per week. Even then, teaching made research 
significantly harder than it was during my postdoc years. It is 
very sad that there isn’t really a research career in Portugal, 
and that so many researchers are working under precarious 
employment contracts. Some kind of solution really needs to 
be found.

In a world of research that tends to be very competitive, 
how did the idea of applying for an ERC grant come 
about? What aspects of the application were decisive for 
the positive evaluation?
Actually I did not plan and did not want to apply to an ERC 
grant. But Michal Koucký insisted that I should. Once I 
started working on it, I had a vision of what I wanted to do, 
and I wrote it down.
 Well, I started writing a grant as usual, and then at some 
point I realized that this is a much bigger grant than FCT 
grants, so I threw away the few pages I had and started over. 
I also decided I would try to solve a difficult problem that 
people in my area care about, because why would anyone 
care otherwise? I also decided that people in the committee 
were probably really smart, so I would be brutally honest.
I remember during the interview they asked me: “so, what 
applications do you think might come out of this project?” 
To which I promptly answered “probably none”, and felt really 
dumb afterwards. But actually, I suspect that the committee 
knew as much, and they were testing whether I would reply 
honestly.
 Curious fact: The project was awarded the ERC, which 
means the project was in the top 10% of the Computer 
Science projects submitted to the ERC that year. Well, 
between submitting to the ERC and getting the acceptance 
letter, I took the same project, trimmed it down to work 
with 1/5th of the budget, and submitted it to FCT. It was 
classified in the bottom 10% of the Computer Science 
projects submitted to FCT in that same year. This probably 
happened because that year, like, sadly, in most years, the 
FCT evaluation committee did not include people from 
Theoretical Computer Science (the ERC committee had 
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several).
 There also, I feel that something needs to change. 
Computer Scientists think of me as a Mathematician, and 
Mathematicians think of me as a Computer Scientist.

Amazing! . . . Ok, tell us a little about the objectives of 
your work plan for these five years. Do you think it is 
possible to achieve most or all the goals?
I will try, but the project is very ambitious. In Computational 
Compleixty, lower bounds are impossibility results showing 
that certain computational problems cannot be solved 
efficiently in a certain computational model. Some 
computational problems are harder than others, and some 
computational models are stronger than others. We know 
how to prove lower-bounds either for very hard problems no 
one cares about, or in very weak models no one cares about. 
The goal of the project is to prove lower- bounds in new 
ways. If we fail to do this, we would like to understand why 
we failed at it.

Since one of the goals is to advance on the resolution 
of the famous millennium problem: the “P versus NP” 
problem, we cannot resist asking: how close do you think 
we are to finding a solution? Will the answer be positive 
or negative, or will it be one of the undecidable questions, 
as in Gödel’s incompleteness theorem?
This is a good question. Something which is not well 
understood outside Computational Complexity is that we 
know of a very good reason why lower bounds are hard to 
prove. For a long time it has been believed that there are 
functions which are easy to compute but hard to invert. So 
there exists an efficient algorithm for computing f(x) when 
given x, but, simultaneously, there is no efficient algorithm 
to find x when given f(x). Such one-way functions are known 
to exist in any sufficiently powerful computational model. 
For example, multiplication of natural numbers can be com- 
puted efficiently, but we do not know of any efficient (non-
quantum) algorithm for factoring natural numbers.
 Alexander Razborov and Stephen Rudich observed in 
the 90s that essentially every lower-bound proof technique 
that was known up to that point had a certain kind of 
structure. They called proofs with this kind of structure 
Natural Proofs. So all lower- bound proofs known at the time 
are natural, and this is still very much true today, with few, in 
my opinion not very relevant, exceptions. They then showed 
that natural proofs cannot be used to show lower-bounds 
against any computational model strong enough to compute 
one-way functions. It is a kind of independence result. We 
call it the natural proofs barrier.
 So look at the difficult situation we were left with: we 
cannot prove lower-bounds by natural proofs on any model 

powerful enough to compute, say, multiplication. And yet 
every lower-bound proof we know is a natural proof. The big 
question is how to overcome this barrier.

Let’s talk more about the research experience. How do 
you discover interesting and good problems to work on? 
And for solving them, are there methods or strategies 
that may be more effective?
A math problem is like a chronic disease, I don’t go looking 
for them, they find me and won’t let go, unless by chance I 
find the cure by solving the problem. I wish I knew of some 
effective general approach that works. I feel completely 
stuck 99% of the time. It’s a very frustrating profession, at 
least for me.
 But I should add, of course, under the conjecture that 
P is not equal to NP, there does not exist any method or 
strategy that will be effective 100% of the time at solving 
math problems. Under a slightly stronger complexity-
theoretic conjecture, e.g. that k-SAT or CLIQUE are 
hard on any sufficiently random efficiently samplable dis- 
tribution, there does not exist any method or strategy that is 
effective even 1% of the time.
 Of course, I’m totally stuck at proving these conjectures, 
hehe.

Even so, doing research is certainly satisfying and 
rewarding. What do you think is fascinating in the field of 
Mathematics?
Speaking for myself, I learned Mathematics because I 
wanted to understand computers. Understanding is the 
highest form of love, and I love computers. Computers were 
invented by Alan Turing, a mathematician, not a physicist, 
or an inventor, or anything more applied. And there is good 
reason why this was the case: the computer is the most 
mathematical of all human-made objects. So Mathematics 
drew me in. It took me some time to realize that: to 
understand computers is to understand lower-bounds. We 
understand algorithms quite well, i.e., we understand what 
computers can do very well. We are good at coming up with 
new algorithms. But we really don’t understand computation, 
because we cannot prove lower-bounds, i.e., we cannot 
understand the things that computation cannot do. That 
understanding can only come from Mathematics.
 Of course, Mathematics is beautiful and fascinating. 
And I have known of people who do Mathematics as a 
kind of leisurely stroll, just looking out over beautiful vistas, 
smelling each nice flower they come across. But I have a 
very goal-oriented approach to Mathematics, I want to get 
something out of it, and this adds a certain degree of stress. 
Maybe one day Mathematics will finally help me understand 
computation, and then I will be able to relax more into it.
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Research collaborations are obviously important, both 
in terms of work and visibility. On the other hand, 
management of a grant adds responsibility towards the 
colleagues that work with us. What is the most important 
characteristic that a collaborator of yours needs to have? 
How important it is to have PhD students and develop a 
research group on your own main topics?
Skill is important, of course, but the most important 
characteristic of a collaborator of mine is, without a doubt, 
a love for what they do. You would think that this is easy to 
come by, but so many researchers have their egos wrapped 
up in their work, with their love of Mathematics soiled by a 
stronger desire to be a great Mathematician, or something 
along those lines. I am sad to say that I also have a big ego, 
but I do sincerely strive my best to keep an above-unit 
quotient of love-for-mathematics over ego (He said, in the 
magazine interview he accepted to participate in. It’s work-in- 
progress).

How do you see the relationships, differences and 
similarities between research in Mathematics, Computer 
Science and Informatics?
There is one fundamental thing that good Mathematicians 
and good Computer Scientists have in common: an 
understanding of what it means to be precise. A 

mathematical statement is precise in very much the same 
way that an instruction in a computer program is precise. A 
good programmer can easily be taught what a proof is, and 
a good mathematician can easily be taught how to code. 
I work in Theoretical Computer Science, which studies 
computers with the methodology of mathematics. So I don’t 
really know how research happens in applied computer 
science. But I can say this: applied Computer Science is a 
discipline that entails very many non-mathematical skills. 
There is little mathematics going into requirements analysis, 
software architecture, interface design, testing, deployment, 
load balancing, etc. Not to mention management skills and 
people skills, all of which are necessary to produce a usable, 
reliable software product. Naturally, research in applied 
Computer Science includes all of these things, it’s a whole 
other world.

What advice would you give to young mathematicians 
just starting their research careers? What specific skills 
or competences are essential for success in Mathematics 
research?
Wow, some advice for a young mathematician, let’s see... 
You’re probably pretty smart, try not to be a dick about it. 
Create and nurture a circle of mathematical friends. Work 
with researchers with all levels of skill. Get used to the 
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feeling of being stuck, it will be with you for your entire 
mathematical life.

How do you balance your work as a mathematician with 
other aspects of your life? Are there hobbies or activities 
that are particularly enjoyable or essential to maintain- 
ing a healthy work/life balance?
I wish I knew. There is really no balance. Sometimes I’m so 
engrossed in a math problem that I get insomnia, spend 
hours awake at night thinking about it, and get out of bed 
exhausted the next day. I have forfeited entire holidays, 
quality time with loved ones, because I had some idea and 
couldn’t let it go. Exercise helps a lot. I still meditate. But 
the job takes its toll. I have been noticing, lately, that I find it 
extra annoying when people use imprecise language in our 
day-to-day lives. It’s such a silly thing to be annoyed about, 
but one’s job shapes one’s mind. And it is so isolating, to 
work in a field so abstract that you can’t explain what you do 
to your friends, your partner, your family. It really is a labor of 
love, as nothing else would justify the sacrifice.

Mathematics is generally considered a difficult and 
hermetic subject. How could we make Mathematics more 
accessible and engaging to a wider audience, including 
students and the general public?
To be engaged with Mathematics, people have to experience 
the pleasure of understanding it. Maybe not for geniuses or 
whatever, but for the rest of us Mathematics is an acquired 
taste, and in that way it is not like hot chilies or sour pickles: 

it is particularly difficult to acquire because it takes a lot 
of time. There is no magical substitution for time spent 
together with people who already love mathematics, in a 
place that is suitable for it. A teacher, a friend, a desk, a 
classroom, a club. Yes, I would say, we need more math clubs.

Do you think Mathematics can play an important role in 
solving real-world problems, and contributing to facing 
global challenges?
No, of course not.
 Seriously, though? The universe is made of the stuff. To 
forget mathematics is to forget a fundamental ingredient 
that everything is made with. I suppose a fish does not need 
to know what water is, if all he wants to do is be a fish, as 
God intended. But if the fish wants to have any semblance 
of control over his surroundings, he will need to understand 
water. There is no civilized world where Mathematics doesn’t 
play a very important, fundamental role.
 Having said that, none of the most important problems 
facing humanity today are mathematical problems. Just a 
few days ago ended COP28, which was held in one of the 
worlds largest fossil-fuel exporting nation, and, one might 
say unsurprisingly, resulted in a multinational agreement far 
less ambitious than what our climate scientist colleagues 
say is necessary to maintain global warming below 1,5 Cº. 
I would happily give up my job as a mathematician if, in 
magical exchange, all humans everywhere would be 10% 
more reasonable.
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The influence of greek auThors
on francisco de Melo’s Theory of vision 
by Daniel Pinto*

* Centro de Matemática da Universidade de Coimbra 
 Email: dpinto@mat.uc.pt

In the history of science, of any branch of science, there 
are no periods of complete stagnation. One can always 
find at least a few small advances or a couple of false steps 
that turn out to be crucial. In any case, even taking into 
account the growing number of studies on perspective 
in painting, which revived interest in various topics of 
geometric optics, it would not be out of place to clas-
sify the 14th and 15th centuries as two reasonably quiet 
centuries in the history of optics. So when we look at 
the theory of vision presented by the Portuguese math-
ematician Francisco de Melo (born about 1490), it is un-
surprising that his approach is still deeply linked to the 
dominant theories in the Middle Ages. The influence of 
Ibn-al Haytham, also known by the Latinized name of 
Alhacen, who wrote, in the 11th century, one of the most 
groundbreaking treatises on optics, and the impact of 
Witelo, a 13th-century author, on Melo’s thinking would 
be easily detectable even if he had not referred to them. 
Still, the truth is that Melo mentions the names of both 
in the  Corollary to Euclid’s Perspective, a text dedicated 
to the nature and fundamental principles of vision (and 
written to complement Melo’s version of Euclid’s Optics). 
But besides his interest in the medieval period, Francis-
co de Melo, who for some years attended the University 
of Paris, back then one of the most important academic 
centres in the world, was nonetheless a man of his time, 
strongly influenced by the Renaissance movement that 
sought to revisit ancient Greek texts. Here we will try to 
display a significant number of concepts that Melo re-
trieved from Greek authors to build his theory of vision. 
 The intersection of ideas, the succinct way in which 
Melo condenses and cross-references, in a few pages, 
many of the main currents in optics known until then, is 

one of the most peculiar facets of the Corollary to Euclid’s 
Perspective. That whole process of synthesis is backed up 
by Melo’s tendency towards abstract thinking. He also 
makes use of experimental results and some concrete 
examples, but it is in the manipulation of mathematical 
tools that he shows greater ability. To write his version 
of Euclid’s Optics, Melo completely reworked the very 
unclear demonstrations that were available in the Latin 
edition (translated from Greek) by Bartolomeo Zamberti, 
printed a few years earlier (1505). He did not just make 
small adjustments; almost all the demonstrations were 
rebuilt from scratch with remarkable detail and preci-
sion. Even though, to complete that task, Melo may have 
followed some of the comments of Pierre Brissot, with 
whom he worked in France, such an ambitious pro-
gramme would have proved impossible had Melo not 
been a talented mathematician himself. In the Corollary 
to Euclid’s Perspective, maybe because of the hybrid na-
ture of the text (a combination of geometry, anatomy and 
natural philosophy), he is not so original or audacious 
in his demonstrations, but it is still possible to find sub-
stantial differences when we compare them with proofs 
of similar results in previous works on the subject.

Euclid

In the last paragraph of the Corollary to Euclid’s Perspec-
tive, Melo warns the reader that the theory of vision he 
had elaborated had been quickly put together and that 
it may not be perfectly articulated. This self-inflicted de-
preciation of his own text is intended not only to point 
out that Melo did not invest much time in dealing with 

CIM Bulletin December 2023.45 11



the details of a complex field, that he wants to summarise 
in an original way, but also to draw attention to the fact 
that his version of Euclid’s Optics is a much more am-
bitious project. Although the Corollary to Euclid’s Per-
spective could be read as a completely autonomous text, 
it would be disconcerting if the main ideas defended 
by Euclid in the Optics had not been incorporated into 
Melo’s theory of vision. But that is not the case. Euclid 
(4th–3rd century BC) is possibly the strongest presence 
in Melo’s theory of vision. This is evident in the struc-
ture of the text, which is very Euclidean, with two pos-
tulates followed by propositions and lemmas, as well as 
in the more substantive content. 

 Euclid is considered an extramissionist since, in one 
of the definitions of the Optics, he admits the existence 
of rays travelling from the eye to the objects, despite not 
using this orientation in his proofs (Figure 1). For cen-
turies, even after Kepler, the extramission (or emission) 
hypothesis had many supporters who rejected the intro-
mission theory, in which rays emitted by the eye were 
not necessary to explain vision, only rays travelling in 
the opposite direction (a position advocated, for example, 
by Alhacen). Melo agreed that something had to reach 
the eyes, but his theory of vision does not dispense with 
the emission of visual rays. Furthermore, Melo is also 
aligned with Euclid in terms of both the rectilinear and 

Figure 1.—Johann Zahn, Oculus Artificialis Teledioptricus Sive Telescopium, 1685
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the discrete nature of those rays. For Melo, visual rays 
are not continuous, there are intervals between them, 
which would explain why, in an instant, we might not 
see a small needle on the ground (fallen between two 
consecutive rays) but, by moving our eyes a little, the 
needle might appear to us (after being hit by some visual 
ray). In Euclid’s Optics, the eye is represented by a point, 
and binocular vision is not considered (with a few ex-
ceptions). Melo does not devote much time to this sub-
ject either. He only directly deals with binocular vision 
in three of the twenty propositions. 
 Even when he addresses anatomical issues, which are 
absent from the Euclidean text, Melo transfers the analy-
sis of the components of the eye to a geometric setting. It 
is undoubtedly Euclid’s Optics, the earliest extant treatise 
on geometric optics, that Melo has as his primary refer-
ence. And if the style of Euclid’s Optics is present in the 
geometrisation of the anatomical features, the Elements 
are called upon in the course of various demonstrations—
particularly the results from Book III—involving circles 
and circumferences.

AristotlE

Although Aristotle is explicitly mentioned several times, 
his most relevant contribution to Melo’s work is tacit-
ly included in the first postulate of the Corollary to Eu-
clid’s Perspective, formulated with an undeniable Aris-
totelian slant:

Firstly, it must be accepted that every natural agent acts more quick-
ly and vigorously towards what is near than towards what is far.

It is this postulate that will allow Melo, later on, to estab-
lish that faithful and distinct vision is realised by means 

of rays that fall perpendicularly on the eye, the ones with 
the shortest length (Figure 2). If all the rays, and not just 
the perpendicular ones, were of equal importance, the 
image in the eye would appear confused, which does not 
occur in a person without ocular disorders.
 There are passages in Aristotle´s body of work where 
he seems to be moving closer to the extramission theory, 
namely in his studies of the rainbow. But, unlike Euclid, 
he is generally connected, by commentators, with the 
intromission theory. Melo is not an exception and also 
associates Aristotle with the idea that something from a 
visible object must reach the eye. However, in the Cor-
ollary to Euclid’s Perspective, Francisco de Melo often 
mentions Aristotle in paragraphs in which he wants to 
reaffirm that his theory of vision does not dispense with 
rays emitted by the eye. For instance, Melo uses an ob-
servation that he partly attributes to Aristotle (why do 
we see further and more clearly through a tube or with 
half-closed eyes?) to reinforce his appetite for extramis-
sion theories. According to Melo, this is due to the greater 
number of rays that hit the object since, under normal 
conditions, some of them would disperse. Curiously, the 
oddest reference to Aristotle is also related to extramis-
sion. For Melo, something must be travelling from the 
eyes to the objects since, following an observation from 
Aristotle’s On Dreams, menstruating women allegedly 
infect mirrors.
 Despite the fact that Melo does not always stress the 
relevance of colour in his theory of vision, he seems to 
agree with Aristotle for whom colour was not only a 
characteristic of objects (not dependent on the observ-
er or other factors) but precisely what makes them po-
tentially visible. As for the importance of the eye, Melo 
is again in tune with Aristotle, considering vision to be 
dominant over the other senses.

Figure 2.—Ray 1 (the perpendicular ray) is shorter than ray 2.
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PlAto

With Plato, as with Euclid, Francisco de Melo shares the 
belief in the extramission hypothesis. An affinity that 
Melo emphasises in his text after remarking that the eyes 
of many living beings glow in the dark. Melo is, in some 
sense, very close to the idea of visual fire that we can find 

in the Platonists. But Plato’s most significant influence 
on Melo’s theory of vision is related to the role of light. 
Contrary to Alhacen’s approach, light is not at the centre 
of Melo’s theory, but it is essential for vision to occur. For 
Plato, vision is only possible if the visual fire combines 
with light, an insight that Melo, with some adaptations, 
also embraces. In the view of Aristotle, light is a state that 

Figure 3.—The eye according to Alhacen (Ibn al-Haytham). MS Fatih 3212, vol. 1, fol. 81b, Süleimaniye Mosque 
Library, Istanbul.
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requires the presence of some luminous body so that a 
potentially transparent homogeneous medium (that can be 
found especially in air and water) could become actually 
transparent. As opposed to Plato, for Aristotle this actu-
alisation is a qualitative change, there is no movement 
involved. On this topic, Melo seems to be closer to Plato, 
although his position is somewhat ambiguous. 

GAlEn

Francisco de Melo’s interests were not only focused on 
the nature of visual rays, the importance of light, or the 
more abstract concepts in the background. The anatomi-
cal details of the eye were also the object of his attention. 
For Melo, the eye is made up of three tunics (Cornea, 
Uvea and Arachnoid) and three humours (Albugineous 
Humour, Vitreous Humour and Crystalline). Melo jus-
tifies the absence of the Conjunctiva, which Galen (2nd 
century AD) includes in his description of the eye, be-
cause it is an external part that does not interfere in the 
process that leads to vision, despite its important func-
tion of connecting the eye to the bone in the head. In the 
manuscripts of the Corollary to Euclid’s Perspective that 
have survived, the figure representing the eye is miss-
ing. However, one can understand, by Melo’s descrip-
tion, that the anatomy of the eye that he proposes is not 
only inspired by Galen’s but also includes other later 
contributions, in particular the one that Alhacen pop-
ularised in his most famous book, De aspectibus/Kitāb 
al-manāzir (Figure 3).
 Contrary to what happens with the Conjunctiva, about 
which they have at least a formal discrepancy, Melo and 
Galen agree that the seat of vision is located in or around 
the Crystalline (the lens of the eye), an idea that Aristotle 
also defended.

thEodosius of BithyniA

Since Melo’s approach is very geometric, many of the 
propositions involving the eye are actually results about 
spheres. To justify the relative position of the compo-
nents of the eye, or the shape of the common sections of 
the humours that make it up, Melo resorts to geometry. 
Sometimes through results that he himself demonstrates, 
in other occasions using propositions from Theodosius’ 
Sphaerics. An example of the first case is the Lemma in 
which Melo proves the following:

If two unequal circles intersect, each will be divided into unequal 
arcs, and the smaller arc of the larger circle will be contained with-
in the smaller circle. In the same way, two unequal spheres will 
not be cut into equal parts, and the smaller section of the larger 
one will be contained within the smaller one.

Melo’s demonstration makes use of some results from 
Euclid’s Elements and also of  Proposition Fifteen, which 
he has proved earlier. The referred proposition can serve 
us as an example for the second case, since in order to 
show that a particular line passes through the centre 
of certain spheres (that are abstract representations of 
some components of the eye), Melo uses results from 
Theodosius (2nd century BC) to shortcut the argument. 
According to some authors, including Thomas Heath, 
Theodosius was not a particularly original mathema-
tician. Heath goes so far as to describe him as nothing 
but a laborious compiler. Nevertheless, the theorems and 
proofs from Theodosius’ textbook appear in important 
works on geometric optics, not only in that of Francisco 
de Melo. Despite Witelo never mentioning Theodosius 
in his treatise on optics (Witelo’s Perspectiva), the simi-
larity of various results and proofs to those we can find 
in Sphaerics indicates that he had a thorough knowledge 
of Theodosius’ work. 
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by Alexandra Baptista*, Ana Mendes*, Milton Ferreira*
 and Nelson Vieira**

7th Workshop 
New Trends in Quaternions and 
Octonions — NTQO 2023

REpORt

The Seventh International Workshop New Trends in 
Quaternions and Octonions — NTQO 2023, took place 
from October 27th to 28th, 2023, at the School of Tech-
nology and Management (ESTG) of the Polytechnic of 
Leiria (IPLeiria) and at the M|I|MO Museum located in 
the center of Leiria.
 The event was organized by the Department of Math-
ematics of the ESTG and the Center for Research and 
Development in Mathematics of the University of Aveiro 
(CIDMA-UA), in collaboration with the Center of Mathe-
matics of the University of Minho (CMAT-UMinho), the 
Center of Mathematics and Applications of the Univer-
sity of Beira Interior (CMA-UBI), and the International 

Center for Mathematics (CIM). 
 This series of workshops aims to bring together re-
searchers from pure and applied mathematics, physics, 
scientific computing, and engineering, to present recent 
advances in the research on quaternions and octonions, 
and their applications. In this edition were presented 
several short communications, and four invited lectures 
by Alessandro Perotti  (University of Trento, Italy), Aleš 
Ude (Jožef Stefan Institute, Slovenia), João Pimentel 
Nunes (Instituto Superior Técnico, Portugal) and José 
María Pérez Izquierdo (University of La Rioja, Spain), 
see

https://sites.google.com/view/ntqo2023
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AN INtERvIEw wIth

Richard A. Davis
by Miguel de Carvalho*

* School of Mathematics, University of Edinburgh; Departament of Mathematics, Universidade de Aveiro

Richard A. Davis (born 11 September 1952) is a world authority in the fields of Time Series Analysis 
and Extreme Value Theory. He holds the position of Howard Levene Professor of Statistics at Co-
lumbia University. He earned his PhD in Mathematics from the University of California at San Diego 
in 1979. Throughout his academic career, Davis has served in various capacities at institutions such 
as MIT, Colorado State University, and Columbia University, in addition to having visiting roles at 
a range of other universities (e.g., Hans Fischer Senior Fellow at the Technical University of Mu-
nich 2009–12; Villum Kan Rasmussen Visiting Professor at the University of Copenhagen 2011–13; 
Chalmers Jubilee Professor at Chalmers University of Technology 2019).
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Richard, can you tell us about your early life?
I grew up in a small town outside of Ann Arbor, Michigan. 
Our family lived on a lake, where boating and related 
activities occupied a big part of my childhood at least during 
the summers. My mother was born and raised in the New 
York City borough of Brooklyn and she headed west for 
college to attend the University of Michigan (UM). There, 
she met my father, married, and they ended up settling 
on the outskirts of a small town called Pinckney to raise 
a family. Schools in these rural areas were limited in their 
academic standards and my mother coming from New 
York City, where education tended to be highly valued, she 
made arrangements for her children (4 boys of which I am 
the youngest)  to attend the UM Laboratory School in Ann 
Arbor.  This was not an easy commute as our home was 
located nearly 20 miles away. The UM school was a training 
ground for K-12 grade teachers and curriculum development 
at UM’s School of Education. So we were lucky especially 
in later grades to have professors and student teachers 
from the school of education to experiment with curriculum 
and modern teaching techniques. So I think I really got my 
academic start going to this special school.

How important was this stage for your passion for 
Mathematics?
Primary schools in rural areas in the 1950s were not 
particularly good and by making the move to the University 
School, I was exposed to a more modern and engaging 
educational experience. The teachers were extremely good, 
especially the math teachers who either had their PhDs (or 
were pursuing PhDs) in math education. They were inspiring 
and novel in their approach to teaching mathematics (as 
well as other subjects) for which I seem to have some skill. 
In particular one math teacher used our class as a testing 
ground for his forthcoming book on algebra and geometry, 

and as my brother reminded me recently, I took great pride 
in finding the most mistakes (misprints?) in the book. In 
any event, these young and energetic math teachers clearly 
activated my interest in mathematics.

Did a particular moment significantly influence your 
interest in Mathematics?

Although I loved playing math games and was very good at 
them, I never imagined making a career out of math. I began 
my college studies at Michigan State University (MSU), 
which might seem kind of strange growing up in Ann Arbor, 
the home of UM. I started college as an undeclared major 
and at some point in time, the School of Education, which 
was at capacity for majors, opened up their program briefly 
for new majors. Since my mother was an elementary school 
teacher and it was time to declare a major area of study, I 
chose, in a moment of indecision, to declare math education 
as my major. This seemed like a safe choice, but teaching 
at the high school level was something I really didn’t want 
to do as a career choice. Math education was a short-lived 
selection. During my high school and college years, I was 
heavily involved with sailboat racing. I had worked for a sail 
making company during high school and my brother and 
I raced sailboats all over the country and even overseas a 
few times. So I became very good at it. I was sailing almost 
every single day and sailed for the MSU sailing team. In 
the summer of 1972, I competed for MSU in the collegiate 
national championships held on Mission Bay in San Diego. 
Coming from Michigan, this was the most idyllic place I had 
ever seen. After the championship regatta, I immediately 
applied to the University of California at San Diego 
(UCSD), mainly to further my sailing career. I transferred to 
UCSD in the middle of my junior year and  began racing for 
the UCSD team. Since UCSD did not have an education 
major, I began as a full-fledge math major. I did the usual 

 Davis is a Fellow of the Institute of Mathematical Statistics and the American Statistical Associa-
tion. He has also been recognized as an elected member of the International Statistical Institute. In 
2016, he served as the president of the Institute of Mathematical Statistics, and from 2010 to 2012, he 
held the position of Editor-in-Chief for the Bernoulli Journal. He co-authored the widely acclaimed 
books Time Series: Theory and Methods and Introduction to Time Series and Forecasting alongside Peter 
Brockwell, and also developed the ITSM2000 software for time series analysis. Davis also co-edited 
the Handbook in Financial Time Series and the Handbook of Discrete-Valued Time Series. In 1998, he 
and W. T. M. Dunsmuir were awarded the Koopmans Prize for their contributions to Econometric 
Theory.
 A mentor to more than 30 PhD students, his research spans time series, applied probability, ex-
treme value theory, and heavy-tailed modeling, with a focus on network models and spatial-temporal 
modeling.

18



topics of a math major, real and complex analysis, logic, 
partial differential equations, and algebra, but definitely no 
probability or statistics!

Graduate School was your next step — why?
After graduating from UCSD, I decided to continue to 
live in San Diego in order to further my sailing career and 
also because I just didn’t really know what to do next. I 
was admitted into the PhD program at UCSD, and was 
supported as a teaching assistant (TA). During the first year 
of graduate school, I took the basic core PhD courses such 
as abstract algebra, complex analysis, and applied math. 
After doing well in year 1, I was trying to decide what to do 
for year 2 — I really had no clue — whereupon my office 
partner and fellow graduate student, Gail Gong, told me I 
should take statistics. She heard there’s a future in statistics 
with plenty of job opportunities. So I followed Gail’s advice 
and after talking to the first year graduate advisor, who was a 
logician and had no clue about statistics, I signed up to take 
the PhD level mathematical statistics course.

And Rosenblatt, who would become your supervisor, was 
teaching that course?
Yes, indeed. I hadn’t taken any courses in probability and 
statistics previously so I decided to meet with Murray 
Rosenblatt before the summer break to see what sort 
of preparation I could do. I would be spending the 
summer sailing in regattas, one of which was the World 
Championships in France, so I would have to study while 
training and preparing for the upcoming racing season. 
Murray, who was very supportive and encouraging, 
suggested I have a look at Cramér’s book, Mathematical 
Methods of Statistics. So I read the book over the summer, 
which was quite the challenge especially for someone 
without a rudimentary background in probability and 
statistics. I made it through the first quarter of the course. 
During the second term, Murray asked me if I would be 
willing to read a paper on extreme value theory written by 
Ross Leadbetter. Of course, I said yes, but really didn’t know 
exactly what he wanted me to do with the paper. I was naive 
and had no clue about how the publication and refereeing 
process for research papers worked. I came to learn that 
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the Leadbetter paper was being considered for a special 
volume that Murray was editing and that he was using me 
as a referee. So in a way, this might have been a screening 
test of sorts to see if I had any ability to read papers and 
provide reasonable feedback. Leadbetter’s paper contained 
some open questions, and so I started to think about solving 

them. And then a month or so later, Murray asked, “Do 
you want to work with me?” I was shocked that anybody 
would be interested in having me as their student and so I 
just said yes immediately. I later heard from other students, 
who were much more connected than me, that Murray 
was well-known in the probability and statistics community 
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and that I had made a good decision without having done 
any sort of due diligence. I was just happy that someone 
was interested in being my advisor. As it turns out, there 
was a second professor also interested in having me as a 
student. In my second year of graduate school, I also took 
a year long course in noncommutative ring theory. Why 
I did this, I have no idea! Not more than a couple weeks 
after I had committed to Murray, the algebraicist teaching 
noncommutative ring theory asked if I wanted to do 
noncommutative ring theory with him! The timing was close, 
but I was relieved that Murray had already approached me--
noncommutative ring theory was not going to be for me. So 
that’s how I got started working in probability and statistics.  
It was purely by accident and certainly not preordained in 
any way. And it turned out to be fantastic! 

What other books or people might have influenced 
you beyond Rosenblatt and beyond the books you’ve 
mentioned as well?
There was a very strong group of probabilists at UCSD 
including Ron Getoor, Michael Sharpe, Adriano Garsia, and 
Murray Rosenblatt, who attracted a significant number of 
PhD students interested in probability theory. I tended to 
hang out with this group of students, even though I wasn’t 
a hardcore probabilist, at least relative to the others. I took 
measure-theoretic probability from Michael Sharpe, who 
in my book, was the best professor I ever had. To this day, 
I still think about his lecturing style and try to emulate him 
as much as possible. Sharpe would come into class with just 
a piece of chalk, no notes, and he would lay out the most 
beautiful and perfect lecture every time. He was a master of 
the subject.
 The books that influenced me early on in graduate 
school were essentially texbooks: Rudin’s Real and Complex 
Analysis; Breiman’s Probability, and the two volumes of 
Feller’s books An Introduction to Probability Theory and 
its Applications. I can’t really recall any book in statistics, 
other than Cramér’s, of course, that made a major impact 
on me at that time. Rather it was more reading papers and 
technical reports in extreme value theory especially those 
by Leadbetter and collaborators and a couple reports by 
Breiman and Stone.

What came after UCSD?
After UCSD, my first academic position was a two year 
appointment as an instructor in applied mathematics at MIT. 
In actuality, I was part of a statistics subgroup consisting 
of 5 to 6 people that was embedded in the mathematics 
department and headed up by Herman Chernoff.
 The MIT opportunity was an amazing experience 

because I didn’t really have much exposure to applied 
statistics. And Chernoff, who was one of the giants in 
statistics, had wonderful insight and could translate a real 
world question into a meaningful statistical one with real 
skill. Hanging around Chernoff was just an unbelievable 
experience. He would bring in experts from around MIT and 
elsewhere for seminars, whether it be leading economists or 
astronomers or climate scientists and he would brainstorm 
about their problems with our small group of statisticians.

Why Colorado?
After my two-year experience at MIT, it was time to leave 
and fortunately, I had many attractive options. I ended 
up choosing the Statistics Department at Colorado State 
University (CSU), mainly for two reasons. The first was that 
my brother was already living in Colorado and it would be a 
great opportunity to reconnect with him. Second, CSU was 
developing a very strong group in applied probability. Peter 
Brockwell was the senior guy of that group that included Sid 
Resnick and Simon Tavaré, who was hired the same year as 
me. So there was the four of us in this group for a number 
of years. It was a closely-knit group in the sense that we not 
only worked together on various research projects, but our 
families became life long friends as well. Sid and I embarked 
on a variety of problems in extreme value theory and Peter 
and I began writing our books on time series analysis. It was 
an exciting and productive time for me. Peter, Sid, and I had 
a number of National Science Foundation grants during this 
period. It was wonderful that Peter and Sid took me under 
their wings, and showed, by example, how to become a 
professional academic. They always treated me as an equal 
and never as a junior partner in our research endeavors. I 
don’t think they ever viewed themselves as mentors to me, 
but rather kept their eye out on me so that I didn’t screw up.

How did you get to lead the department in CSU?

We had a series of really great chairs in the statistics 
department, and after Sid left for Cornell in 1987, this 
was a blow to me both personally and professionally. We 
maintained our research program for a few more years, 
but it was difficult to sustain when we were not at the same 
institution. Sid and I had a great collaboration as we both 
brought different perspectives to the table and learned 
from each other. The papers we wrote in the 80’s have aged 
well — they are still widely cited today. Around the same 
time that Sid left CSU, Peter returned to Australia. His 
future status about living in either Australia or Colorado was 
uncertain for the next 15 years or so. The bottom line is that 
there was a lot of uncertainty about the future of applied 
probability and time series at CSU during this period. 
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Fortunately, we were able to lure to CSU Richard Tweedie, 
an Australian, who was a powerhouse in Markov chains. Also, 
perhaps less known, was that Richard was also an amazing 
applied statistician who was a player in some of the major 
issues of the time in applied statistics. So Richard filled an 
important leadership gap in the department and became the 
chair of the department shortly after his arrival. After one 
term as chair, Richard stepped down due primarily to health 
issues. The Dean of Natural Sciences talked to me about 
succeeding Richard, and although my research career was 
going great, I agreed to take a stab at being chair in 1997.

So Columbia was the next step?
Yes, Columbia was the next stop, but this came 10 years 
later! In early 2006, some faculty from the Statistics 
Department at Columbia approached me about the 
possibility of joining the department. Now I am mostly a 
country boy and never envisioned living in a moderately 
sized city let alone one as big as NYC. They suggested I 
come out to give a talk in the department and see what 
it was like. I had become somewhat disillusioned with the 
lackluster support I was receiving from CSU’s administration, 
so was more open to the idea of a possible move. Of course, 
my wife had to be comfortable moving to New York, which 
would represent a major change in our life style. After 
visiting NY and seeing what Columbia had to offer, my wife 
said she was willing to make the move. After giving my go 
ahead to Columbia, they made me an offer a few months 
later and I accepted — end of story.

How did you manage to balance research with chairing 
the Departments at CSU and Columbia?
This may seem strange, but I think some of my most 
productive research years occurred while I was chair of the 
departments at CSU and Columbia! I am not sure that I 
have a good reason for this. There is a saying attributed to 
Benjamin Franklin that, “if you want something done, ask 
a busy person,” and I think there is a lot of truth in this. I 
reduced my teaching load substantially while being chair 
which allowed me to visit various collaborators for 2-week 
periods. I could get a lot done during these getaways, while 
being away from everyday hassles in running a department, 
and then I would continue to finish up these projects upon 
returning home. This model worked well for me. Now when I 
have less responsibilities, I feel less productive — it’s strange!

One final curiosity. Was your first encounter with the 
regular variation related or unrelated with extreme value 
theory?
No, it’s definitely related to extreme value theory. And of 
course, I knew about this in graduate school, but I didn’t 
have such a great appreciation for it until I interacted with 
Resnick at CSU.

Thank you so much, Richard. It has been a great pleasure 
and honor.
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REpORt

by Natália Maria Rego*,**

V Non-Associative day in Barcelos
Instituto Politécnico do Cávado de Ave (Barcelos, Portugal)

The V Non-Associative Day in Barcelos belongs to a 
series of activities aiming to bring together researchers 
interested in non-associative algebras and related 
topics, with a central goal of increasing the quality of 
research, promoting interaction among researchers, and 
discussing new directions for the future. 
 The Organizing Committee of this event was 
constituted by members of CMUP in collaboration with 
the following members of the research centers CMA-
UBI and CMUC. Moreover, these members represented 
Portuguese higher education institutions.

Natália Rego, Teresa Abreu
CMUP – Instituto Politécnico do Cávado de Ave

Ivan Kaygorodov
University of Beira Interior; CMA-UBI

Amir Fernandez Ouaridi
CMUC – Universidade de Coimbra

The workshop was held at the Polytechnic Institute of 
Cávado and Ave, on January 20 and had the participation 
of seven invited speakers,
 This event was supported by CIM – Centro Interna-
cional de Matemática.
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Program

10.00
Saïd Benayadi
Université de Lorraine-Metz, France
On pseudo-Euclidean Lie algebras whose Levi-Civita 
product is left Leibniz

11.00
Ignacio Bajo
Universidade de Vigo, Spain
Nilpotent pseudo-Hermitian quadratic Lie algebras

12.00
Lunch

15.00
Jorge Garces
Universidad Politécnica de Madrid
On the strict topology of the multipliers of a JB*-algebra

16.00
Daniel Fox
Universidad Politécnica de Madrid, Spain
Partial and quantitative associativity conditions and trace-
forms

17.00
Coffee Break

17.30
Esther García González
Universidad Rey Juan Carlos, Spain
The filtration associated to an abelian inner ideal

18.00
Pedro Lopes
CAMGSD—Universidade de Lisboa, Portugal
Quandles and their profiles

19.00
Mykola Khrypchenko
CMUP—Universidade do Porto, Portugal
Transposed Poisson structures on Block Lie algebras and 
superalgebras

21.00
Dinner

24



geoMeTry on surfaces and higgs bundles 
by Peter B. Gothen*,**

* CMUP e Departamento de Matemática, Faculdade de Ciências da Universidade do Porto. 
 Email: pbgothen@fc.up.pt
** Partially supported by CMUP under the projects UIDB/00144/2020, UIDP/00144/2020, and the project 
 EXPL/MAT-PUR/1162/2021 funded by FCT (Portugal) with national funds.

Abstract.—There are three complete plane geometries of constant curvature: spherical, Eu-
clidean and hyperbolic geometry. We explain how a closed oriented surface can carry a geom- 
etry which locally looks like one of these. Focussing on the hyperbolic case we describe how 
to obtain all hyperbolic structures on a given topological surface, and how to parametrise 
them. Finally we introduce Higgs bundles and explain how they relate to hyperbolic surfaces.

1 Introduction

The idea of considering geometry on a surface is well
known to inhabitants of Planet Earth. Indeed, as any
explorer knows, spherical geometry is appropriate.
In this geometry distance is measured along arcs of
great circles. These are the geodesics of spherical ge-
ometry, just like the geodesics of plane Euclidean ge-
ometry are segments of straight lines.

The spherical surface and the Euclidean plane are
both complete, meaning that any geodesic can be ex-
tended indefinitely. Moreover they both have con-
stant curvature, positive in the case of the sphere, and
zero in the case of the plane. There is also a complete
2-dimensional geometry of constant negative curva-
ture, namely the hyperbolic plane (which we shall in-
troduce below).

The sphere is an example of a closed surface, i.e.,
a surface which is compact and has no boundary (as
opposed to a closed disk, for example). Topologically,
closed orientable surfaces are classified by the genus
𝑔𝑔, a non-negative integer: a surface of genus 𝑔𝑔 can be
realised inside 3-space as a 𝑔𝑔-holed torus as illustrated
in Figure 1. We have seen that the genus zero sur-
face supports spherical geometry but what about the
other surfaces? Our first main goal in this article is
to explain how the torus (genus one) supports a com-

plete geometry which locally looks like the Euclidean
plane, while a surface of genus 𝑔𝑔 𝑔 2 can be given a
complete locally hyperbolic geometry. This involves
considering certain special subgroups of the matrix
group SL(2, ℝ). We shall then see how the algebra
and geometry of the matrix group SL(2, ℝ) interact
in interesting ways, and how this sheds light on the
question of which subgroups give rise to hyperbolic
surfaces.

Our second main goal is to explain how consider-
ing the set of all possible hyperbolic structures on a
fixed topological surface of genus 𝑔𝑔 𝑔 2 leads to inter-
esting and beautiful mathematics. Thus we introduce
moduli spaces and explore some of their properties.

Finally, we shall give an introduction to Higgs bun-
dles. We shall show how they can be used to shed
new light on the theme of hyperbolic structures on
surfaces and indicate their role in recent generalisa-
tions of some of the results explained earlier in the
article.

The paper is mostly expository, only the final Sec-
tion 8.4 includes some results in which the author has
been involved.

For reasons of space the references are by no
means complete, but we hope the interested reader
will be able to use them as a starting point for further
exploration.

1
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Figure 1.— Genus of a surface Figure 2.—A Euclidean surface

2 Euclidean surfaces

We want to explain how to do Euclidean geometry on
a closed surface, in a way which makes the generali-
sation to the hyperbolic case natural.

2.1 The Euclidean plane

Using Cartesian coordinates we identify the Eu-
clidean plane 𝔼𝔼2 with the coordinate plane ℝ2. Dis-
tance is determined by calculating the length of a
parametrised curve 𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼 𝛼𝛼𝛼 𝛼 ℝ2 in the usual way:
𝑙𝑙𝑙𝛼𝛼𝑙 𝑙 ∫𝛼𝛼

𝛼𝛼 |𝛼𝛼′𝑙𝑡𝑡𝑙|𝑡𝑡𝑡𝑡. This is usually expressed by say-
ing that in Cartesian coordinates 𝑙𝑥𝑥𝛼 𝑥𝑥𝑙 𝑥 ℝ2 on 𝔼𝔼2

the Euclidean element of arc length 𝑡𝑡𝑑𝑑 is given by

𝑡𝑡𝑑𝑑2 𝑙 𝑡𝑡𝑥𝑥2 + 𝑡𝑡𝑥𝑥2. (1)

Moreover, the distance preserving transformations
form a group, Isom𝑙𝔼𝔼2𝑙, which is called the isome-
try group of 𝔼𝔼2. An example of isometries are trans-
lations. Using coordinates 𝔼𝔼2 ≅ ℝ2, the translation
𝐴𝐴𝛼 𝔼𝔼2 𝛼 𝔼𝔼2 by the vector a 𝑥 ℝ2 can be written

𝐴𝐴𝑙𝐴𝐴 𝑙 𝑙 𝐴𝐴 + 𝐴𝐴.

2.2 Euclidean surfaces

The Euclidean plane 𝔼𝔼2 is obviously not a closed sur-
face. However, we can build a closed surface by tak-
ing a parallellogram in the plane and gluing its oppo-

site sides, as illustrated in Figure 2: sides labeled with
the same letter are to be glued with the orientation in-
dicated by the arrows. We can carry out this process
in 3-space — in a non-distance preserving way! — to
convince ourselves that the resulting surface is really
a topological torus.

More formally, we take linearly independent vec-
tors a and 𝐛𝐛 generating the sides labeled 𝛼𝛼 and 𝛼𝛼. Let
𝐴𝐴 and 𝐵𝐵 be the translations by the vectors a and b,
respectively, and consider the subgroup

Γ 𝑙 ⟨𝐴𝐴𝛼 𝐵𝐵𝐴 𝐴 Isom𝑙𝔼𝔼2𝑙
generated by them inside the isometry group of 𝔼𝔼2.
This is just the group of translations by vectors of the
form 𝑛𝑛a + 𝑚𝑚b, where 𝑚𝑚𝛼 𝑛𝑛 𝑥 ℤ. Since translations
commute, the generators of Γ satisfy the single rela-
tion

𝛼𝐴𝐴𝛼 𝐵𝐵𝛼 𝑙 𝐴𝐴𝛼

where 𝛼𝐴𝐴𝛼 𝐵𝐵𝛼 𝛼𝑙 𝐴𝐴𝐵𝐵𝐴𝐴−1𝐵𝐵−1 is the commutator and
𝐴𝐴 is the identity. The orbit space

𝔼𝔼2/Γ
is obtained identifying points 𝐴𝐴 𝛼 𝑃𝑃 𝑥 𝔼𝔼2 if there is a
𝛾𝛾 𝑥 Γ such that 𝑃𝑃 𝑙 𝛾𝛾𝑙𝐴𝐴 𝑙. Its points correspond to
orbits Γ ⋅ 𝑃𝑃 𝑙 𝑄𝛾𝛾𝑙𝑃𝑃𝑙 | 𝛾𝛾 𝑥 Γ𝑄. Thus each point of
the interior of the paralellogram generated by a and
𝐛𝐛 corresponds to a unique point of 𝔼𝔼2/Γ, and pairs
of points on opposite sides are identified via the cor-
responding translation, thus realising the desired glu-
ing. Hence 𝔼𝔼2/Γ is a locally Euclidean surface, which
is topologically a torus.

2
26



Figure 3.—Four copies of P

As illustrated in Figure 3 the four vertices of the paral-
lelogram 𝑃𝑃 get identified in 𝔼𝔼2/Γ. Moreover, there
are four copies of the parallelogram meeting there,
which fit together because of the relation [𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴 𝐴𝐴 ;
the Euclidean metric is not distorted because the sum
of the internal angles of the parallelogram is exactly
2𝜋𝜋.

From a more abstract point of view, a key point is
that the group Γ has the following property: for ev-
ery point 𝑃𝑃 in 𝔼𝔼2, there is an open neighbourhood
𝑈𝑈 such that 𝛾𝛾𝛾𝑈𝑈𝛾 Z 𝑈𝑈 𝐴 𝑈 for all 𝛾𝛾 different from
the identity. We say the action of Γ on 𝔼𝔼2 is prop-
erly discontinuous. This property ensures that for each
𝑄𝑄 𝑄 𝑈𝑈 its orbit Γ ⋅ 𝑄𝑄 𝐴 𝑄𝛾𝛾𝛾𝑄𝑄𝛾 𝑄 𝛾𝛾 𝑄 Γ𝑄 has
a unique representative (namely 𝑄𝑄 itself) in 𝑈𝑈 , so
that 𝑈𝑈 works as a coordinate patch for 𝔼𝔼/Γ around
Γ ⋅ 𝑃𝑃 . This, together with the fact that the elements
of Γ are isometries, means that 𝔼𝔼2/Γ has a well de-
fined distance function: indeed, the arc length of a
parametrised curve in 𝔼𝔼2/Γ can be calculated using
the formula (1) which is invariant under isometries.

Note that we can also construct non-compact sur-
faces in this way. For example, if we take Γ to be the
subgroup generated by a single translation, we obtain
a cylinder. This is a locally Euclidean surface which,
unlike the Euclidean torus, can be easily visualised in
3-space by rolling up a sheet of paper.

The so-called Killing–Hopf Theorem implies that
any complete connected locally Euclidean surface can
be represented as 𝔼𝔼2/Γ, where Γ acts freely and prop-
erly discontinuously on 𝔼𝔼2 (see, for example, Still-

well [16]).

3 Hyperbolic surfaces

3.1 The hyperbolic plane

We start by describing the hyperbolic plane ℍ2. Hy-
perbolic geometry is different from spherical and Eu-
clidean geometry in that it is not possible to embed
(smoothly) ℍ2 in Euclidean 3-space in a distance pre-
serving way. Instead we consider the upper half plane
model, defined by

ℍ2 𝐴 𝑄𝑧𝑧 𝐴 𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧 𝑄 ℂ 𝑄 𝑧𝑧 𝑦 𝑦𝑄
with element of arc length

𝑑𝑑𝑑𝑑2 𝐴 𝑑𝑑𝑧𝑧2 𝑧 𝑑𝑑𝑧𝑧2

𝑧𝑧2 .

In the model ℍ2 geodesics are open arcs of semi-
circles orthogonal to the real axis ℝ 𝐴 𝑄𝑧𝑧 𝐴 𝑦𝑄 𝑦 ℂ
together with open half-lines orthogonal to ℝ. Note
that the hyperbolic plane is complete, so these curves
do in fact have infinite hyperbolic length. Moreover,
orientation preserving isometries can be represented
by Möbius transformations

𝑧𝑧 𝑧 𝐴𝐴 ⋅ 𝑧𝑧 𝐴 𝑎𝑎𝑧𝑧 𝑧 𝑎𝑎
𝑐𝑐𝑧𝑧 𝑧 𝑑𝑑

𝐴

where

𝐴𝐴 𝐴 (
𝑎𝑎 𝑎𝑎
𝑐𝑐 𝑑𝑑) 𝑄 SL𝛾2𝐴 ℝ𝛾

3
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is a real 2×2-matrix of determinant one. As examples
we can take

𝐴𝐴 𝐴 (
𝜌𝜌 𝜌
𝜌 𝜌𝜌)

which gives a hyperbolic translation whose axis is the
imaginary axis in ℍ2, and

𝐴𝐴 𝐴 (
cos 𝜃𝜃 𝜃 s𝜃𝜃 𝜃𝜃
s𝜃𝜃 𝜃𝜃 cos 𝜃𝜃 )

which gives a hyperbolic rotation about 𝑖𝑖 𝑖 ℍ2 by the
angle 2𝜃𝜃.

We note that 𝐴𝐴 and 𝜃𝐴𝐴 define the same Möbius
transformation, so the group of orientation pre-
serving isometries is really the quotient group
PSL(2, ℝ) 𝐴 SL(2, ℝ)/{±𝐼𝐼𝐼. We shall mostly ignore
this distinction in what follows but it will become rel-
evant in Section 7 below.

We finish this section by commenting on the topol-
ogy of SL(2, ℝ). Identifying the set of all 2 × 2-
matrices

(
𝑎𝑎 𝑎𝑎
𝑐𝑐 𝑐𝑐)

with ℝ4, the group SL(2, ℝ) is the subset cut out by
the equation 𝑎𝑎𝑐𝑐 𝜃 𝑎𝑎𝑐𝑐 𝐴 𝑎. Thus it has a topology
inherited from ℝ4. In fact the Implicit Function The-
orem applied to this equation shows that SL(2, ℝ) is
a 3-dimensional Lie group, meaning that it can be cov-
ered by local coordinate systems in 3-space and that
the group operations are differentiable in these coor-
dinates.

3.2 Hyperbolic surfaces

As we shall see, a closed orientable topological surface
of genus 𝑔𝑔 can be given a hyperbolic structure for any
𝑔𝑔 𝑔 2. In the case of 𝑔𝑔 𝐴 2, take an octagon with
gluing instructions to create a surface as illustrated in
Figure 4. If we cut the octagon along the diameter in-
dicated, we see that indeed the resulting surface has
genus 2, as desired.

In order to get a nice hyperbolic surface, the oc-
tagon should be taken in the hyperbolic plane (it will
look very different from that of 4). And, in a manner

analogous to the Euclidean case, we require that pairs
of sides which are to be glued have the same length.
Moreover, the vertices of the octagon all get identi-
fied to one point in the surface, so the internal angles
should add up to 2𝜋𝜋. This condition sounds strange
to our Euclidean wired brains but, it is a fact that such
an octagon exists.[1]

In order to write the surface as ℍ2/Γ for a suit-
able subgroup Γ ⊂ SL(2, ℝ) we take hyperbolic trans-
lations 𝐴𝐴𝑖𝑖 and 𝐵𝐵𝑖𝑖 giving the required identifications,
and let Γ be the group generated by these translations.
The octagon then becomes a fundamental domain for
the action of Γ. The condition that the interior angles
add up to 2𝜋𝜋 is equivalent to the identity

[𝐴𝐴𝑎, 𝐵𝐵𝑎][𝐴𝐴2, 𝐵𝐵2] 𝐴 𝐼𝐼
in SL(2, ℝ). In general, we let Γ𝑔𝑔 be the abstract group

Γ𝑔𝑔 𝐴 ⟨𝑎𝑎𝑎, 𝑎𝑎𝑎, … , 𝑎𝑎𝑔𝑔, 𝑎𝑎𝑔𝑔 |
𝑔𝑔

∏
𝑖𝑖𝐴𝑎

[𝑎𝑎𝑖𝑖, 𝑎𝑎𝑖𝑖] 𝐴 𝑎⟩.

This group is known as a surface group.[2] In view of
the genus 2 example it is hopefully not a surprise that
genus 𝑔𝑔 surfaces can be obtained from subgroups of
SL(2, ℝ) isomorphic to Γ𝑔𝑔 . In order to study all such
subgroups we consider homomorphisms 𝜌𝜌𝜌 Γ𝑔𝑔 →
SL(2, ℝ) (often also called representations). We say
that 𝜌𝜌 is Fuchsian if it is injective and its image is dis-
crete, i.e., consists of isolated points.[3] When 𝜌𝜌 is
Fuchsian it can be proved that the action of Γ𝑔𝑔 on ℍ2

is properly discontinuous. Hence the orbit space

𝑆𝑆𝜌𝜌 𝜌𝐴 ℍ2/𝜌𝜌(Γ𝑔𝑔),
is a nice hyperbolic surface of genus 𝑔𝑔 with charts
coming from ℍ2. Conversely, the Killing–Hopf The-
orem again tells us that any closed orientable hyper-
bolic surface is of this form.[4]

However, it is certainly not true that any homo-
morphism 𝜌𝜌𝜌 Γ𝑔𝑔 → SL(2, ℝ) defines a closed hyper-
bolic surface: for example, the trivial homorphism
clearly does not! This leaves us with the following

Question: Let 𝜌𝜌𝜌 Γ𝑔𝑔 → SL(2, ℝ) be a representation.
How can we tell if 𝜌𝜌 defines a closed hyperbolic sur-
face?

[1] In fact, in hyperbolic geometry the sum of the internal angles of a polygon depends on its area!
[2] The group Γ𝑔𝑔 can be identified wth the fundamental group of a topological surface of genus 𝑔𝑔.
[3] Recall that topological notions make sense viewing SL(2, ℝ) ⊆ ℝ4.
[4] As already noted, we should really consider representations to PSL(2, ℝ). However, it turns out that representations defining closed

hyperbolic surfaces can always be lifted to SL(2, ℝ).
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Figure 4.—Genus 2 surface from an octagon

4 Topology and algebra of SL(2, ℝ)

In order to answer the question at the end of the last
section we shall define an invariant of representations
𝜌𝜌𝜌 𝜌 𝜌 SL(2, ℝ). For that we shall need to under-
stand how the topology and algebra of SL(2, ℝ) inter-
act.

The subgroup SO(2) ⊆ SL(2, ℝ) of rotation ma-
trices

𝐸𝐸(𝐸𝐸) 𝐸 [
cos 𝐸𝐸 𝜃 s𝜃𝜃 𝐸𝐸
s𝜃𝜃 𝐸𝐸 cos 𝐸𝐸 ]

can be identified with a circle.
The map 𝐸𝐸 𝜌 ℝ 𝜌 SO(2), 𝐸𝐸 𝜃 𝐸𝐸(𝐸𝐸) wraps the

real line around the circle, and it satisfies 𝐸𝐸(𝐸) 𝐸 𝐸𝐸
and 𝐸𝐸(𝐸𝐸1 + 𝐸𝐸2) 𝐸 𝐸𝐸(𝐸𝐸1)𝐸𝐸(𝐸𝐸2). In other words, 𝐸𝐸 is a
group homomorphism from the additive group ℝ to
SO(2).

Now, thinking of SO(2) inside SL(2, ℝ), we want
to extend this picture and find a group S̃L(2, ℝ) con-
taining ℝ, with a surjective group homomorphism
𝑝𝑝𝜌 S̃L(2, ℝ) 𝜌 SL(2, ℝ) which restricts to 𝐸𝐸 𝜌 ℝ 𝜌
SO(2), i.e., making the diagram

ℝ 𝜃𝜃𝜃𝜃𝜌 S̃L(2, ℝ)
⏐⏐⏐↓𝐸𝐸

⏐⏐⏐↓𝑝𝑝

SO(2) 𝜃𝜃𝜃𝜃𝜌 SL(2, ℝ)
commutative (the horizontal maps are inclusions). In
fact it follows from general theory that such a group
exists and is essentially unique; it is known as the uni-
versal covering group of SL(2, ℝ). We shall explain
how it can be constructed explicitly, following [13,
§1.8], using the action of SL(2, ℝ) on the hyperbolic

plane ℍ2.
So let

𝐴𝐴 𝐸 [
𝑎𝑎 𝑎𝑎
𝑐𝑐 𝑐𝑐] ∈ SL(2, ℝ).

Write
𝑗𝑗(𝐴𝐴, 𝑗𝑗) 𝐸 𝑐𝑐𝑗𝑗 + 𝑐𝑐

for the denominator of 𝐴𝐴 𝐴 𝑗𝑗. Note that

𝑗𝑗(𝐸𝐸(𝐸𝐸), 𝑗𝑗) 𝐸 𝑗𝑗 s𝜃𝜃 𝐸𝐸 + cos 𝐸𝐸 𝐸 𝑗𝑗𝑗𝑗𝐸𝐸,
which indicates that this function can used to keep
track of the phase 𝐸𝐸. For each fixed 𝐴𝐴, we can con-
sider the holomorphic function

ℍ2 𝜌 ℂ ∖ {𝐸}
𝑗𝑗 𝜃 𝑗𝑗(𝐴𝐴, 𝑗𝑗) 𝐸 𝑐𝑐𝑗𝑗 + 𝑐𝑐.

Observe that 𝑐𝑐𝑗𝑗 + 𝑐𝑐 𝑐 𝐸 for 𝑗𝑗 ∈ ℍ. Therefore, since
ℍ2 is simply connected, there is a continuous deter-
mination of the logarithm of 𝑗𝑗(𝐴𝐴, 𝑗𝑗) 𝐸 𝑐𝑐𝑗𝑗 + 𝑐𝑐, i.e., a
continuous map 𝜙𝜙𝜌 ℍ2 𝜌 ℂ such that

𝑗𝑗𝜙𝜙(𝑗𝑗) 𝐸 𝑐𝑐𝑗𝑗 + 𝑐𝑐.
We want to make the point that such a 𝜙𝜙 can be ex-
plicitly calculated: simply choose a value 𝐸𝐸 for the
argument arg(𝑐𝑐𝑗𝑗 + 𝑐𝑐), write 𝑐𝑐𝑗𝑗 + 𝑐𝑐 𝐸 𝑐𝑐𝑗𝑗𝑗𝑗𝐸𝐸 and let
𝜙𝜙(𝑗𝑗) 𝐸 𝜙og(𝑐𝑐) + 𝑗𝑗𝐸𝐸. Then

𝜙𝜙(𝑗𝑗) 𝜃 𝜙𝜙(𝑗𝑗) 𝐸 ∫𝛾𝛾

𝑐𝑐𝑗𝑗
𝑗𝑗

𝐸 ∫

1

𝐸

𝑐𝑐(𝑗𝑗 𝜃 𝑗𝑗)𝑐𝑐𝑐𝑐
𝑐𝑐(𝑗𝑗 + 𝑐𝑐(𝑗𝑗 𝜃 𝑗𝑗)) + 𝑐𝑐

(here 𝛾𝛾 parametrises the segment joining 𝑐𝑐𝑗𝑗 + 𝑐𝑐 to
𝑐𝑐𝑗𝑗 + 𝑐𝑐). Note that 𝜙𝜙 is not unique, but it is uniquely
determined by the choice of 𝜙𝜙(𝑗𝑗). Thus any two de-
terminations 𝜙𝜙 differ by an integer multiple of 2𝜋𝜋𝑗𝑗.

Now define S̃L(2, ℝ) as the set of pairs (𝐴𝐴, 𝜙𝜙),
where 𝐴𝐴 ∈ SL(2, ℝ) and 𝜙𝜙𝜌 ℍ2 𝜌 ℂ is any contin-
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uous determination of the logarithm of 𝑗𝑗𝑗𝑗𝑗𝑗 𝑗𝑗𝑗. The
product on S̃L𝑗2𝑗 ℝ𝑗 is defined by

𝑗𝑗𝑗1𝑗 𝜙𝜙1𝑗 ⋅ 𝑗𝑗𝑗2𝑗 𝜙𝜙2𝑗 = 𝑗𝑗𝑗1𝑗𝑗2𝑗 ̃𝜙𝜙𝑗𝑗
where

̃𝜙𝜙𝑗𝑗𝑗𝑗 𝜙 𝜙𝜙1𝑗𝑗𝑗2 ⋅ 𝑗𝑗𝑗 𝑧 𝜙𝜙2𝑗𝑗𝑗𝑗𝑧
It is an easy calculation to check that

𝑗𝑗𝑗𝑗𝑗1𝑗𝑗2𝑗 𝑗𝑗𝑗 = 𝑗𝑗𝑗𝑗𝑗1𝑗 𝑗𝑗2 ⋅ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗2𝑗 𝑗𝑗𝑗
which implies that indeed

𝑒𝑒 ̃𝜙𝜙𝑗𝑗𝑗𝑗 = 𝑗𝑗𝑗𝑗𝑗1𝑗𝑗2𝑗 𝑗𝑗𝑗
as required. It is not hard to check that this defines a
group structure on S̃L𝑗2𝑗 ℝ𝑗. For example, for 𝑗𝑗 = 𝐴𝐴 ,
the identity matrix, we can take 𝜙𝜙𝑗𝑗𝑗𝑗 = 𝜙 and 𝑗𝑗𝑗𝑗 𝜙𝑗 is
the neutral element. Moreover, 𝑗𝑗𝑗𝑗 𝜙𝜙𝑗−1 = 𝑗𝑗𝑗−1𝑗 ̃𝜙𝜙𝑗,
where

̃𝜙𝜙𝑗𝑗𝑗𝑗 = −𝜙𝜙𝑗𝑗𝑗−1 ⋅ 𝑗𝑗𝑗𝑧 (2)

The projection 𝑝𝑝𝑝 S̃L𝑗2𝑗 ℝ𝑗 → SL𝑗2𝑗 ℝ𝑗 is of course
just 𝑗𝑗𝑗𝑗 𝜙𝜙𝑗 𝐴 𝑗𝑗. The inclusion ℝ ↪ S̃L𝑗2𝑗 ℝ𝑗 is
given by 𝜃𝜃 𝐴 𝑗𝜃𝜃𝑗𝜃𝜃𝑗𝑗 𝜙𝜙𝜃𝜃𝑗𝑗 where 𝜙𝜙𝜃𝜃 is the determi-
nation of log𝑗𝑗𝑗𝑗𝜃𝜃𝑗𝜃𝜃𝑗𝑗 𝑗𝑗𝑗𝑗 which satisfies 𝜙𝜙𝜃𝜃𝑗𝑖𝑖𝑗 = 𝑖𝑖𝜃𝜃
(recall that 𝑗𝑗𝑗𝜃𝜃𝑗𝜃𝜃𝑗𝑗 𝑖𝑖𝑗 = 𝑒𝑒𝑖𝑖𝜃𝜃).

Proposition 1.— The kernel of 𝑝𝑝𝑝 S̃L𝑗2𝑗 ℝ𝑗 →
SL𝑗2𝑗 ℝ𝑗 consists of pairs 𝑗𝐴𝐴𝑗 𝜙𝜙𝑗, where 𝐴𝐴 is the iden-
tity matrix and 𝜙𝜙 is a constant function taking values
in 2𝜋𝜋ℤ ⊂ ℝ.

Proof.— Clearly 𝑝𝑝𝑗𝑗𝑗𝑗 𝜙𝜙𝑗 = 𝐴𝐴 if and only if 𝑗𝑗 = 𝐴𝐴 .
Moreover, 𝑗𝑗𝑗𝐴𝐴𝑗 𝑗𝑗𝑗 = 1, so 𝜙𝜙 is a determination of the
logarithm of the constant function 𝑗𝑗 𝐴 1 𝑧 𝑧𝑧 , i.e., it
is a constant 𝜙𝜙 𝑧 2𝜋𝜋ℤ ⊂ ℝ. ∎

5 The Toledo Invariant

Let 𝜌𝜌𝑝 𝜌 → SL𝑗2𝑗 ℝ𝑗 be a representation. We shall
associate an integer invariant to 𝜌𝜌. This invariant is
known as the Toledo invariant, even though it was
actually introduced by Milnor [14], and sometimes is
referred to as the Euler number. Write

𝑗𝑗𝑖𝑖 = 𝜌𝜌𝑗𝜌𝜌𝑖𝑖𝑗𝑗 𝐵𝐵𝑖𝑖 = 𝜌𝜌𝑗𝜌𝜌𝑖𝑖𝑗
for 𝑖𝑖 = 1𝑗 𝑖 𝑗 𝑖𝑖. Choose lifts ̃𝑗𝑗𝑖𝑖 and ̃𝐵𝐵𝑖𝑖 in S̃L𝑗2𝑗 ℝ𝑗
such that 𝑝𝑝𝑗 ̃𝑗𝑗𝑖𝑖𝑗 = 𝑗𝑗𝑖𝑖 and 𝑝𝑝𝑗 ̃𝐵𝐵𝑖𝑖𝑗 = 𝐵𝐵𝑖𝑖, and define the
Toledo invariant of 𝜌𝜌 to be

𝜏𝜏𝑗𝜌𝜌𝑗 = 1
𝜋𝜋

𝑖𝑖

∏
𝑖𝑖=1

[ ̃𝑗𝑗𝑖𝑖𝑗 ̃𝐵𝐵𝑖𝑖]𝑧

In view of the relation defining 𝜌𝑖𝑖 , the product
∏𝑖𝑖

𝑖𝑖=1[ ̃𝑗𝑗𝑖𝑖𝑗 ̃𝐵𝐵𝑖𝑖] is in the kernel of 𝑝𝑝. Hence Proposition 1
shows that the Toledo invariant is an even integer.[5]

From the description of S̃L𝑗2𝑗 ℝ𝑗 of the preceding
section, it is easy to check that the Toledo invariant
is well defined, i.e., that it does not depend on the
choice of lifts: the main point is that the ambiguity
in the choice of 𝜙𝜙 is canceled by (2), because each lift
occurs together with its inverse in the commutator.
Moreover, the Toledo invariant of a representation
defined by matrices 𝑗𝑗𝑖𝑖 and 𝐵𝐵𝑖𝑖 can be explicitly calcu-
lated.

6 Goldman’s theorem

A celebrated inequality due to Milnor [14] states that

|𝜏𝜏𝑗𝜌𝜌𝑗| 𝜏 2𝑖𝑖 − 2
for every representation 𝜌𝜌𝑝 𝜌𝑖𝑖 → SL𝑗2𝑗 ℝ𝑗. The
following beautiful result shows that representations
with maximal Toledo invariant (known as maximal
representations) have a special geometric significance.

Theorem 2 (Goldman [7]).—
A representation 𝜌𝜌𝑝 𝜌𝑖𝑖 → SL𝑗2𝑗 ℝ𝑗 is Fuchsian if and
only if |𝜏𝜏𝑗𝜌𝜌𝑗| = 2𝑖𝑖 − 2.

Remark 1.— One might wonder about the signifi-
cance of the sign of the Toledo invariant. If we conju-
gate a representation 𝜌𝜌 by the outer automorphism of
SL𝑗2𝑗 ℝ𝑗 given by conjugation by a reflection we ob-
tain a representation ̄𝜌𝜌 with 𝜏𝜏𝑗 ̄𝜌𝜌𝑗 = −𝜏𝜏𝑗𝜌𝜌𝑗. In fact, the
hyperbolic surface 𝑆𝑆 ̄𝜌𝜌 is obtained from 𝑆𝑆𝜌𝜌 by a change
of orientation, i.e., by composing all charts with a re-
flection in ℍ2.

7 The moduli space of representations

Let us now take a global view and consider all repre-
sentations of 𝜌𝑖𝑖 in SL𝑗2𝑗 ℝ𝑗 simultaneously. The rep-
resentation space for representations of 𝜌𝑖𝑖 in SL𝑗2𝑗 ℝ𝑗
is the set of homomorphisms Hom𝑗𝜌𝑖𝑖𝑗 SL𝑗2𝑗 ℝ𝑗𝑗. It
is natural to consider 𝜌𝜌1 and 𝜌𝜌2 equivalent if they dif-
fer by overall conjugation by an element of SL𝑗2𝑗 ℝ𝑗,
corresponding to a change of basis in ℝ2. It also turns

[5] Odd Toledo invariants arise from representations 𝜌𝜌𝑝 𝜌𝑖𝑖 → PSL𝑗2𝑗 ℝ𝑗 which do not lift to SL𝑗2𝑗 ℝ𝑗.
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out that two hyperbolic structures on the same topo-
logical surface are isometric by an isometry which
can be continuously deformed to the identity if and
only if the corresponding Fuchsian representations
are equivalent in this sense. Thus the moduli space
of representations is defined to be the orbit space

ℛ(Γ𝑔𝑔, SL(2, ℝ)) = Hom(Γ𝑔𝑔, SL(2, ℝ))/SL(2, ℝ)
under the conjugation action.[6]

A homomorphism 𝜌𝜌𝜌 Γ𝑔𝑔 → SL(2, ℝ) is deter-
mined by 2𝑔𝑔 matrices

𝐴𝐴𝑖𝑖 = 𝜌𝜌(𝜌𝜌𝑖𝑖), 𝐵𝐵𝑖𝑖 = 𝜌𝜌(𝜌𝜌𝑖𝑖), 𝑖𝑖 = 𝑖, 𝑖 , 𝑔𝑔
satisfying the single relation ∏[𝐴𝐴𝑖𝑖, 𝐵𝐵𝑖𝑖] = 𝐼𝐼 . Hence
Hom(Γ𝑔𝑔, SL(2, ℝ)) can be identified with the sub-
space of ℝ6𝑔𝑔 cut out by the 3 scalar equations given
by ∏[𝐴𝐴𝑖𝑖, 𝐵𝐵𝑖𝑖] = 𝐼𝐼 (the equation takes values in the
3-dimensional group SL(2, ℝ)). It follows that it is a
variety of dimension 6𝑔𝑔 𝑔 3. The conjugation action
by SL(2, ℝ) reduces the dimension by 3, and so the
moduli space has dimension

dim ℛ(Γ𝑔𝑔, SL(2, ℝ)) = 6𝑔𝑔 𝑔 6𝑔
The Toledo invariant separates the moduli space into
subspaces

ℛ𝑑𝑑 ⊆ ℛ(Γ𝑔𝑔, SL(2, ℝ))

corresponding to representations with invariant 𝑑𝑑.
Goldman [8] showed that the ℛ𝑑𝑑 are in fact con-
nected components of the moduli space, except in the
maximal case |𝑑𝑑| = 2𝑔𝑔 𝑔 2. It turns out that ℛ2𝑔𝑔𝑔2
has 22𝑔𝑔 connected components. However, these com-
ponents get identified after projecting onto

ℛ(Γ𝑔𝑔, PSL(2, ℝ)),
which thus has just one connected component with
Toledo invariant 2𝑔𝑔𝑔2. This is not surprising because,
by Goldman’s Theorem 2, the subspace ℛ2𝑔𝑔𝑔2 is ex-
actly the locus of Fuchsian representations and, more-
over, any two Fuchsian representations into SL(2, ℝ)
define the same hyperbolic surface if and only if
they coincide after projecting to PSL(2, ℝ). Accord-
ingly, the corresponding connected component 𝒯𝒯 ⊆
ℛ(Γ𝑔𝑔, PSL(2, ℝ)) is known as the Fuchsian locus. As
we have seen, it parametrises all hyperbolic structures
on the topological surface 𝑆𝑆𝑔𝑔 up to a natural equiva-
lence. It is a classical result that the space of such hy-
perbolic structures can be identified with ℝ6𝑔𝑔𝑔6. In
the next section we shall explain how a parametrisa-
tion of this space can be obtained using Higgs bun-

dles.

8 Higgs bundles

We now describe how the results of the previous sec-
tion can be understood using non-abelian Hodge the-
ory, a subject founded by Hitchin [11] and Simpson
[15].

8.1 Riemann surfaces and holomorphic bundles

A Riemann surface 𝑋𝑋 is a topological surface together
with a family of local charts which together cover the
surface, and are such that changes of coordinates are
holomorphic functions between open sets in ℂ. An
example of this is the Riemann sphere ℂ̂ = ℂ Y ∞:
we use the standard coordinate 𝑧𝑧 in ℂ and around
∞ ∈ ℂ̂ we use the coordinate 𝑤𝑤 = 𝑖/𝑧𝑧. Thus the
change of coordinates 𝑇𝑇 𝜌 ℂ ∖ {0} → ℂ ∖ {0} given
by 𝑤𝑤 = 𝑇𝑇 (𝑧𝑧) = 𝑖/𝑧𝑧 is holomorphic in the domain
where both 𝑧𝑧 and 𝑤𝑤 are defined.

In particular, if we have a hyperbolic surface 𝑆𝑆𝑔𝑔 ≅
ℍ2/Γ for a Fuchsian representation of Γ, then the lo-
cal coordinates in ℍ2 give 𝑆𝑆𝑔𝑔 the structure of a Rie-
mann surface: indeed the changes of coordinates are
Möbius transformations of ℍ2, which are certainly
holomorphic. We write 𝑋𝑋𝜌𝜌 for the Riemann surface
constructed from a Fuchsian representation 𝜌𝜌 in this
way.

Note that not all holomorphic maps define isome-
tries of ℍ2, so the concept of Riemann surface is less
rigid than that of hyperbolic surface. However, the
famous Uniformisation Theorem, due to Köbe and
Poincaré, asserts that any Riemann surface can be rep-
resented as a hyperbolic surface. This means, in par-
ticular, that the space of all Riemann surfaces with
the same underlying topological surface of genus 𝑔𝑔
(up to a suitable equivalence) can be identified with
the Fuchsian locus 𝒯𝒯 . When thought of in this way,
it is known as Teichmüller space.

A holomorphic line bundle 𝐿𝐿 → 𝑋𝑋 on a Riemann
surface 𝑋𝑋 is a holomorphic family of 𝑖-dimensional
complex vector spaces parametrised by 𝑋𝑋. Thus, for
each 𝑝𝑝 ∈ 𝑋𝑋 we have a 𝑖-dimensional complex vector
space 𝐿𝐿𝑝𝑝, which varies holomorphically with 𝑝𝑝. The
simplest example is the trivial bundle 𝐿𝐿 = 𝑋𝑋 𝐿 ℂ →
𝑋𝑋; here the map is projection onto 𝑋𝑋 and the fibre

[6] In order to get a Hausdorff quotient, one should in fact exclude representations whose action on ℝ2 is not semisimple.
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𝐿𝐿𝑝𝑝 = {𝑝𝑝𝑝 𝑝 ℂ for 𝑝𝑝 𝑝 𝑝𝑝 with its vector space struc-
ture coming from ℂ. Locally on 𝑝𝑝, a holomorphic
line bundle is required to look like the product 𝑈𝑈 𝑝ℂ,
where 𝑈𝑈 𝑈 𝑝𝑝 is open. We say that 𝐿𝐿 is trivialised
over 𝑈𝑈 . This means that a holomorphic line bundle
can be given by an open covering {𝑈𝑈𝛼𝛼𝑝 of 𝑝𝑝 and triv-
ialisations

𝐿𝐿|𝑈𝑈𝛼𝛼
≅ 𝑈𝑈𝛼𝛼 𝑝 ℂ

for each 𝛼𝛼. This gives rise to transition functions

𝑔𝑔𝛼𝛼𝛼𝛼 ∶ 𝑈𝑈𝛼𝛼 Z 𝑈𝑈𝛼𝛼 → ℂ ∖ {0𝑝
which compare the isomorphisms 𝐿𝐿𝑝𝑝 ≅ ℂ given by
the trivialisations over 𝑈𝑈𝛼𝛼 and 𝑈𝑈𝛼𝛼 , respectively.

More important than the line bundles themselves
are their sections. These are holomorphic maps
𝑠𝑠∶ 𝑝𝑝 → 𝐿𝐿 such that 𝑠𝑠𝑠𝑝𝑝𝑠 𝑝 𝐿𝐿𝑝𝑝 for all 𝑝𝑝 𝑝 𝑝𝑝. A sec-
tion of the trivial bundle 𝑈𝑈 𝑝 ℂ over 𝑈𝑈 is of course
nothing but a map 𝑠𝑠∶ 𝑈𝑈 → ℂ, and if we have local
trivialisations of a line bundle 𝐿𝐿 as above, a holomor-
phic section 𝑠𝑠 corresponds to a collection of holomor-
phic maps 𝑠𝑠𝛼𝛼 ∶ 𝑈𝑈𝛼𝛼 → ℂ which glue correctly, i.e., sat-
isfy the condition

𝑠𝑠𝛼𝛼𝑠𝑝𝑝𝑠 = 𝑔𝑔𝛼𝛼𝛼𝛼𝑠𝑝𝑝𝑠𝑠𝑠𝛼𝛼𝑠𝑝𝑝𝑠
for 𝑝𝑝 𝑝 𝑈𝑈𝛼𝛼 Z 𝑈𝑈𝛼𝛼 . As an illustrative example, we take
the canonical bundle 𝐾𝐾 → 𝑝𝑝. Its sections are holo-
morphic differentials. In a local coordinate 𝑧𝑧 on 𝑝𝑝 a
holomorphic differential, say 𝛼𝛼, can be written

𝑔𝑔𝑠𝑧𝑧𝑠𝑔𝑔𝑧𝑧
for a holomorphic function 𝑔𝑔𝑠𝑧𝑧𝑠 and if ℎ𝑠𝑤𝑤𝑠𝑔𝑔𝑤𝑤 is the
representation of 𝛼𝛼 in another holomorphic coordi-
nate 𝑤𝑤 = 𝑤𝑤 𝑠𝑧𝑧𝑠, then

𝑔𝑔𝑠𝑧𝑧𝑠𝑔𝑔𝑧𝑧 = ℎ𝑠𝑤𝑤 𝑠𝑧𝑧𝑠𝑠𝑔𝑔𝑠𝑤𝑤 𝑠𝑧𝑧𝑠𝑠 = ℎ𝑠𝑤𝑤 𝑠𝑧𝑧𝑠𝑠𝑤𝑤 ′𝑠𝑧𝑧𝑠𝑔𝑔𝑧𝑧𝑧
Thus a holomorphic differential can be represented
by a collection of holomorphic functions locally de-
fined on coordinate charts which transform accord-
ing to the preceding rule. It turns out that the vec-
tor space of holomorphic differentials on a closed
Riemann surface 𝑝𝑝 of genus 𝑔𝑔, usually denoted by
𝐻𝐻0𝑠𝑝𝑝𝑋 𝐾𝐾𝑠, is finite dimensional, of dimension 2𝑔𝑔 𝑔 2.
More generally, the vector space 𝐻𝐻0𝑠𝑝𝑝𝑋 𝐿𝐿𝑠 of holo-
morphic sections of any holomorphic line bundle
𝐿𝐿 → 𝑝𝑝 is finite dimensional. Any holomorphic line
bundle has a topological invariant called its degree; in
case 𝐿𝐿 has a non-zero holomorphic section, this is
the number of zeroes of such a section, counted with
multiplicity. For example, the degree of the canonical
bundle is 2𝑔𝑔 𝑔 2. The fact that this is the same as the
dimension of 𝐻𝐻0𝑠𝑝𝑝𝑋 𝐾𝐾𝑠 is a consequence of a funda-
mental result known as the Riemann–Roch formula.

We can perform the usual operations of linear al-
gebra, like taking duals and tensor products, fibrewise
on line bundles. Thus, if 𝐿𝐿 and 𝑀𝑀 are line bundles
with transition functions 𝑔𝑔𝛼𝛼𝛼𝛼 and ℎ𝛼𝛼𝛼𝛼 , respectively,
the tensor product 𝐿𝐿 𝐿 𝑀𝑀 has transition functions
𝑔𝑔𝛼𝛼𝛼𝛼ℎ𝛼𝛼𝛼𝛼 (pointwise multiplication in ℂ ∖ {0𝑝) and the
dual bundle 𝐿𝐿∗ has transition functions 𝑔𝑔𝑔1

𝛼𝛼𝛼𝛼 .

8.2 Higgs bundles

A PSL𝑠2𝑋 ℝ𝑠-Higgs bundle on 𝑝𝑝 consists of three
pieces of data

𝑠𝐿𝐿𝑋 𝛼𝛼𝑋 𝐿𝐿𝑠

where, 𝐿𝐿 → 𝑝𝑝 is a holomorphic line bundle, and
𝛼𝛼 𝑝 𝐻𝐻0𝑠𝑝𝑝𝑋 𝐾𝐾 𝐿 𝐿𝐿𝑠 and 𝐿𝐿 𝑝 𝐻𝐻0𝑠𝑝𝑝𝑋 𝐾𝐾 𝐿 𝐿𝐿∗𝑠 can be
seen as holomorphic differentials which take values
in the line bundles 𝐿𝐿 and 𝐿𝐿∗, respectively.

In a manner analogous to the conjugation action
on representations, there is a natural notion of iso-
morphism of Higgs bundles, and the set of isomor-
phism classes of PSL𝑠2𝑋 ℝ𝑠-Higgs bundles forms the
moduli space ℳ𝑠𝑝𝑝𝑋 PSL𝑠2𝑋 ℝ𝑠𝑠. It is a complex alge-
braic variety of complex dimension 3𝑔𝑔 𝑔 3. We note
that in order to get a reasonable moduli space it is nec-
essary to restrict to so-called semistable Higgs bun-
dles. This is analogous to the way in which one re-
stricts to semisimple representations in the moduli
space of representations.

The Non-abelian Hodge Theorem (due to Corlette,
Donaldson, Hitchin and Simpson) for this situation
states the following.

Theorem 3.— There is a real analytic isomorphism

ℛ𝑠Γ𝑔𝑔𝑋 PSL𝑠2𝑋 ℝ𝑠𝑠 ≅ ℳ𝑠𝑝𝑝𝑋 PSL𝑠2𝑋 ℝ𝑠𝑠𝑧

This is a remarkable theorem for many reasons. Here
we just point out that while the character variety ℛ
is real and depends only on the topological surface of
genus 𝑔𝑔 (through its fundamental group), the moduli
space ℳ depends on the Riemann surface structure
𝑝𝑝 given to the topological surface and has a complex
structure.

For fixed 𝑔𝑔 we denote by ℳ𝑔𝑔 the subspace of
PSL𝑠2𝑋 ℝ𝑠-Higgs bundles 𝑠𝐿𝐿𝑋 𝛼𝛼𝑋 𝐿𝐿𝑠 with deg𝑠𝐿𝐿𝑠 = 𝑔𝑔.
Then we have ℛ𝑔𝑔 ≅ ℳ𝑔𝑔 under the non-abelian
Hodge Theorem. In particular, the Fuchsian locus 𝒯𝒯
corresponds to ℳ2𝑔𝑔𝑔2.
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8.3 Hitchin’s parametrisation of 𝒯𝒯

A particular class of PSL(2, ℝ)-Higgs bundles can be
obtained by taking 𝐿𝐿 𝐿 𝐿𝐿 . Then 𝛾𝛾 is a section of
the line bundle 𝐿𝐿 𝐾 𝐿𝐿∗ which is naturally isomor-
phic to the trivial line bundle on 𝑋𝑋. In other words,
𝛾𝛾 is simply a holomorphic function on 𝑋𝑋, so we can
set 𝛾𝛾 𝐿 𝛾 (the constant function). Moreover, 𝛽𝛽 is
a section of 𝐿𝐿2 𝐿 𝐿𝐿 𝐾 𝐿𝐿 . In other words it is a
quadratic differential, so it can locally be written as
𝛽𝛽(𝛽𝛽) 𝐿 𝛽𝛽(𝛽𝛽)(𝛽𝛽𝛽𝛽)2, where 𝛽𝛽(𝛽𝛽) satisfies an appropri-
ate transformation rule under changes of coordinates.
The vector space 𝐻𝐻0(𝑋𝑋, 𝐿𝐿2) of quadratic differentials
on 𝑋𝑋 has complex dimension 3𝑔𝑔 𝑔 3 which equals
the dimension of the moduli space ℳ(𝑋𝑋, PSL(2, ℝ)).
This construction defines a map

Ψ∶ 𝐻𝐻0(𝑋𝑋, 𝐿𝐿2) → ℳ(𝑋𝑋, PSL(2, ℝ)),
𝛽𝛽 𝛽 (𝐿𝐿, 𝛽𝛽, 𝛾)𝛽

The semistability condition alluded to earlier implies
that all Higgs bundles in ℳ2𝑔𝑔𝑔2 arise in this way.
Hence Ψ is an isomorphism onto its image ℳ2𝑔𝑔𝑔2.

From the non-abelian Hodge Theorem we already
knew that ℳ2𝑔𝑔𝑔2 ≅ 𝒯𝒯 is a connected compo-
nent. But the Higgs bundle construction gives an
alternative proof. Using gauge theoretic methods
Hitchin also shows that ℳ2𝑔𝑔𝑔2 parametrises all hyper-
bolic metrics on the topological surface underlying
𝑋𝑋. Moreover, under this parametrisation the Higgs
bundle (𝐿𝐿, 𝛾, 0) corresponds to the hyperbolic met-
ric which uniformises 𝑋𝑋. Thus Hitchin’s approach
gives alternative proofs of Goldman’s theorems and
the Uniformisation Theorem.

8.4 The general Cayley correspondence

Hitchin [12] generalised the construction of the map
Ψ to a map

Ψ∶ ⨁
𝑖𝑖

𝐻𝐻0(𝑋𝑋, 𝐿𝐿𝛽𝛽𝑖𝑖) → ℳ(𝑋𝑋, 𝑋𝑋)

whose image is again a connected component of the
moduli space ℳ(𝑋𝑋, 𝑋𝑋) of 𝑋𝑋-Higgs bundles for any
simple split real Lie group 𝑋𝑋, nowadays known as
a Hitchin component.[7] The domain of Ψ is a direct
sum of spaces of higher holomorphic differentials on
𝑋𝑋; the integers 𝛽𝛽𝑖𝑖 are determined by the Lie group 𝑋𝑋
(in fact they are the exponents of its Lie algebra).

Similar constructions of special connected compo-
nents have later been given for Hermitian groups 𝑋𝑋
of non-compact tube type, such as SU(𝑝𝑝, 𝑝𝑝) (see, for
example, [5, 6, 2]). In this case the domain of the map
Ψ turns out to be a moduli space ℳ𝐿𝐿2(𝑋𝑋, 𝑋𝑋′) of so-
called 𝐿𝐿2-twisted 𝑋𝑋′-Higgs bundles, for a certain real
Lie group 𝑋𝑋′ associated to 𝑋𝑋 (known as its Cayley
partner).

Both Hitchin components and Cayley compo-
nents are special because they are not (as all other
known components of the moduli space) detected
by standard topological invariants of the underlying
bundles and the Higgs fields satisfy a certain non-
degeneracy condition.

Recently (see [1, 4] and the recent survey [3]) both
of these constructions have been unified and gener-
alised. The class of Lie groups 𝑋𝑋 covered are charac-
terised by the fact that their Lie algebras admit a mag-
ical 𝔰𝔰𝔰𝔰2-triple. This new Lie theoretic notion builds
on ideas of Hitchin [12] and generalises that of a prin-
cipal 𝔰𝔰𝔰𝔰2-triple introduced by Kostant. Conjecturally
the generalised Cayley components obtained by this
construction account for all “special” (in the sense
of the previous paragraph) connected components of
the moduli space and thus opens the door to a com-
plete determination of this important topological in-
variant.

One important piece of supporting evidence for
this conjecture comes from the area of Higher Teich-
müller Theory. Higher Teichmüller theory has devel-
oped in parallel with the Higgs bundle story just de-
scribed, and there has been a rich cross-fertilisation
of ideas between the two areas. We cannot do jus-
tice to this fast-growing, rich and important area of
mathematics here but refer the interested reader to
[10, 17] and references therein. Very briefly, a higher
Teichmüller space is a connected component of the
moduli space of representations, which consists ex-
clusively of discrete and injective representations, like
the Fuchsian locus in the PSL(2, ℝ)-case. It turns out
that the generalised Cayley components are indeed
higher Teichmüller spaces [4, 9], and it is expected
that all higher Teichmüller spaces are thus obtained.

[7] In the case of classical matrix groups this means that 𝑋𝑋 is one of the groups SL(𝑛𝑛, ℝ), Sp(2𝑛𝑛, ℝ), SO(𝑝𝑝, 𝑝𝑝) and SO(𝑝𝑝, 𝑝𝑝 𝑝 𝛾).
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by João Gouveia*

Global Portuguese Mathematicians 
2023

* Departamento de Matemática da Universidade de Coimbra. Email: jgouveia@mat.uc.pt

The third edition of the Global Portuguese Mathematicians 
Conference took place this year from 26 to 28 of July at 
the Department of Mathematics of the University of 
Coimbra. Previous editions have taken place in Lisbon 
(2017) and Porto (2019). This Conference brings together 
Portuguese mathematicians, in a very broad sense, 
from around the world, and provides them a forum to 
share their research, exchange ideas, and make new 
connections in a friendly and supportive environment.
 This edition had over 60 enrolled participants and 12 
invited speakers.
 The presentations covered many different areas of 
mathematics and provided a glimpse on the current 
work of the Portuguese mathematical diaspora, as can 
be seen by the list of invited speakers.

 Besides the talks, there were plenty of opportunities 
for interaction, and the conference successfully provided 
a lively networking forum for all attendants. All speakers 
were invited to participate in a special number of the 
Boletim da Sociedade Portuguesa de Matemática that 
will be published during 2024. The next edition of the 
conference will take place in 2025 at the University of 
Lisbon. For more information please visit the conference 
website at www.mat.uc.pt/~gpm23/.
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Abstract.—The purpose of this short note is to present some results regarding the study 
of Diophantine equations, ranging from very old problems (well known results to most 
mathematicians) to some quite new results in the area. Most of the times, the techniques 
developed to solve particular problems are more interesting than the results themselves. The 
last section contains our humble contribution.

1 Introduction

The term Diophantine equations comes from the pi-
oneer work of Diophantus of Alexandria, a Greek
mathematician that lived sometime around 200 AD.
In a series of books called Arithmetica, Diophantus
studied solutions (over the positive rational numbers)
to different systems of equations. In this short article
we will mostly focuses on studying (integral or ratio-
nal) solutions of a single equation of the form

𝐹𝐹 𝐹𝐹𝐹𝐹 𝐹𝐹𝐹 𝐹 𝐹𝐹
for some polynomial 𝐹𝐹 𝐹𝐹𝐹𝐹 𝐹𝐹𝐹 with integral coeffi-
cients.

2 Linear Diophantine Equations

Let 𝑎𝑎𝐹 𝑎𝑎𝐹 𝑎𝑎 be three rational integers, with the condi-
tion that the pair 𝐹𝑎𝑎𝐹 𝑎𝑎𝐹 is not 𝐹𝐹𝐹 𝐹𝐹. Consider the
equation

𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝐹 𝑎𝑎𝑎 (1)

The set of solutions to (1) form a line, and it is well
known that it has infinitely many rational points.
However, it is not so clear what happens with its set
of integral points. For example, the line

2𝑎𝑎 𝑎 2𝑎𝑎 𝐹 𝑋𝐹

does not have any integral point (the reason being
that the left hand side is always even, while 𝑋 is odd).
Similarly, for (1) to have an integral solution, it must
be the case that any number dividing 𝑎𝑎 and 𝑎𝑎 must
also divide 𝑎𝑎. It is not hard to prove that this condi-
tion is enough for the existence of solutions.

Theorem 1.— The equation (1) has an integral solu-
tion if and only if gcd𝐹𝑎𝑎𝐹 𝑎𝑎𝐹 𝑎 𝑎𝑎. Furthermore, if it
has one, it has infinitely many.

Proof.— See §5 of the very nice book [11]. ∎

Actually the proof is constructive: suppose that
gcd𝐹𝑎𝑎𝐹 𝑎𝑎𝐹 𝑎 𝑎𝑎. Using the Euclidean algorithm, one can
construct integers 𝑟𝑟𝐹 𝑟𝑟 such that

gcd𝐹𝑎𝑎𝐹 𝑎𝑎𝐹 𝐹 𝑎𝑎 𝑎 𝑟𝑟 𝑎 𝑎𝑎 𝑎 𝑟𝑟𝑎
Multiplying both sides by 𝑎𝑎

gcd𝐹𝑎𝑎𝐹𝑎𝑎𝐹
gives a non-trivial

solution 𝐹𝐹𝐹 𝐹 𝑟𝑟𝑎𝑎
gcd𝐹𝑎𝑎𝐹𝑎𝑎𝐹

, 𝐹𝐹𝐹 𝐹 𝑟𝑟𝑎𝑎
gcd𝐹𝑎𝑎𝐹𝑎𝑎𝐹

. Then all solutions
are of the form

{
𝐹𝐹 𝐹 𝐹𝐹𝐹 𝑎 𝜅𝜅 𝑎𝑎

gcd𝐹𝑎𝑎𝐹𝑎𝑎𝐹
𝐹

𝐹𝐹 𝐹 𝐹𝐹𝐹 − 𝜅𝜅 𝑎𝑎
gcd𝐹𝑎𝑎𝐹𝑎𝑎𝐹

𝑎

for 𝜅𝜅 𝜅 ℤ. It is important to remark that comput-
ing integral solutions is much harder than finding the
rational ones.

1
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3 Conics

Consider now the case of a degree two polynomial in
the variables 𝑥𝑥𝑥 𝑥𝑥, namely a polynomial of the form

𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑎𝑎𝑏𝑏 + 𝑏𝑏𝑏𝑏 2 + 𝑑𝑑𝑎𝑎 + 𝑑𝑑𝑏𝑏 + 𝑑𝑑 𝑑 𝑑𝑥 (2)

where we can assume that 𝑎𝑎𝑥 𝑏𝑏𝑥 𝑏𝑏𝑥 𝑑𝑑𝑥 𝑑𝑑𝑥 𝑑𝑑 are all in-
tegers (otherwise we can multiply by the minimum
common multiple of their denominators). We will
also assume that the degree two polynomial is irre-
ducible (i.e. is not the product of two degree 1 ones),
as otherwise the study of its rational/integral points
reduces to the study of points on the factors.

We start studying rational solutions, say of the
form (𝑎𝑎𝑋𝑋𝑋𝑥 𝑏𝑏 𝑋𝑋𝑋) where 𝑎𝑎𝑥 𝑏𝑏 𝑥 𝑋𝑋 are integers. Sub-
stituting in (2) and multiplying by 𝑋𝑋2, we obtain an
integral point on the projective conic

𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑎𝑎𝑏𝑏 + 𝑏𝑏𝑏𝑏 2 + 𝑑𝑑𝑎𝑎𝑋𝑋 + 𝑑𝑑𝑏𝑏 𝑋𝑋 + 𝑑𝑑𝑋𝑋2 𝑑 𝑑𝑥 (3)

where 𝑋𝑋 𝑍 𝑑 (it is customary to consider solutions
where at least one of the coordinates is non-zero, as
they correspond to points in the projective plane).

A general conic like (3) might not have integer so-
lutions for easy reasons, for example there are no so-
lutions to the equation 𝑎𝑎2 + 𝑏𝑏 2 + 𝑋𝑋2 other than
(𝑑𝑥 𝑑𝑥 𝑑) (which we do not consider). In this case,
the failure for a solution to exist comes from the fact
that there are no real solutions to it (this is called an
Archimedean failure). There might be other failures.

Example 1.— The conic 𝑎𝑎2 + 𝑏𝑏 2 𝑑 3𝑋𝑋2 has no non-
trivial solution.

Suppose it does have a non-trivial solution (𝑎𝑎𝑥 𝑏𝑏𝑥 𝑏𝑏)
and assume that gcd(𝑎𝑎𝑥 𝑏𝑏𝑥 𝑏𝑏) 𝑑 1 (otherwise, we can
divide each 𝑎𝑎𝑥 𝑏𝑏𝑥 𝑏𝑏 by gcd(𝑎𝑎𝑥 𝑏𝑏𝑥 𝑏𝑏) obtaining a new so-
lution with this property). Note that if we divide any
square by 4, the remainder is either 𝑑 or 1 (or in terms
of congruences, 𝑥𝑥2 ≡ 𝑑𝑥 1 (mod 4)). Then 𝑎𝑎2 + 𝑏𝑏2

while divided by 4 has reminder 𝑑𝑥 1 or 2. Note that
it is zero precisely when 2 ∣ 𝑎𝑎 and 2 ∣ 𝑏𝑏. Similarly, the
reminder of 3𝑏𝑏2 while divided by 4 is 𝑑 or 3. Then
the equality 𝑎𝑎2 + 𝑏𝑏2 𝑑 3𝑏𝑏3 implies that both sides are
divisible by 4, so 2 ∣ 𝑏𝑏 as well, contradicting the as-
sumption that gcd(𝑎𝑎𝑥 𝑏𝑏𝑥 𝑏𝑏) 𝑑 1.

Contrary to the previous example, now the failure
has to do with the prime 2, it is what is called a 2-adic
failure (related to non-existence of solutions over the
field ℚ2 of 2-adic numbers). A similar obstruction ap-
pears for the prime 𝑝𝑝 𝑑 3 (we leave the details to the
reader).

It is natural to wonder whether the non-existence of
solutions is always due to a local (i.e. attached to a

congruence modulo 𝑁𝑁 for some integer 𝑁𝑁) or an
Archimedean reason. Indeed this is the case.

Theorem 2 (Hasse-Minkowski).— An equation like
(3) has a non-zero rational solution if and only if it
has a real solution, and a solution modulo 𝑁𝑁 for all
positive integers 𝑁𝑁 .

Proof.— See for example Theorem 8 in [15]. ∎

The proof presented by Serre is different from our
statement, so let us add a few comments. By the Chi-
nese remainder Theorem (see §2.3 of [11]), searching
for solutions modulo a general integer 𝑁𝑁 is equiv-
alent to search for solutions modulo prime powers.
Once the prime 𝑝𝑝 is fixed, the existence of a solu-
tion modulo 𝑝𝑝𝑛𝑛 for all positive integers 𝑛𝑛 is equivalent
to the existence of a solution over the field of 𝑝𝑝-adic
numbers. This is what Serre proves in [15].

Remark 1.— The result of Hasse-Minkowski works
for homogeneous polynomials of degree 2 in any
number of variables (not just 3).

Remark 2.— As stated Theorem 2 seems only of a
theoretical nature (as it implies verifying infinitely
many conditions). However, it is easy to transform
it into a finite computation (it is enough to verify the
statement at primes dividing the discriminant of the
quadratic form together with the case 𝑝𝑝 𝑑 2). See for
example §5.4 of [4].

Once that we have an algorithm to determine whether
a conic has a rational point or not, it is natural to ask
how many rational points it might have. The answer
is infinitely many, as a conic with a point is isomor-
phic to a line, as proved in the following example.

Example 2.— Let us study the case of the unit circle
centered at 𝐴𝐴 𝑑 (𝑑𝑥 𝑑) with equation

𝒞𝒞 𝒞 𝑎𝑎2 + 𝑏𝑏 2 𝑑 1. (4)

Take the point 𝐵𝐵 𝑑 (1𝑥 𝑑) (which belongs to the cir-
cle). Take the tangent line at 𝐵𝐵 and translate it by
some non-zero rational number (for example one to
the right as in Figure 1).

Call the line 𝐿𝐿. Then we get a bijective map from
rational points on 𝒞𝒞 (removing the point 𝐵𝐵) to ratio-
nal points on 𝐿𝐿 as follows: given a rational point 𝐶𝐶
in 𝐿𝐿, consider the line going through 𝐶𝐶 and 𝐵𝐵. It
must intersect the circle 𝒞𝒞 in a rational point (why?).
Explicitly, if 𝐶𝐶 𝑑 (2𝑥 𝑥𝑥) then the second intersection
point has coordinates

(
𝑥𝑥2 − 1
𝑥𝑥2 + 1

𝑥 −2𝑥𝑥
𝑥𝑥2 + 1) . (5)
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The inverse sends a point (𝑥𝑥𝑥 𝑥𝑥𝑥 in 𝒞𝒞 to the point
(2𝑥 𝑥𝑥𝑦(𝑥𝑥 𝑦 𝑦𝑥𝑥. The reason we need to remove the
point 𝐵𝐵 is that the affine line is not compact, if we
add its point at infinity, then we really get a bijection
between the two sets.

As done with the general equation (2), the set of ra-
tional points on the unit circle is the same as the set of
integral points on the projective curve 𝑋𝑋2 + 𝑌𝑌 2 = 𝑍𝑍2

(the so called Pitagorean triples). Writing the ratio-
nal point 𝑥𝑥 of the line 𝐿𝐿 in the form 𝑥𝑥 = 𝑚𝑚

𝑛𝑛
(for

𝑚𝑚𝑥 𝑛𝑛 𝑚 ℤ) we recover the classical parametrization
of the Pitagorean triples

(𝑚𝑚2 𝑦 𝑛𝑛2𝑥 𝑦2𝑚𝑚𝑛𝑛𝑥 𝑚𝑚2 + 𝑛𝑛2𝑥. (6)

Remark 3.— The same construction/strategy works
for a general conic as in (3) with one rational point.

Remark 4.— Over an algebraically closed field, equa-
tion (2) always has a point, hence it is isomorphic to
a line. From a topological point of view, a line and a
conic are the same, they both are genus 0 curves (or
equivalently Riemann surfaces with no holes).

The problem of determining the set of integral points
on a conic is much harder. There might be no points
at all (as in Example 1), there might be finitely many
(for example it is easy to verify that the circle (4)
only has the four integral points {(±𝑦𝑥 0𝑥, (0𝑥 ±𝑦𝑥})
or there might be infinitely many. For example, let 𝑑𝑑
be a square-free positive integer, and consider Pell’s
equation

𝑋𝑋2 𝑦 𝑑𝑑𝑌𝑌 2 = 𝑦. (7)
The equation has infinitely many integral solutions,
and all of them (up to a sign) can be obtained as
powers of a particular one (see for example §7.8 of
[11]). This equation appears while studying the inte-
gers whose inverses are also integers in the quadratic
field ℚ(√𝑑𝑑𝑥.

4 Cubics

As mentioned before, we are mostly interested in
studying hypersurfaces, i.e. solutions of a single equa-
tion 𝐹𝐹 (𝑥𝑥𝑦𝑥 … 𝑥 𝑥𝑥𝑛𝑛𝑥 = 0 (furthermore, most of the time
we restrict to 𝑛𝑛 = 2). The hypersurface

𝒞𝒞 𝒞 𝐹𝐹 (𝑥𝑥𝑦𝑥 … 𝑥 𝑥𝑥𝑛𝑛𝑥 = 0
is non-singular (or smooth) is there are no points 𝑃𝑃
in 𝒞𝒞 satisfying that 𝜕𝜕𝐹𝐹

𝜕𝜕𝑥𝑥𝑖𝑖
(𝑃𝑃 𝑥 = 0 for all 𝑖𝑖 = 𝑦𝑥 … 𝑥 𝑛𝑛. All

lines are smooth, and conics given by an irreducible
polynomial are smooth as well.

Suppose that 𝐹𝐹 (𝑥𝑥𝑥 𝑥𝑥𝑥 is a cubic (i.e. it has degree
3), and that the curve

𝒞𝒞 𝒞 𝐹𝐹 (𝑥𝑥𝑥 𝑥𝑥𝑥 = 0
is non-singular. How can we determine whether it
has a rational point or not?

As happened before, it is better to work with an
homogeneous polynomial 𝐹𝐹 (𝑋𝑋𝑥 𝑌𝑌 𝑥 𝑍𝑍𝑥 in 3 variables.
Its set of solutions corresponds to a cubic in the pro-
jective plane, and we are trying to determine whether
it has an integral point different from (0𝑥 0𝑥 0𝑥.

The first approach would be to use Hasse’s crite-
rion, i.e. try to search for points modulo 𝑁𝑁 for dif-
ferent values of 𝑁𝑁 . If no such a point exists, then we
have proved that the curve 𝒞𝒞 has no rational points.

Theorem 3 (Selmer).— The cubic equation

3𝑋𝑋3 + 4𝑌𝑌 3 + 5𝑍𝑍3 = 0
has the only solution (0𝑥 0𝑥 0𝑥 over ℚ, but it has a
nonzero solution over ℝ and modulo 𝑁𝑁 for all 𝑁𝑁 .

Proof.— See [14]. ∎

3

Figure 1.—Rational points circle
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Selmer’s example shows that Hasse-Minkowski result
does not hold for degrees larger than 2. Let us state
some very interesting density results.

Theorem 4.— The probability that a random plane
cubic curve over ℚ has a point modulo 𝑁𝑁 for all pos-
itive values of 𝑁𝑁 is approximately 97.256%

Proof.— See Theorem 2 of [2]. ∎

Remark 5.— Unlike conics, a cubic polynomial al-
ways has a real root, so the only failures can be local
ones.

Furthermore, it was proved by Bhargava (see
https://arxiv.org/pdf/1402.1131.pdf) that a positive
proportion of cubics (at least 28%) fail the Hasse prin-
ciple, so another approach is needed.

Assuming a deep open conjecture (namely finite-
ness of the Tate-Shafarevich group), there does exist
an algorithm to determine if a cubic has a rational
point or not. In practice, running the algorithm in
some particular bad behaved cases might be very chal-
lenging.

Definition 5.— An elliptic curve is a non-singular cu-
bic with a rational point.

The usual definition of an elliptic curve is that of a
non-singular genus 1 curve with a rational point. It is
not hard to prove (see for example §III.3 of [17]) that
any rational elliptic curve can be given by a Weier-
strass equation

𝐸𝐸 𝐸 𝐸𝐸 2 = 𝑋𝑋3 + 𝐴𝐴𝑋𝑋 + 𝐴𝐴𝐴 (8)

for 𝐴𝐴𝐴 𝐴𝐴 𝐴 ℚ with 4𝐴𝐴3 + 27𝐴𝐴2 ≠ 0 (so the curve is
smooth). The marked rational point corresponds to
the solution 𝑂𝑂 = 𝑂0 𝐸 1 𝐸 0𝑂 of the homogeneous
polynomial

𝑍𝑍𝐸𝐸 2 = 𝑋𝑋3 + 𝐴𝐴𝑋𝑋𝑍𝑍2 + 𝐴𝐴𝑍𝑍3.
The point 𝑂𝑂 is the unique point at the infinity line
which we do not see while working on the affine
plane.

Elliptic curves are very interesting objects. If 𝐾𝐾 is
any field (like ℚ or ℂ), the set 𝐸𝐸𝑂𝐾𝐾𝑂 of points on 𝐸𝐸
defined over 𝐾𝐾 has an addition law (see §III.2 of [17]),
making 𝑂𝐸𝐸𝑂𝐾𝐾𝑂𝐴 +𝑂 an abelian group (whose identity
element is the point 𝑂𝑂).

Theorem 6 (Mordell).— The group 𝐸𝐸𝑂ℚ𝑂 is finitely
generated.

A proof is given in §VIII of [17]. In particular, the
fundamental theorem of finitely generated abelian

groups implies that there exists a non-negative inte-
ger 𝑟𝑟 such that

𝐸𝐸𝑂ℚ𝑂 ≃ 𝑇𝑇 𝑇 ℤ𝑟𝑟𝐴
where 𝑇𝑇 is a finite group. The number 𝑟𝑟 is called the
rank of the elliptic curve. There are very effective al-
gorithms to compute 𝑇𝑇 . Furthermore, a conjecture
of Beppo Levi proven by Mazur states that there are
only 15 possible groups for 𝑇𝑇 (see Theorem 7.5 of
[17]). Computing 𝑟𝑟 (and generators for the free part)
is a deep problem. Once again, assuming finiteness of
the Tate-Shafarevich group, there exists a theoretical
algorithm to do it.

Remark 6.— It is not known whether the value of 𝑟𝑟
is bounded or not. The current largest value for it is
28, found by Elkies in 2006.

Regarding integral points, there is a very general re-
sult due to Siegel ([16]), which states the following.

Theorem 7.— If 𝐹𝐹 𝑂𝐹𝐹𝐴 𝐹𝐹𝑂 is a polynomial of degree
larger than 2 and the curve 𝒞𝒞 𝐸 𝒞𝐹𝐹 𝑂𝐹𝐹𝐴 𝐹𝐹𝑂 = 0𝒞 is non-
singular, then 𝒞𝒞 has finitely many integral points.

The result is not effective (i.e. it does not give infor-
mation on the number of integral points of 𝒞𝒞 nor
how to compute them). In the case of elliptic curves,
the elements of 𝑇𝑇 have integral coordinates. If a set
of generators for 𝐸𝐸𝑂ℚ𝑂 is known then a priori one can
determine all the integral points on 𝐸𝐸.

5 Larger degrees

If the polynomial 𝐹𝐹 𝑂𝐹𝐹𝐴 𝐹𝐹𝑂 has degree larger than 3,
the (non-singular) curve 𝒞𝒞 has genus larger than 1.
The following result is a deep conjecture of Mordell
proven by Falting ([9]).

Theorem 8 (Faltings).— If 𝒞𝒞 is a rational non-
singular curve of genus larger than 1 then 𝒞𝒞 𝑂ℚ𝑂 is
finite.

As Siegel’s theorem, the proof is not effective. In a
remarkable article, Chabauty ([3]) gave a method to
bound the number of rational points when the rank
of the Jacobian of 𝒞𝒞 is smaller than its genus. An ef-
fective version of the method was obtained by Cole-
man in ([6]). Since then, many improvements have
been obtained, making the Chabauty method a very
active research area.

4
40



6 Fermat’s last theorem

Without getting into details of the history behind Fer-
mat’s last theorem, in a margin of his copy of Dio-
phantus’ Arithmetica, Fermat wrote that a cube can-
not be written as the sum of two cubes, a fourth
power as a sum as two fourth powers, etc. In other
words, his claim can be stated as:

Theorem 9 (Fermat’s last theorem).— The equation

𝑋𝑋𝑛𝑛 + 𝑌𝑌 𝑛𝑛 = 𝑍𝑍𝑛𝑛 (9)

has no rational solutions other than the trivial ones
(i.e. when one of the variables equals zero).

After the contributions of many mathematicians, Fer-
mat’s last theorem was finally proved in 1995 by Wiles
(see [19]). The book [8] contains details of the history
behind the problem as well as different strategies used
to solve particular cases before the Frey-Hellegouarch
approach used in Wiles’ proof.

Historically, a major breakthrough for understand-
ing Fermat’s last theorem was Faltings’ result, which
implies the existence of finitely many solutions for
each 𝑛𝑛 𝑛 𝑛.

The case 𝑛𝑛 = 𝑛 is of particular interest, as it is
a cubic curve, with a rational point (actually with 𝑛
different ones up to multiplication by −1). Substitut-
ing (𝑋𝑋𝑋 𝑌𝑌 𝑋 𝑍𝑍𝑋 by (𝑦𝑦𝑦𝑦𝑋 𝑦𝑦𝑦𝑛𝑋 𝑦𝑦𝑦𝑦𝑦𝑦𝑋 in (9) (when 𝑛𝑛 = 𝑛)
and multiplying the equation by 27 gives the curve in
Weirestrass form

𝑦𝑦2𝑦𝑦 + 𝑦𝑦𝑦𝑦𝑦2 = 𝑦𝑦𝑛 − 27𝑦𝑦𝑛.
Any modern number theory software (like [18]) ver-
ifies that this curve has only three rational points,
namely (𝑛 ∶ 0 ∶ 1𝑋, (𝑛 ∶ −𝑦 ∶ 1𝑋 and (0 ∶ 1 ∶ 0𝑋
(mapping to the points (0 ∶ 1 ∶ 1𝑋, (−1 ∶ 1 ∶ 0𝑋
and (1 ∶ 0 ∶ 1𝑋 respectively), proving Fermat’s last
theorem when 𝑛𝑛 = 𝑛.

The general proof of Fermat’s last theorem is very
technical, but we content ourselves to stating a few
ingredients of the proof: start with a putative solu-
tion (𝑎𝑎𝑋 𝑎𝑎𝑋 𝑎𝑎𝑋 of (9) satisfying that gcd(𝑎𝑎𝑋 𝑎𝑎𝑋 𝑎𝑎𝑋 = 1 and
𝑎𝑎𝑎𝑎𝑎𝑎 𝑎 0 (to avoid the trivial solutions). It is enough to
prove the statement when 𝑛𝑛 is a prime number, and
when 𝑛𝑛 = 𝑛. The case 𝑛𝑛 = 𝑛 was proved by Fermat,
so suppose that 𝑛𝑛 is an odd prime number ℓ.

1. Attach to the solution the Frey elliptic curve

𝐸𝐸 ∶ 𝑌𝑌 2𝑍𝑍 = 𝑋𝑋(𝑋𝑋 − 𝑎𝑎ℓ𝑍𝑍𝑋(𝑋𝑋 + 𝑎𝑎ℓ𝑍𝑍𝑋.

2. Wiles proved that this elliptic curve is modular
i.e. is related to an holomorphic function of

the complex upper half plane satisfying many
transformation properties (such functions are
called modular forms). The number of equations
depend on a parameter 𝑁𝑁 (a positive integer)
called the level of the modular form. For the ex-
perienced reader, the modular form has weight
2 and is invariant under the group Γ0(𝑁𝑁𝑋.

3. For each value of 𝑁𝑁 , the set of modular forms
satisfying the relations given by the value 𝑁𝑁 is
actually a finite dimensional vector space. There
are many algorithms to compute a basis for it
(using the so called modular symbols). The prob-
lem is that the value of 𝑁𝑁 attached to 𝐸𝐸 depends
on 𝑎𝑎𝑋 𝑎𝑎 and 𝑎𝑎 (which are unknown).

4. Making use of the particular shape of a solution,
results of Hellegouarch and Ribet imply that ac-
tually one can take (up to a congruence) 𝑁𝑁 = 2.

5. The space of modular forms for the parameter
𝑁𝑁 = 2 is zero, so there is no form in this space
to match the curve 𝐸𝐸 attached to our solution.
This gives a contradiction, so the original solu-
tion (𝑎𝑎𝑋 𝑎𝑎𝑋 𝑎𝑎𝑋 cannot exist.

As previously mentioned, the proof follows from
the effort and contributions of many mathematicians,
including Frey, Hellegouarch, Mazur, Ribet, Serre,
Wiles and Taylor among others.

7 The generalized Fermat equation

Let 𝑎𝑎𝑋 𝑎𝑎𝑋 𝑎𝑎𝑋 𝑎𝑎𝑋 𝑎𝑎𝑋 𝑎𝑎 be non-zero positive integers. The
so called generalized Fermat equation is the equation

𝑎𝑎𝑦𝑦𝑎𝑎 + 𝑎𝑎𝑦𝑦𝑎𝑎 = 𝑎𝑎𝑦𝑦𝑎𝑎. (10)

The case 𝑎𝑎 = 𝑎𝑎 = 𝑎𝑎 = 1 and 𝑎𝑎 = 𝑎𝑎 = 𝑎𝑎 is the classical
Fermat’s equation. There is a big difference between
equation (10) and Fermat’s one, since the former de-
fines an affine surface (instead of a projective curve).
There are many examples of surfaces containing lines
(like a cone, although it is a singular surface). For this
reason, the number of solutions to (10) depends on
whether (1𝑦𝑎𝑎𝑋 + (1𝑦𝑎𝑎𝑋 + (1𝑦𝑎𝑎𝑋 is larger than 1, equals 1
or is smaller than 1. See ([1]) for a nice exposition in
the case 𝑎𝑎 = 𝑎𝑎 = 𝑎𝑎 = 1.

The first case (called spherical) corresponds to the
exponents (2𝑋 2𝑋 𝑎𝑎𝑋, (2𝑋 𝑎𝑎𝑋 2𝑋, (2𝑋 𝑛𝑋 𝑛𝑋, (2𝑋 𝑛𝑋 𝑛𝑋, (2𝑋 𝑛𝑋 𝑛𝑋
or (2𝑋 𝑛𝑋 5𝑋. In general one expects that if one solu-
tion exists, then there are infinitely many (and the so-
lutions can be parametrized). See §14 of [5].

5
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The second case (called parabolic) corresponds to
the exponents (2, 6, 3), (2, 4, 4), (4, 4, 2), (3, 3, 3) or
(2, 3, 6). In this cases one also expects that if one so-
lution exists, then there should be infinitely many of
them (but we do not expect a parametrization). See
§6 of [7] and also §6.5 of [4].

The last case (called hyperbolic) is the general one.
Note that since the polynomial giving (10) is not ho-
mogeneous, we cannot assume that our solution is
primitive (i.e. gcd(𝑥𝑥, 𝑥𝑥, 𝑥𝑥) 𝑥 𝑥). This phenomenom
gives raise to the existence of many unwanted solu-
tions.

Here is an example taken from [7]: consider the
equation

𝑥𝑥3 + 𝑥𝑥3 𝑥 𝑥𝑥4.
(corresponding to equation (10) with parameters
(𝑎𝑎, 𝑎𝑎, 𝑎𝑎, 𝑎𝑎, 𝑎𝑎, 𝑎𝑎) 𝑥 (𝑥, 𝑥, 𝑥, 3, 3, 4)). Let 𝑥𝑥 𝑥 𝑧𝑧3 + 𝛽𝛽3,
𝑥𝑥 𝑥 𝑧𝑧𝑥𝑥, 𝑥𝑥 𝑥 𝛽𝛽𝑥𝑥 for 𝑧𝑧, 𝛽𝛽 arbitrary integers. These are
all solutions! (though all of them but finitely many
are not primitive). For this purpose, one focus on
studying only primitive solutions. Here is a very nice
general result.

Theorem 10 (Darmon-Granville).— If 𝑥
𝑎𝑎

+ 𝑥
𝑎𝑎

+ 𝑥
𝑎𝑎

< 𝑥
then equation (10) has finitely many primitive solu-
tions.

The proof (see [7]) depends on Mordell’s conjecture
(Theorem 8), so it is not effective. It is expected that
once (𝑎𝑎, 𝑎𝑎, 𝑎𝑎) is fixed, the set of primitive solutions
(where the exponents (𝑎𝑎, 𝑎𝑎, 𝑎𝑎) vary) is still finite. Here
is an explicit version of what we expect to be true.

Conjecture 1.— Any primitive solution to

𝑥𝑥𝑎𝑎 + 𝑥𝑥𝑎𝑎 𝑥 𝑥𝑥𝑎𝑎,
with 𝑥

𝑎𝑎
+ 𝑥

𝑎𝑎
+ 𝑥

𝑎𝑎
< 𝑥 is either the solution 𝑥𝑎𝑎 + 23 𝑥 32,

or it belongs to a finite list.

In other words, if we vary the exponents (𝑎𝑎, 𝑎𝑎, 𝑎𝑎) with
the condition that the equation is hyperbolic, then the
union of all solutions is a finite set. There is an explicit
candidate for the finite list (based on numerical com-
putations) which we omit for space reasons. They all
have the property that one of 𝑎𝑎, 𝑎𝑎 or 𝑎𝑎 equals 2. A con-
jecture of Beal (with a prize of 𝑥 million USD for its
resolution) actually states that there are no solution if
min{𝑎𝑎, 𝑎𝑎, 𝑎𝑎𝑝 𝑝 2.

8 Our contribution to the problem

Together with my former student Lucas Villagra Tor-
comian, we study the particular generalized Fermat

equations:
𝑥𝑥4 + 𝑑𝑑𝑥𝑥2 𝑥 𝑥𝑥𝑎𝑎, (11)

and
𝑥𝑥2 + 𝑑𝑑𝑥𝑥6 𝑥 𝑥𝑥𝑎𝑎, (12)

for different values of 𝑑𝑑. In [12], following the modu-
lar method used in the proof of Fermat’s last theorem,
we gave an algorithm that for fixed 𝑑𝑑, proves (in many
instances) the non-existence of solutions for any large
value of the exponent 𝑎𝑎 (assuming it is a prime num-
ber). Here are a few particular instances of the results
proven in [12].

Theorem 11.— There are no non-trivial primitive so-
lutions of 𝑥𝑥4 + 5𝑥𝑥2 𝑥 𝑥𝑥𝑎𝑎 if 𝑎𝑎 is any prime number
larger than 499.

The result should hold for small values of 𝑎𝑎 as well
(say larger than 𝑥3), but getting this bound requires
a huge computational effort that is unfeasible nowa-
days.

Theorem 12.— There are no non-trivial primitive so-
lutions of 𝑥𝑥2 + 6𝑥𝑥6 𝑥 𝑥𝑥𝑎𝑎 if 𝑎𝑎 is any prime number
larger than 563.

When 𝑑𝑑 < 𝑑 equations (11) and (12) become harder
to study. However, in [13] we proved some partial
results like the following.

Theorem 13.— Let 𝑎𝑎 𝑝 𝑥9 be a prime number such
that 𝑎𝑎 𝑝 9𝑝 and 𝑎𝑎 𝑝 𝑥, 3 (m𝑝d 𝑝). Then (±𝑝, ±2𝑑, 𝑥)
are the only non-trivial primitive solutions of the
equation 𝑥𝑥4 − 6𝑥𝑥2 𝑥 𝑥𝑥𝑎𝑎.

The aforementioned results depend on a computa-
tion for each value of the parameter 𝑑𝑑. Recently, in
[10] we obtained the following asymptotic result.

Theorem 14.— Let 𝑑𝑑 be a prime number congruent
to 3 modulo 𝑝 and such that the class number of
ℚ(√−𝑑𝑑) is not divisible by 3. Then there are no non-
trivial primitive solutions of the equation

𝑥𝑥4 + 𝑑𝑑𝑥𝑥2 𝑥 𝑥𝑥𝑎𝑎,
for 𝑎𝑎 large enough.

A similar result was obtained for the equation 𝑥𝑥2 +
𝑑𝑑𝑥𝑥6 𝑥 𝑥𝑥𝑎𝑎, namely that if 𝑑𝑑 is a prime number congru-
ent to 𝑥9 modulo 24 and such that the class number
of ℚ(√−𝑑𝑑) is not divisible by 3, then the equation
𝑥𝑥2 + 𝑑𝑑𝑥𝑥6 𝑥 𝑥𝑥𝑎𝑎 does not have non-trivial primitive
solutions for 𝑎𝑎 large enough.
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by Telmo Peixe*
LxDS Spring School 2023

* Department of Mathematics, ISEG, Universidade de Lisboa. Email: telmop@iseg.ulisboa.pt

The LxDS-Lisbon Dynamical Systems Group, CEMAPRE 
and CMAF-CIO organized the LxDS Spring School 2023 
on the days 29-31 of May 2023 in dynamical systems, 
which took place at ISEG-Lisbon School of Economics 
& Management, Universidade de Lisboa.
 The school consisted of three courses in dynamical 
systems, which were given by specialists of recognized 
international merit. Namely,

• Diophantine approximations and the space of 
lattices (Nicolas Chevallier, Université de 
Haute Alsace),

• Statistical properties for certain dynamical 
systems (Silvius Klein, Pontifícia Universidade 
Católica do Rio de Janeiro),

• Game dynamics (Josef Hofbauer, University 
Vienna).

The school had about 20 participants, some of them 
international.
 In addition to the courses the school also had a 
session of oral presentations, in which some of the PhD 
students and researchers presented their most recent 
work.
 Due to financial support provided by CIM, it was 
possible to support the participation of three PhD 
students covering their travel, lodging and meals during 
the school days.

The organizing committee:

João Lopes Dias
Universidade de Lisboa, ISEG, CEMAPRE

José Pedro Gaivão
Universidade de Lisboa, ISEG, CEMAPRE

Pedro Miguel Duarte
Universidade de Lisboa, FCUL, CMAFCIO

Telmo Peixe
Universidade de Lisboa, ISEG, CEMAPRE
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by Ana Jacinta Soares* and Patrícia Gonçalves**
Particle Systems and PDEs XI

* CMAT e Dep. de Matemática, Univ. do Minho. Email: ajsoares@math.uminho.pt
** CAMGSD e Dep. de Matemática do IST, Univ. de Lisboa. Email: pgoncalves@tecnico.ulisboa.pt

REpORt

The International Conference on Particle Systems and 
Partial Differential Equations XI was hosted at Instituto 
Superior Técnico (IST), University of Lisbon, from 
November 6th to 10th, 2023.
 This marked the eleventh edition of the conference, 
following seven editions at the University of Minho, 
Braga, from 2012 to 2016, and 2021 to 2022, one edition 
at the University of Nice Sophia Antipolis, France, in 
2017, another at the University of Palermo, Italy, in 2018, 
and one previously at IST Lisbon in 2019.
The main objective of the conference was to gather 
leading active researchers in the fields of particle 
systems and partial differential equations, providing an 
opportunity to present their latest findings, promote the 
discussion and exchange of ideas, and encouraging the 
establishment of new scientific collaborations.

 The scientific program included two mini-courses 
presented by distinguished researchers, Michael Loss 
from the Georgia Institute of Technology, Atlanta, U.S.A., 
and Pablo Ferrari from the University of Buenos Aires, 
Argentina. Additionally, it included twenty-seven talks by 
invited speakers, along with two poster sessions. The 
conference drew a diverse audience of fifty participants 
from fourteen countries, encompassing numerous 
young researchers and Ph.D. students.
 The conference was a joint initiative organized by the 
University of Lisbon (CAMGSD, CMAFcIO), University 
of Minho (CMAT) and the University of Nice Sophia 
Antipolis, France. Financial support was provided by 
CAMGSD, CMAFcIO, CMAT, CIM, ERC, FCT.
 For further details, please visit 
https://sites.google.com/view/pspde/

46



Organizing committee

Cédric Bernardin
Université Côte d’Azur
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Maria João Oliveira
Universidade Aberta and CMAFcIO

Gunter Schütz
CAMGSD, University of Lisbon

Ana Jacinta Soares
CMAT, University of Minho

Ali Zahra
CAMGSD, University of Lisbon
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on The geoMeTry of learning froM daTa: 
bayes MeeTs hilberT 
by Miguel de Carvalho*

* School of Mathematics, University of Edinburgh; Department of Mathematics, Universidade de Aveiro
 Email: Miguel.deCarvalho@ed.ac.uk

Abstract.—Bayes’ theorem is a central result of Statistics and related fields, such as Artificial 
Intelligence and Machine Learning. In this note, we offer a gentle introduction to a geometric 
interpretation of Bayesian inference that allows one to think of priors, likelihoods, and 
posteriors as vectors in an Hilbert space. The given framework can be conceptualized as 
a geometry of learning from data, and it can be used to construct measures of agreement 
between these vectors. Conceptually, the geometry is tantamount to that of Pearson 
correlation, but where an inner product is considered over the parameter space—rather than 
over the sample space.

1 Introduction

This note builds on ideas from two prominent
thinkers: Thomas Bayes (c. 1701–1761) and David
Hilbert (1862–1943).[1] While their lives never over-
lapped temporally, this note shows how the work of
Hilbert can be used to reinterpret Bayes’ theorem and
Bayesian inference from a geometric viewpoint—as
well as other key statistical concepts on what we re-
gard as a geometry of learning from data.

The Bayesian paradigm is a well-known statisti-
cal inference approach that can be used for learning
from data about a parameter of statistical interest us-
ing Bayes theorem. Let 𝑌𝑌1, … , 𝑌𝑌𝑛𝑛 be a sequence of
independent and identically distributed (iid) random
variables in a measurable space (Ω, 𝒜𝒜𝒜 that are drawn
from parametric density function

𝑓𝑓𝜃𝜃(y𝒜 ≡ 𝑓𝑓(y ∣ 𝜃𝜃𝒜,
with y ∈ Ω and 𝜃𝜃 ∈ 𝜃. The sets Ω and 𝜃 are respec-
tively known as sample space and parameter space.

The key goal of Bayesian inference is to learn
about the distribution of the parameter 𝜃𝜃 given the
data 𝑦𝑦 𝑦 (𝑦𝑦1, … , 𝑦𝑦𝑛𝑛𝒜. It follows from Bayes theorem

that,

𝑝𝑝(𝜃𝜃 ∣ 𝑦𝑦𝒜 𝑦 𝜋𝜋(𝜃𝜃𝒜𝜋(𝜃𝜃𝒜
∫𝜃 𝜋𝜋(𝜋𝜋𝒜𝜋(𝜋𝜋𝒜 d𝜋𝜋

. (1)

where 𝜋(𝜃𝜃𝒜 𝑦 ∏𝑛𝑛
𝑖𝑖𝑦1 𝑓𝑓𝜃𝜃(𝑦𝑦𝑖𝑖𝒜 is the likelihood function,

and 𝜋𝜋(𝜃𝜃𝒜 is the prior density function. The density
𝑝𝑝(𝜃𝜃 ∣ 𝑦𝑦𝒜 is known as posterior density and it summa-
rizes what we learn about 𝜃𝜃 after observing 𝑦𝑦.

The prior density can understood as a way adding
prior knowledge about 𝜃𝜃 to the analysis—say, from an
expert opinion, from a census, and so on—or simply
as a way to “initiate the inferential machine.” Quoting
[9]:

The choice of a prior distribution is neces-
sary (as you would need to initiate the in-
ferential machine) but there is no notion of
the “optimal” prior distribution. Choosing
a prior distribution is similar in principle
to initializing any other sequential proce-
dure (e.g., iterative optimization methods
[…] etc.). The choice of such initializa-
tion can be good or bad in the sense of the
rate of convergence of the procedure to its
final value, but as long as the procedure
is guaranteed to converge, the choice of
prior does not have a permanent impact.

[1] The key concepts and methods from this note relate with the ideas and principles in [3], which was awarded with the 2018 Lindley Prize
from the International Society of Bayesian Analysis.

1
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And indeed, the posterior can be shown to converge
to the true value, under rather general conditions
on the prior distribution—a result known in statisti-
cal parlance as the Bernstein—von Mises theorem [11,
Theorem 10.1].

The remainder of this note is organized as follows.
In §2 we note that there’s an hidden geometry under-
lying Eq. (4) that can be used to rethink Bayesian infer-
ence and to develop measures of agreement between
prior, likelihood, and posterior. In §3 we illustrate
how that geometry can be used for shedding light on
other statistical inference concepts.

Before we get started a disclaimer is in order. To
make the presentation of the key ideas more acces-
sible, we will often use visualizations based on Carte-
sian representations. Yet, it is important to remember
that these representations are mainly heuristic and
hence should be interpreted with care.

2 The geometry of Bayesian inference

2.1 Abstract geometry

We first clarify the sense in which the term geometry
will be used throughout this note. The following def-
inition of abstract geometry can be found in [7, p. 17].

Definition 1 (Abstract geometry).— An abstract ge-
ometry 𝒜𝒜 consists of a pair {𝒫𝒫 𝒫 𝒫𝒫, where the ele-
ments of set 𝒫𝒫 are designed as points, and the ele-
ments of the collection 𝒫 are designed as lines, such
that:

1. For every two points 𝐴𝐴𝒫 𝐴𝐴 𝐴 𝒫𝒫 , there is a line
𝑙𝑙 𝐴 𝒫 .

2. Every line has at least two points.

Our abstract geometry of interest is 𝒜𝒜 𝒜 {𝒫𝒫 𝒫 𝒫𝒫,
where 𝒫𝒫 𝒜 𝒫𝒫2(Θ) is the the space of square inte-
grable functions, and the set of all lines is

𝒫 𝒜 {𝑔𝑔 𝑔 𝑔𝑔𝑔 𝑔 𝑔𝑔𝒫 𝑔 𝐴 𝒫𝒫2(Θ)𝒫 𝑔𝑔 𝐴 R𝒫. (2)

Hence, in our setting points can be, for example, prior
densities, posterior densities, or likelihoods, as long

as they are in 𝒫𝒫2(Θ). While not all priors and likeli-
hoods are in 𝒫𝒫2(Θ), the framework discussed herein
may extend beyond 𝒫𝒫2(Θ) with some modifications,
while still allowing similar geometric interpretations
as the ones provided below. See [3, §3] for details.

2.2 Bayes geometry

2.2.1 The marginal likelihood is an inner product

Suppose the goal of the inference is over a parameter
𝜃𝜃 which takes values on Θ ⊆ R𝑝𝑝. We use the geom-
etry of the Hilbert space ℋ 𝒜 (𝒫𝒫2(Θ)𝒫 ⟨⋅𝒫 ⋅⟩), with
inner-product[2]

⟨𝑔𝑔𝒫 𝑔⟩ 𝒜 ∫Θ
𝑔𝑔(𝜃𝜃)𝑔(𝜃𝜃) d𝜃𝜃𝒫 𝑔𝑔𝒫 𝑔 𝐴 𝒫𝒫2(Θ). (3)

Adopting the geometric terminology used in linear
spaces, we denote the elements of 𝒫𝒫2(Θ) as vectors,
and assess their magnitudes through the use of the
norm induced by the inner product in (3), i.e., ‖ ⋅ ‖ 𝒜
(⟨⋅𝒫 ⋅⟩)1/2.

The starting point for constructing our geometry
is the observation that Bayes theorem can be written
using the inner-product in (2.2.1) as follows

𝑝𝑝(𝜃𝜃 𝑝 𝑝𝑝) 𝒜 𝜋𝜋(𝜃𝜃)𝜋(𝜃𝜃)
⟨𝜋𝜋𝒫 𝜋⟩

𝒫 (4)

where ⟨𝜋𝜋𝒫 𝜋⟩ 𝒜 ∫Θ 𝑓𝑓(𝑝𝑝 𝑝 𝜃𝜃)𝜋𝜋(𝜃𝜃) d𝜃𝜃 is the so-called
marginal likelihood. The inner product in (3) natu-
rally leads to considering 𝜋𝜋 and 𝜋 that are in 𝒫𝒫2(Θ),
which is compatible with a wealth of parametric mod-
els and proper priors.

As can be seen from Fig. 1, by considering 𝑝𝑝, 𝜋𝜋, and
𝜋 as vectors with different magnitudes and directions,
Bayes’ theorem essentially describes the method of re-
shaping the prior vector in order to derive the poste-
rior vector. The likelihood vector amplifies or dimin-
ishes the magnitude of the prior vector, and appropri-
ately adjusts its direction, in a way that will be clearly
defined in the subsequent discussion.

The marginal likelihood ⟨𝜋𝜋𝒫 𝜋⟩ is simply the inner
product between the likelihood and the prior, and
thus can be interpreted as an assessment of the con-
cordance between the prior and the likelihood. To
provide a more tangible understanding, let’s define
the angle measure between the prior and the likeli-

[2] In mathematical terminology, the assertion that ℋ constitutes a Hilbert space is frequently referred to as the Riesz–Fischer theorem. For
a proof see [2, p. 411].
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Figure 1.—Cartesian representation of vectors of interest in a 
Bayesian analysis.

hood as

𝜋𝜋𝜋𝜋 𝜋 𝜋𝜋𝜋𝜋𝜋𝜋
⟨𝜋𝜋𝜋 𝜋𝜋

‖𝜋𝜋‖‖𝜋‖
. (5)

Since 𝜋𝜋 and 𝜋 are nonnegative, the angle between the
prior and the likelihood can only be acute or right, i.e.,
𝜋𝜋𝜋𝜋 𝜋 𝜋𝜋𝜋 𝜋𝜋∘]. The closer 𝜋𝜋𝜋𝜋 is to 𝜋∘, the greater
the agreement between the prior and the likelihood.
Conversely, the closer 𝜋𝜋𝜋𝜋 is to 𝜋𝜋∘, the greater the
disagreement between prior and likelihood. In the
limiting case where 𝜋𝜋𝜋𝜋 𝜋 𝜋𝜋∘—which implies the
prior and the likelihood have all of their mass on dis-
joint sets—we say that the prior is orthogonal to the
likelihood. Bayes theorem does not allow for a prior
to be orthogonal to the likelihood as 𝜋𝜋𝜋𝜋 𝜋 𝜋𝜋∘ im-
plies that ⟨𝜋𝜋𝜋 𝜋𝜋 𝜋 𝜋, thus yielding a division by zero
in (4).

2.2.2 Compatibility

The object we aim to focus next is given by a stan-
dardized inner product

𝜅𝜅𝜋𝜋𝜋𝜋 𝜋
⟨𝜋𝜋𝜋 𝜋𝜋

‖𝜋𝜋‖‖𝜋‖
. (6)

The quantity 𝜅𝜅𝜋𝜋𝜋𝜋 𝜋 (𝜋𝜋 1] assesses the extent to
which an expert’s viewpoint aligns with the data,
thereby offering an intuitive measurement of the con-
cordance between the prior and the data.

Extending the principle in (6), for any two points
in the geometry under consideration we define their
compatibility as a standardized inner product.

Definition 2 (Compatibility).— The compatibility
between points in the geometry under consideration
is defined as

𝜅𝜅𝑔𝑔𝜋𝑔 𝜋
⟨𝑔𝑔𝜋 𝑔𝜋

‖𝑔𝑔‖‖𝑔‖
𝜋 𝑔𝑔𝜋 𝑔 𝜋 𝑔𝑔2(Θ). (7)

Particular instances include (6) as well as:

• 𝜅𝜅𝜋𝜋1𝜋𝜋𝜋2
: which assesses the level of agreement

between two experts, with respective priors 𝜋𝜋1
and 𝜋𝜋2.

• 𝜅𝜅𝜋𝜋𝜋𝜋𝜋: which is a metric of the sensitivity of the
posterior to the prior specification.

Example 1 (Beta-Bernoulli model).— Let

{
𝑌𝑌𝑖𝑖 ∣ 𝜃𝜃 iid∼ Bern(𝜃𝜃)𝜋 𝑖𝑖 𝜋 1𝜋 𝜃 𝜋 𝜃𝜃𝜋
𝜃𝜃 ∼ Beta(𝑎𝑎𝜋 𝑎𝑎).

(8)

Then, 𝜃𝜃 ∣ 𝜃𝜃 ∼ Beta(𝑎𝑎⋆𝜋 𝑎𝑎⋆) with 𝑎𝑎⋆ 𝜋 𝜃𝜃1 + 𝑎𝑎 and
𝑎𝑎⋆ 𝜋 𝜃𝜃 𝑛 𝜃𝜃1 + 𝑎𝑎, where 𝜃𝜃1 𝜋 ∑𝜃𝜃

𝑖𝑖𝜋1 𝜃𝜃𝑖𝑖.
The compatibility between prior and likelihood

for this beta–Bernoulli model is

𝜅𝜅𝜋𝜋𝜋𝜋 𝜋 𝐵𝐵(𝑎𝑎⋆𝜋 𝑎𝑎⋆)
{𝐵𝐵(2𝑎𝑎 𝑛 1𝜋 2𝑎𝑎 𝑛 1)𝐵𝐵(2𝜃𝜃1 + 1𝜋 2(𝜃𝜃 𝑛 𝜃𝜃1) + 1)}1/2 𝜋

for 𝑎𝑎𝜋 𝑎𝑎 𝑎 1/2, with 𝐵𝐵(𝑎𝑎𝜋 𝑎𝑎) 𝜋 ∫1
𝜋 𝑢𝑢𝑎𝑎𝑛1(1 𝑛 𝑢𝑢)𝑎𝑎𝑛1 𝑑𝑑𝑢𝑢.[3]

To assess how compatible the priors 𝜋𝜋1 ∼ Beta(𝑎𝑎1𝜋 𝑎𝑎1)
and 𝜋𝜋2 ∼ Beta(𝑎𝑎2𝜋 𝑎𝑎2) are, we obtain

𝜅𝜅𝜋𝜋1𝜋𝜋𝜋2
𝜋

𝐵𝐵(𝑎𝑎1 + 𝑎𝑎2 𝑛 1𝜋 𝑎𝑎1 + 𝑎𝑎2 𝑛 1)
{𝐵𝐵(2𝑎𝑎1 𝑛 1𝜋 2𝑎𝑎1 𝑛 1)𝐵𝐵(2𝑎𝑎2 𝑛 1𝜋 2𝑎𝑎2 𝑛 1)}1/2 .

for 𝑎𝑎1𝜋 𝑎𝑎2𝜋 𝑎𝑎1𝜋 𝑎𝑎2 𝑎 1/2.

[3] The geometry underlying compatibility can be reframed within an Hellinger affinity context so to allow for any 𝑎𝑎𝜋 𝑎𝑎 𝑎 𝜋. See [3, §3].
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Figure 2.—Cartesian representation underlying the strong likelihood principle (left) 
and sufficiency (right). See §§ 3.2 and 3.3.

3 Further perspectives and insights

The roadmap for this section is as follows. §3.1 notes
that a variational representation of the posterior den-
sity naturally fits our geometry. §§3.2 and 3.3 are re-
lated with collinearity; it follows from §2, whenever
the symbol “∝” is used in a Bayesian setting it simply
implies that two likelihoods, priors or posteriors are
collinear. Finally, §3.4 notes the similarities between
the geometry of compabitility and that of Pearson cor-
relation.

3.1 Donsker–Varadhan representation

The celebrated Donsker–Varadhan representation
shows that the posterior density is the solution to
a variational problem with search domain 𝒫𝒫 𝒫𝒫𝒫;
here and below, 𝒫𝒫 𝒫𝒫𝒫 is the space of probability
density functions that can be defined over 𝒫 and
𝑙𝑙𝒫𝑙𝑙𝒫 𝑙 𝑙𝑙𝑙 𝑙𝒫𝑙𝑙𝒫 is the log likelihood. Specifically, the
Donsker–Varadhan representation is given by

𝑝𝑝𝒫𝑙𝑙 𝑝 𝑝𝑝𝒫 𝑙 𝑝𝑝𝑙 𝑝𝑝𝑝
𝑞𝑞𝑞𝒫𝒫 𝒫𝒫𝒫

[−E𝑞𝑞{𝑙𝑙𝒫𝑙𝑙𝒫𝑙 𝑙 KL𝒫𝑞𝑞𝑞 𝑞𝑞𝒫𝑞𝑞 (9)

where E𝑞𝑞 and KL are respectively the prior expecta-
tion and Kullback–Leibler divergence, that is,

𝐸𝐸𝑞𝑞{𝑙𝑙𝒫𝑙𝑙𝒫𝑙 𝑙 ∫𝒫
𝑙𝑙𝒫𝑙𝑙𝒫 𝑞𝑞𝒫𝑙𝑙𝒫 d𝑙𝑙𝑞

KL𝒫𝑞𝑞𝑞 𝑞𝑞𝒫 𝑙 ∫𝒫
𝑞𝑞𝒫𝑙𝑙𝒫 𝑙𝑙𝑙{𝑞𝑞𝒫𝑙𝑙𝒫𝑞𝑞𝑞𝒫𝑙𝑙𝒫𝑙 d𝑙𝑙𝜃

A geometric interpretation of (3.1) follows from ele-
mentary properties of inner products,

𝑝𝑝𝒫𝑙𝑙 𝑝 𝑝𝑝𝒫 𝑙 𝑝𝑝𝑙 𝑝𝑝𝑝
𝑞𝑞𝑞𝒫𝒫 𝒫𝒫𝒫

−⟨𝑞𝑞𝑞 𝑙𝑙𝑞 𝑙 ⟨𝑞𝑞𝑞 𝑙𝑙𝑙𝒫𝑞𝑞𝑞𝑞𝑞𝒫𝑞

𝑙 𝑝𝑝𝑙 𝑝𝑝x
𝑞𝑞𝑞𝒫𝒫 𝒫𝒫𝒫

⟨𝑞𝑞𝑞 𝑙𝑙𝑞 − ⟨𝑞𝑞𝑞 𝑙𝑙𝑙𝒫𝑞𝑞𝑞𝑞𝑞𝒫𝑞

𝑙 𝑝𝑝𝑙 𝑝𝑝x
𝑞𝑞𝑞𝒫𝒫 𝒫𝒫𝒫

⟨𝑞𝑞𝑞 DV𝑞𝑞𝑞𝑞 (10)

where DV𝑞𝑞 is what we refer to as the Donsker–
Varadhan likelihood ratio,

DV𝑞𝑞𝒫𝑙𝑙𝒫 𝜃 𝑙𝑙𝑙[𝑙𝒫𝑙𝑙𝒫𝑞{𝑞𝑞𝒫𝑙𝑙𝒫𝑞𝑞𝒫𝑙𝑙𝒫𝑙𝑞𝜃 (11)

Loosely, (10) implies that the posterior density is the
density in 𝒫𝒫 𝒫𝒫𝒫 which is most lined up with the
Donsker–Varadhan likelihood ratio in (11).

3.2 Collinearity, I: likelihood principle

Let 𝑙𝑓𝑓 and 𝑙𝑔𝑔 be the likelihoods based on observing
𝑝𝑝 𝑦 𝑓𝑓 and 𝑝𝑝∗ 𝑦 𝑔𝑔, respectively. The strong likelihood
principle states that if

𝑙𝑓𝑓 𝒫𝑙𝑙𝒫 𝑙 𝑓𝑓𝒫𝑙𝑙 𝑝 𝑝𝑝𝒫 ∝ 𝑔𝑔𝒫𝑙𝑙 𝑝 𝑝𝑝∗𝒫 𝑙 𝑙𝑔𝑔𝒫𝑙𝑙𝒫𝑞
then the same inference should be drawn from both
samples. According to our geometry, this means that
likelihoods with the same direction yield the same in-
ference. For instance, the Bernoulli likelihood of the
model from Example (1) is

𝑙𝑓𝑓 𝒫𝑙𝑙𝒫 𝑙
𝑛𝑛

∏
𝑖𝑖𝑙𝑖

𝑙𝑙𝑝𝑝𝑖𝑖𝒫𝑖 − 𝑙𝑙𝒫𝑛𝑛−𝑝𝑝𝑖𝑖 𝑙 𝑙𝑙∑𝑛𝑛
𝑖𝑖𝑙𝑖 𝑝𝑝𝑖𝑖 𝒫𝑖 − 𝑙𝑙𝒫𝑛𝑛−∑𝑛𝑛

𝑖𝑖𝑙𝑖 𝑝𝑝𝑖𝑖 𝑞

wheras that of the Binomial model for 𝑛𝑛𝑖 𝑙 ∑𝑛𝑛
𝑖𝑖𝑙𝑖 𝑝𝑝𝑖𝑖

is

𝑙𝑔𝑔𝒫𝑙𝑙𝒫 𝑙 (
𝑛𝑛
𝑛𝑛𝑖)𝑙𝑙𝑛𝑛𝑖𝒫𝑖 − 𝑙𝑙𝒫𝑛𝑛−𝑛𝑛𝑖 𝑞

4
52



Figure 3.—Left: Prior, posterioar, and likelihood for beta–binomial specification from 
Example 1 with (a,b) = (4, 4), n = 40, and n1 = 30 so that, for example, κπ,l = 0.41. 
Right: Simulated data from bivariate normal distribution with ρX,Y = 0.98.

with (𝑎𝑎
𝑏𝑏) denoting the binomial coefficient. Trivially,

ℓ𝑓𝑓 (𝜃𝜃𝜃 𝜃 ℓ𝑔𝑔(𝜃𝜃𝜃𝜃
and hence ℓ𝑓𝑓 and ℓ𝑔𝑔 are collinear.

3.3 Collinearity, II: sufficiency

Roughly speaking, a sufficient statistic is one that con-
tains all the information that is required to learn about
𝜃𝜃.[4] The geometry from §2.2 can also be used to re-
think a celebrated characterization of sufficient statis-
tics in a geometric fashion.

Theorem 3 (Neyman factorization).— Suppose that
𝑌𝑌 𝑌 (𝑌𝑌1𝜃 … 𝜃 𝑌𝑌𝑛𝑛𝜃 has a joint density function or a fre-
quency function 𝑓𝑓𝜃𝜃(𝑦𝑦𝜃. Then 𝑇𝑇 (𝑌𝑌 𝜃 is sufficient for
𝜃𝜃 iff there exists a function of that statistic, 𝐺𝐺𝑇𝑇 (𝑦𝑦𝜃(𝜃𝜃𝜃,
that is collinear to ℓ(𝜃𝜃𝜃, that is,

ℓ(𝜃𝜃𝜃 𝜃 𝐺𝐺𝑇𝑇 (𝑦𝑦𝜃(𝜃𝜃𝜃𝜃

See, for instance, [6, §4] for a nongeometrical formu-
lation of this classical result. Let’s illustrate this on a
well-known example.

Example 2.— Let 𝑌𝑌1𝜃 … 𝜃 𝑌𝑌𝑛𝑛
iid∼ Uniform(0𝜃 𝜃𝜃𝜃. It can

be easily shown that

ℓ(𝜃𝜃𝜃 𝑌
𝑛𝑛

∏
𝑖𝑖𝑌1

1
𝜃𝜃
1[0𝜃𝜃𝜃𝜃(𝑦𝑦𝑖𝑖𝜃 𝜃 1

𝜃𝜃𝑛𝑛1[0𝜃𝜃𝜃𝜃{𝑇𝑇 (𝑦𝑦𝜃𝑇 𝑇 𝐺𝐺𝑇𝑇 (𝑦𝑦𝜃(𝜃𝜃𝜃𝜃

where 𝑇𝑇 (𝑦𝑦𝜃 𝑌 𝑇𝑇𝑇{𝑦𝑦1𝜃 … 𝜃 𝑦𝑦𝑛𝑛𝑇 and 1𝐴𝐴 is the indicator
function.

3.4 Compatibility vs Pearson correlation

Compatibility in Definition 2 follows the same con-
struction principles as the Pearson correlation coeffi-
cient, which is based on the inner product

⟨𝑋𝑋𝜃 𝑌𝑌 𝑋 𝑌 ∫Ω
𝑋𝑋𝑌𝑌 d𝑃𝑃 𝜃 𝑋𝑋𝜃 𝑌𝑌 𝑃 𝑃𝑃2(Ω𝜃 𝔹𝔹Ω𝜃 𝑃𝑃 𝜃𝜃 (12)

instead of the inner product in (3). Recall that Pear-
son correlation is defined as

𝜌𝜌𝑋𝑋𝜃𝑌𝑌 𝑌 cov(𝑋𝑋𝜃 𝑌𝑌 𝜃
sd(𝑋𝑋𝜃 sd(𝑌𝑌 𝜃

𝜃

and it can be understood as a cosine of 𝑋𝑋𝑋𝑌𝑌 in a
similar fashion as (5)—but with “cov” and “sd” denot-
ing the covariance (inner product) and standard devi-
ation (norm), respectively. And indeed, just like the
cosine function, 𝜌𝜌𝑋𝑋𝜃𝑌𝑌 𝑃 [−1𝜃 1𝜃.

Compatibility is however defined for priors, pos-
teriors, and likelihoods in 𝑃𝑃2(Θ𝜃 equipped with the
inner product (3), whereas Pearson correlation works
with random variables in 𝑃𝑃2(Ω𝜃 𝔹𝔹Ω𝜃 𝑃𝑃 𝜃 equipped
with the inner product (12).

Fig. 3 sheds light on the different uses of compati-
bility and Pearson correlation. For example, 𝜅𝜅𝜋𝜋𝜃ℓ mea-

[4] Recall that a statistic 𝑇𝑇 𝑌 𝑇𝑇 (𝑌𝑌 𝜃 is sufficient for 𝜃𝜃 if, 𝑃𝑃 (𝑌𝑌 𝑃 𝐴𝐴 𝑃 𝑇𝑇 𝑌 𝑃𝑃𝜃 does not depend on 𝜃𝜃, for all 𝑃𝑃 in the range of 𝑇𝑇 and for all sets 𝐴𝐴.
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sures the agreement between likelihood and prior
density, whereas 𝜌𝜌𝑋𝑋𝑋𝑋𝑋 assesses the degree of linear as-
sociation between random variables 𝑋𝑋 and 𝑋𝑋 . The
value 𝜅𝜅𝜋𝜋𝑋𝜋 = 0.41 is in line with the moderate over-
lap between prior and likelihood visible in Fig. 3. The
value of 𝜌𝜌𝑋𝑋𝑋𝑋𝑋 = 0.98 is in line with the strong posi-
tive association between the random variables 𝑋𝑋 and
𝑋𝑋 that can be seen in Fig. 3.

4 Closing remarks

This note offers a gentle introduction to geometrical
aspects underlying the Bayesian paradigm that can be
used for defining metrics of agreement between pri-
ors, likelihoods and posteriors as well as to rethink
other concepts and results related with learning from
data.

Geometrical interpretations are commonplace in
Statistics and related fields—including for example
that of Pearson correlation [15], least squares and
LASSO (Least Absolute Shrinkage and Selection Op-
erator) [10], and information geometry [1]; also, the
geometry of multivariate analysis is well-known [13].
Many well-known geometrical insights concentrate
on the geometry of data itself, whereas the focus of
this note has been on the geometry of learning from
data. Despite the long tradition of geometrical in-
terpretations of statistical concepts, the view of the
Bayesian paradigm along the lines of this note is rela-
tively novel and it has been pioneered by [3] and [5].

Beyond geometry, topology and algebra hava also
recently introduced a variety of insights and novel
paradigms to the practice of learning from data—
leading to the fields of topological data analysis [12]
and algebraic statistics [4, 14].

Finally, we note that the geometrical view of the
Donsker–Varadhan representation in (10) consists of
a variational maximum inner product problem, and
that nonvariational versions of such problems are of
interest in the Machine Learning literature [8].
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soMe resulTs on conTrol Theory for probleMs 
in fluid dynaMics 
by Susana N. Gomes*

Abstract.—I will introduce some concepts in linear control theory, and how to adapt and use 
them to control some problems modelled by nonlinear partial differential equations appearing 
in a canonical fluid dynamics setting, showcasing how some simple results tailored for ODEs 
or linear PDEs can be explored to solve nonlinear complex problems from applications. This 
is a brief exposition of some of the results in [4] and [10].

* Mathematics Institute, University of Warwick. Email: Susana.gomes@warwick.ac.uk

Control theory is a branch of applied mathematics
and systems engineering which considers dynamical
systems, usually ordinary or partial differential equa-
tions (ODE/PDEs), and studies the development —
or design — of algorithms whose goal is to drive these
systems to a desired state while minimising any costs,
delays, overshoots, or errors.

The mathematical theory of (feedback) control is
outlined in [16, 23], where control of (linear and non-
linear) ordinary differential equations is considered,
and where the authors introduce concepts such as
controllability (any state can be reached by any start-
ing point), stabilisability (it is possible to drive the
system to have stable dynamics), and sufficient con-
ditions for these to be possible. One can also intro-
duce the Linear Quadratic Regulator (LQR), an exam-
ple of an optimal control problem, where in addition
to controlling the system, one also minimises a cost
functional, usually penalising deviations from the de-
sired state and the cost of the control. An optimal con-
trol problem is solved using the Pontryagin maximum
principle, which is similar to the first-order optimal-
ity conditions (or Karush-Kuhn-Tucker, KKT, condi-
tions) in traditional optimisation.

More recently, the theory of optimal control has
been extended to problems modelled by PDEs [21],
where one minimises a cost functional subject to the
target solution solving a PDE. In this case, when
applying the Pontryagin maximum principle, one
needs to compute Fréchet derivatives of a Lagrangian,
which involves several tools in functional analysis,
and so proving existence of optimal controls is a
harder task.

While the theory of feedback and optimal control
has received extensive attention for systems governed

by ODEs and (linear) PDEs, it was only recently that
mathematicians started to target more complex sys-
tems, such as, for example, turbulence in fluid dynam-
ics, and in this case, they often resort to the use of
reduced-order models (ROM) which use techniques
such as principal component analysis (PCA) to sim-
plify the (infinite dimensional) state space into a fi-
nite dimensional and tractable vector or Hilbert space.
However, in certain applications, we can obtain sim-
plified models based on physical assumptions of the
problem, and use these for control design. I will in-
troduce an example in fluid dynamics, falling liquid
films, that, by being comparatively simple to the full
problem modelled by the Navier–Stokes equations,
allows us to construct feedback controls that stabilise
the full system with a lower computational cost and
with no need for the use of ROMs.

In what follows, I will first introduce the basic con-
cepts and results on feedback control needed to do
this, followed by a short section describing the physi-
cal problem and the various models I consider. I will
conclude with a survey of recent results on the con-
trol of falling liquid films, thus illustrating how some-
times one can obtain several useful (albeit numerical)
results that can have an influence on practical appli-
cations, even when we cannot prove analytical results
because we do not have the necessary assumptions on
the problem (such as global well-posedness), and fin-
ish with some open problems.

1 A short introduction to control theory

In this section, I summarise the main results in (feed-
back) control theory which I will use later on. I will

1
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start with an ODE example and illustrate how these
results translate to PDEs.

Consider, for simplicity, the example a scalar ODE

̇𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦 (1)

where the dot represents derivatives with respect to
time. One can easily show that the solution of (1)
is the function 𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑒𝑒𝑦𝑦𝑦𝑦, and in particular, that
𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦 if 𝑦𝑦 𝜆 𝑦 and 𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦 if 𝑦𝑦 is positive.

An intuitive thing to do to stabilise the system (i.e.,
to drive it towards the solution 𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦), is to intro-
duce a control (or forcing) term to equation (1), i.e.,
rewrite the controlled equation as

̇𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦 𝑦𝑦𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦. (2)

We can then choose 𝑦𝑦 in such a way that the solution
is stabilised, and it is easy to see that it suffices to use
a simple proportional feedback control: 𝑦𝑦𝑦𝑦𝑦𝑦 𝑦 𝑓𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦
for some positive constant 𝑓𝑓 so that 𝑦𝑦𝑓𝑓𝑓 𝜆 𝑦. In this
case, we say that the control 𝑦𝑦𝑦𝑦𝑦𝑦 stabilises the solu-
tion to the ODE. The term feedback is used because
the control uses information on the current state of
the system; the control is called proportional since it
is proportional to the current solution.

Building up on this idea, we can consider the prob-
lem of controlling a system of ODEs, i.e., a problem
of the form

�̇�𝐲 𝑦 𝐲𝐲𝐲𝐲 𝑦 𝐲𝐲𝑦 𝐲𝐲𝑦𝑦𝑦 𝑦 𝐲𝐲𝟎𝟎𝑦 (3)

where now 𝐲𝐲𝑦 𝐲𝐲𝟎𝟎𝑦 𝐲𝐲 𝐟 ℝ𝑑𝑑 and 𝐲𝐲 is a 𝑑𝑑 𝑑 𝑑𝑑 matrix.
It can be shown that in this case, when 𝐲𝐲 𝑦 𝟎𝟎, if all
the eigenvalues of 𝐲𝐲 have negative real part, the solu-
tion is asymptotically stable, i.e., 𝐲𝐲𝑦𝑦𝑦𝑦 𝑦 𝟎𝟎 as 𝑦𝑦 𝑦 𝑦.
The analogue of the previous control here is to use
𝐲𝐲𝑦𝑦𝑦𝑦 𝑦 𝑓𝑓𝑓𝐲𝐲𝑦𝑦𝑦𝑦 𝑦 𝑓𝑓𝑓𝐟𝐟𝐲𝐲𝑦𝑦𝑦𝑦, where 𝐟𝐟 is the 𝑑𝑑𝑑𝑑𝑑 identity
matrix. A simple calculation can be used to find the
smallest 𝑓𝑓 necessary to stabilise the system, namely,
choose 𝑓𝑓 such that the eigenvalues of 𝐲𝐲 𝑓 𝑓𝑓𝐟𝐟 all have
negative real part.

While this is an easy thing to do, often in appli-
cations we can use information about the problem to
obtain more efficient controls. Alternatively, it can be
necessary to apply controls only to certain variables.
This can be achieved by modifying the problem state-
ment as follows:

�̇�𝐲 𝑦 𝐲𝐲𝐲𝐲 𝑦 𝐲𝐲𝐲𝐲𝑦 𝐲𝐲𝑦𝑦𝑦 𝑦 𝐲𝐲𝑦. (4)

Here, 𝐲𝐲 is a 𝑑𝑑 𝑑 𝑑𝑑 matrix that encodes some infor-
mation about how one applies the controls—for ex-
ample, one can have 𝑑𝑑 control actuators (where each
column of 𝐲𝐲 represents the effect of one control), or
have different controls affect some rows of the system
and not others. In this case, the controls are 𝐲𝐲 𝐟 ℝ𝑑𝑑

(i.e. there are 𝑑𝑑 of them). Note that we can have
𝑑𝑑 𝑦 𝑑𝑑 and 𝐲𝐲 𝑦 𝐟𝐟 , which is the case outlined above.
It can be shown that under some assumptions on the
matrices 𝐲𝐲 and 𝐲𝐲 (namely, the Kalman rank condi-
tion [23]), one can find a matrix 𝐾𝐾 such that the eigen-
values of 𝐲𝐲𝑦𝐲𝐲𝐾𝐾 all have negative real part, and there-
fore the controls 𝐲𝐲 𝑦 𝐾𝐾𝐲𝐲 stabilise the system. The
matrix 𝐾𝐾 can be computed using a pole placement al-
gorithm [12] or by solving a linear-quadratic regulator
problem [23].

In several complex systems relevant to applica-
tions, the interest is to control nonlinear dynamics,
and we instead have a nonlinear system of ODEs,

�̇�𝐲 𝑦 𝐲𝐲 𝑦𝐲𝐲𝑦 𝑦 𝐲𝐲𝐲𝐲𝑦 𝐲𝐲𝑦𝑦𝑦 𝑦 𝐲𝐲𝑦𝑦 (5)

where 𝐲𝐲 is some nonlinear function of 𝑦𝑦. Simi-
lar controllability or stabilisability results can be ob-
tained (under assumptions on 𝐲𝐲 such as Lipschitz
continuity) by considering a linearisation of the non-
linear operator and using Lyapunov function type ar-
guments [23].

Finally, for several applications there is interest
in controlling (linear or nonlinear) partial differential
equations (PDEs); for example a reaction-diffusion
equation for the evolution of a population, tumour
growth or other biological and chemical applications.
Such PDEs take the general form

𝑢𝑢𝑦𝑦 𝑦 ℒ 𝑢𝑢 𝑦 𝐲𝐲 𝑦𝑢𝑢𝑦 𝑦 𝑦𝑦𝑦 (6)

along with appropriate initial and boundary condi-
tions. The subscript 𝑦𝑦 denotes time derivative, and
ℒ𝑦 𝐲𝐲 are linear and nonlinear spatial differential op-
erators, respectively. By projecting this equation to
an appropriate basis (e.g., taking Fourier transforms),
one can write the PDE as an infinite-dimensional sys-
tem of ODEs such as (5). Alternatively, one can also
discretise the problem (e.g. using finite differences)
to rewrite it as a finite dimensional system of equa-
tions. This approach is commonly known as “discre-
tise then optimise”. Passing to the PDE limit is not
straightforward, even for linear PDEs [23]. However,
in certain cases, this is possible; this is done for sev-
eral linear PDEs (see [21]), and I will show a particular
case of a nonlinear PDE in the next section.

2 Falling liquid films and how to control
them

I will now introduce the problem of a falling liquid
film, which is a canonical setting in fluid dynamics
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Figure 1.—Diagram of a thin film flowing down an inclined plane and allowing for blow-
ing and suction controls. The dynamics of the interface y=h(x,t) are controlled by some 
fluid parameters, as well as the inclination angle θ and the imposed control values 
v=F(x,t) at y=0 in the coordinate system shown in the figure.

with applications such as coating of LCD screens or
manufacturing of microchips.

2.1 A hierarchy of models for falling liquid films

Falling liquid films are thin films of a viscous fluid
flowing down an inclined plane, as shown in Figure 1.
This problem has been studied extensively both the-
oretically (accurate model development, see, for ex-
ample, [3, 11, 15]) and experimentally ([6]) and pro-
vides a set of models which is amenable to control
development. The goal here is to control the interface
towards a desired shape; for example, while the un-
controlled system evolves towards a travelling wave
such as the one depicted in Figure 1, or more com-
plex, and even chaotic, solutions, in applications such
as LCD screen coating one would want the interface
to be flat, whereas for microchip cooling we would
desire a wavy interface with a suitable profile, to en-
hance heat transfer. For the models I will show, the
flat solution will correspond to ℎ(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥 unless oth-
erwise stated. To control the resulting interface, we
will allow for fluid to be inserted or removed from
the system via slots at the plate that the film is flow-
ing over, as depicted in Figure 1, and this will appear
as a boundary condition, or as a coefficient in the dif-
ferent models we will consider. We will see how to
design the controls, i.e., how to prescribe how much
fluid is inserted or removed from the system at each
slot, as well as how many of these controls we need,

using variations of the feedback control theory out-
lined in the previous section.

This physical problem is modelled by the (two-
dimensional) Navier–Stokes equations;[1] in particu-
lar by modelling the interaction between the fluid and
the air via the interface at 𝑦𝑦 𝑥 ℎ(𝑥𝑥𝑥 𝑥𝑥𝑥. After an ap-
propriate non-dimensionalisation, the system param-
eters are reduced to two non-dimensional groupings:
the Reynolds number 𝑅𝑅𝑅𝑅 measuring the relative im-
portance between inertia and viscosity, and the cap-
illary number 𝐶𝐶𝐶𝐶 which measures the importance of
surface tension. The Navier–Stokes equations con-
sist of the momentum equations for 𝑢𝑢𝑥 𝑢𝑢, and 𝑝𝑝 the
stramwise (parallel to the plane) and transverse (per-
pendicular to the plane) velocities, and pressure, re-
spectively.

𝑅𝑅𝑅𝑅(𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑢𝑢𝑦𝑦𝑥 𝑥 −𝑝𝑝𝑥𝑥 + 2 + 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑦𝑦𝑥 (7)

𝑅𝑅𝑅𝑅(𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑢𝑢𝑦𝑦𝑥 𝑥 −𝑝𝑝𝑦𝑦 − 2 cot 𝜃𝜃 + 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑦𝑦𝑥 (8)

which are coupled to the continuity equation given
by

𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑦𝑦 𝑥 0. (9)

In addition, the system is completed by its boundary
conditions. We consider periodic boundaries in the
𝑥𝑥-direction[2], no-slip and fluid injection/removal at
the wall,

𝑢𝑢 𝑥 0𝑥 𝑢𝑢 𝑥 𝑢𝑢 (𝑥𝑥𝑥 𝑥𝑥𝑥𝑥 (10)

the nonlinear dynamic stress balance (or momentum

[1] It is possible to generalise the problem to three dimensions, but this is much more computationally expensive, and for the purposes of this
problem, a 2D description is often enough.

[2] This is a modelling assumption, which simplifies the analytical computations that follow. If the domain is sufficiently long, this is a good
enough approximation, but different approaches can consider different boundary conditions.
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jump) at the interface, 𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦,
𝑦𝑣𝑣𝑦𝑦 + 𝑢𝑢𝑦𝑦𝑦𝑦1 − 𝑦2

𝑦𝑦𝑦 + 2𝑦𝑦𝑦𝑦𝑣𝑣𝑦𝑦 − 𝑢𝑢𝑦𝑦𝑦 𝑦 0𝑦 (11)

𝑝𝑝 −
2𝑦𝑣𝑣𝑦𝑦 + 𝑢𝑢𝑦𝑦𝑦2

𝑦𝑦 − 𝑦𝑦𝑦𝑦𝑣𝑣𝑦𝑦 + 𝑢𝑢𝑦𝑦𝑦𝑦

1 + 𝑦2
𝑦𝑦

𝑦

𝑦 − 1
𝐶𝐶𝐶𝐶

𝑦𝑦𝑦𝑦𝑦

𝑦1 + 𝑦2
𝑦𝑦𝑦3/2

𝑦
(12)

and finally the kinematic boundary condition

𝑦𝑦𝑦 𝑦 𝑣𝑣 − 𝑢𝑢𝑦𝑦𝑦. (13)

The uncontrolled system admits a uniform flat film
solution known as the Nusselt solution [11], given by
𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 𝑦 1 and a semi-parabolic in 𝑦𝑦 horizontal fluid
velocity, which can be used to obtain simplified mod-
els.

It is well-known that full models such as the
Navier–Stokes equations are computationally expen-
sive to simulate, and therefore if one wants to solve it
for several values of the relevant parameters (or, for
example, perform optimal control using these mod-
els), it becomes prohibitively expensive. However, in
the case of thin liquid films, the mean interface height
is much smaller than the length of the domain, 𝐿𝐿, and
this makes it possible to define a long wave parameter
𝜖𝜖 𝑦 1/𝐿𝐿 𝜖 1. This disparity of scales facilitates a
multiscale approach to derive from first principles hi-
erarchies of simplified models. [3] To be able to derive
these models, we need the following assumptions:

(A1) (long-wave assumption) the geometrical aspect
ratio 𝜖𝜖 is small;

(A2) The Reynolds number 𝑅𝑅𝑅𝑅 is 𝒪𝒪𝑦1𝑦;

(A3) Surface tension is sufficiently strong to appear
at leading order, i.e., the capillary number is
small, and 𝐶𝐶𝐶𝐶 𝑦 𝒪𝒪𝑦𝜖𝜖2𝑦 is the appropriate dis-
tinguished limit;

(A4) The controls 𝐹𝐹 are small 𝐹𝐹 𝑦 𝒪𝒪𝑦𝜖𝜖𝑦, implying
weak injection or removal of fluid via the con-
trol actuators.

Using assumptions (A1)-(A4) and asymptotic anal-
ysis techniques, Thompson et al. [20] derived two dif-
ferent long-wave models for falling liquid films us-
ing this type of control (long-wave models for uncon-
trolled falling liquid films were explored earlier in the
literature, see [11]). Both models satisfy a mass conser-
vation equation

𝑦𝑦𝑦 + 𝑞𝑞𝑦𝑦 𝑦 𝐹𝐹 𝑦𝑦𝑦𝑦 𝑦𝑦𝑦𝑦 (14)

which is coupled with an equation for the flux
𝑞𝑞𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 𝑦 ∫𝑦

0 𝑢𝑢𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 𝑦𝑦𝑦 𝑢𝑦𝑦. In the first model, the Ben-
ney equation, they obtain an explicit expression for
𝑞𝑞𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 and the model is a single PDE for the interfa-
cial height 𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦:

𝑞𝑞𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 𝑦 𝑦3

3 (2 − 2𝑦𝑦𝑦 cot 𝜃𝜃 +
𝑦𝑦𝑦𝑦𝑦𝑦𝑦
𝐶𝐶𝐶𝐶 ) +

+𝑅𝑅𝑅𝑅
(

8𝑦6𝑦𝑦𝑦
15

− 2𝑦4𝐹𝐹
3 )

.
(15)

The second model is the weighted residuals model,
which describes the evolution of the interfacial height
𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 and the flux 𝑞𝑞𝑦𝑦𝑦𝑦 𝑦𝑦𝑦:
2𝑅𝑅𝑅𝑅

5
𝑦2𝑞𝑞𝑦𝑦 + 𝑞𝑞 𝑦 𝑦3

3 (2 − 2𝑦𝑦𝑦 cot 𝜃𝜃 +
𝑦𝑦𝑦𝑦𝑦𝑦𝑦
𝐶𝐶𝐶𝐶 ) +

+𝑅𝑅𝑅𝑅 (
18𝑞𝑞2𝑦𝑦𝑦

35
−

34𝑦𝑞𝑞𝑞𝑞𝑦𝑦
35

+ 𝑦𝑞𝑞𝐹𝐹
5 ) .

(16)

We note that the controls appear as an inhomoge-
neous term 𝐹𝐹 𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 in the mass conservation equation
(14), and this structure plays a crucial role in the effi-
ciency of these controls.

Due to the asymptotic reduction, these models
only provide us with the interface height 𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 and
downstream flux 𝑞𝑞𝑦𝑦𝑦𝑦 𝑦𝑦𝑦 and do not directly provide
the solution to the Navier–Stokes equations (i.e. 𝑢𝑢,
𝑣𝑣, and 𝑝𝑝). However, if needed, these can be recov-
ered from 𝑦 and 𝑞𝑞, thus allowing for comparison with
direct numerical simulations of the Navier–Stokes
equations when necessary.

The above long-wave models are significantly
more accessible computationally than the full Navier–
Stokes equations, but they are still highly nonlinear.
This means that it is hard (if not impossible) to treat
them analytically, and to the best of my knowledge
there are no analytical results beyond linear stability
analysis of the flat solution (and some results on soli-
tary waves for some special cases) [11]. Because of this,
there is some interest in applying further simplifica-
tions in order to make analytical progress. For very
small but nonlinear perturbations of the flat solution,
one can perform weakly nonlinear analysis to derive
a Kuramoto-Sivashinsky (KS) equation [11, 19]. The
KS equation is a fourth-order nonlinear PDE having
the same form as (6), and is given by

𝜂𝜂𝑦𝑦 + 𝜈𝜈𝜂𝜂𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝜂𝜂𝑦𝑦𝑦𝑦 + 𝜂𝜂𝜂𝜂𝑦𝑦 𝑦 𝑓𝑓𝑦𝑦𝑦𝑦 𝑦𝑦𝑦𝑦
where 𝜂𝜂 is a small perturbation of a flat interface
and 𝜈𝜈 𝜈 0 is a parameter that encodes some of the

[3] We often call these reduced-order models, but I will not use this terminology, to avoid confusion with ROMs obtained via, e.g., PCA.
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Figure 2.—Bifurcation diagram of the solutions of the KS equation. Full blue lines cor-
respond to steady state solutions while dashed red lines are travelling waves. Not all 
branches are included, and most solutions depicted here are unstable.

geometry of the problem[4]. This problem is posed
with periodic boundary conditions and we have 𝑥𝑥 𝑥
[0, 2𝜋𝜋𝜋. In this case, a flat interface corresponds to
𝜂𝜂 𝜂 0.

The KS equation appears in several applications
and is widely studied since it is one of the simplest
model PDEs exhibiting spatiotemporal chaotic be-
haviour. Over the last few decades, existence and
uniqueness of solutions have been explored [17], dif-
ferent types of attractors have been characterised [5],
and the route to chaos for solutions of the KS equa-
tion have been reported [13], to show a small subset of
the range of interesting analytical and computational
results that can be achieved even at this lowest mem-
ber of the model hierarchy. It is possible to compare
the results from these models to direct numerical sim-
ulations of the Navier–Stokes equations, and some
relevant comparisons can be seen in [6]. While the
long-wave models provide a very good approxima-
tion of the full system, in most cases the KS equation
solution differs significantly from it (see Figure 2 in
[4]). However, its simplicity and existing analytical re-
sults have allowed us to develop efficient controls (see
[2, 8]) which were then extended to controlling long-
wave models [19] and eventually the full model [4, 10].
For the rest of this article, I will summarise our results
in this direction.

2.2 Feedback control of falling liquid films

I will start outlining our results towards control of
falling liquid films by showing the (analytical and nu-
merical) results on controlling the KS equation. As
mentioned above, while there is significant model er-
ror when considering this PDE to model interfaces of
falling liquid films, the analytical insights can provide
us with enough information to motivate control de-
velopment on the more complicated long wave mod-
els, and eventually design controls that drive the so-
lution to the full system towards a desired state.

The controlled KS equation, rewritten so that con-
trols reflect a finite number of control actuators that
inject and remove fluid through slots is given by

𝜂𝜂𝑡𝑡 + 𝜈𝜈𝜂𝜂𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝜂𝜂𝑥𝑥𝑥𝑥 + 𝜂𝜂𝜂𝜂𝑥𝑥 𝜂
𝑀𝑀

∑
𝑗𝑗𝜂𝑗

𝛿𝛿𝛿𝑥𝑥 𝛿 𝑥𝑥𝑗𝑗)𝑓𝑓𝑗𝑗𝛿𝑡𝑡)𝑡 (17)

For the uncontrolled problem, it is easy to check that
if 𝜈𝜈 𝜈 𝑗, the zero solution is linearly unstable. With-
out the nonlinear term 𝜂𝜂𝜂𝜂𝑥𝑥, the solution would grow
exponentially in time; however, the nonlinearity pro-
motes exchange of energy between Fourier modes
and instead we see a “zoo” of solutions, from steady
states, to travelling waves, but more generally we ob-
serve chaotic behaviour. This can be seen in Figure 2,
where we plot the bifurcation diagram of possible
solutions of the KS equation, with steady states de-
picted in full blue lines, and travelling waves by red

[4] Most of the geometry of the problem, however, is encoded in the change of variables used to arrive at this equation; in particular, the so-
lutions of this equation sit on a moving frame, and so even “steady-state” solutions correspond to travelling waves of the original problem.
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dashed lines. The 𝑦𝑦 axis plots the 𝐿𝐿2 norm of differ-
ent solutions (here 𝑢𝑢 should be replaced by 𝜂𝜂). The
figure is taken from [8].

Armaou and Christofides showed in [2] that the
zero solution of the KS equation in small domains
(𝜈𝜈 close to 1) can be controlled using 𝑀𝑀 𝑀 𝑀 con-
trol actuators. More recently, we were able to show
that we can stabilise any unstable solution (any of the
branches depicted in Figure 2) of the KS equation us-
ing as many control actuators as unstable modes in
the system (see [8, 9]).

To show this, it is useful to consider a discretisa-
tion of the KS equation. Let any solution be written
as

𝜂𝜂𝑡𝑡 𝑀 𝜂𝜂0(𝑡𝑡𝑡 𝑡
∞

∑
𝑘𝑘𝑀0

𝜂𝜂𝑠𝑠
𝑘𝑘(𝑡𝑡𝑡 𝑡𝑡𝑡(𝑘𝑘𝑡𝑡𝑡 𝑡 𝜂𝜂𝑐𝑐

𝑘𝑘(𝑡𝑡𝑡 𝑡𝑡𝑡(𝑘𝑘𝑡𝑡𝑡𝑡

We can then write the KS equation as an infinite sys-
tem of ODEs for the coefficients 𝜂𝜂∗

𝑘𝑘 (where ∗ stands
for 𝑐𝑐 or 𝑠𝑠). Defining 𝜼𝜼 𝑀 (𝜂𝜂0, 𝜂𝜂𝑠𝑠

1, 𝜂𝜂𝑐𝑐
1, … 𝑡, this system

is written as:

̇𝜼𝜼 𝑀 𝜼𝜼𝜼𝜼 𝑡 𝜼𝜼 (𝜼𝜼𝑡 𝑡 𝜼𝜼𝜼𝜼 ,
where 𝜼𝜼 is a diagonal matrix whose entries are
−𝜈𝜈𝑘𝑘4 𝑡 𝑘𝑘2, 𝜼𝜼 is given by a convolution, 𝜼𝜼 includes
the discretisation of the control actuators (𝜼𝜼𝑘𝑘𝑘𝑘 𝑀
∫2𝜋𝜋

0 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑘𝑘𝑡 𝑡𝑡𝑡(𝑘𝑘𝑡𝑡𝑡 𝑘𝑘𝑡𝑡, equivalently for the coeffi-
cient corresponding to 𝑡𝑡𝑡(𝑘𝑘𝑡𝑡𝑡), and 𝜼𝜼 encodes the
contol action.

Proposition 1.— Let ̄𝜂𝜂 be a linearly unstable steady
state or travelling wave solution of the KS equation
(17) and let 2ℓ 𝑡 1 be the number of unstable eigen-
values of the operator 𝜼𝜼 , i.e., ℓ 𝑡 1 ≥ 1/√𝜈𝜈 𝜈 ℓ.
Additionally, let 𝐴𝐴𝑢𝑢 be the 𝑀𝑀 𝑀 𝑀𝑀 submatrix consist-
ing of coefficients corresponding to unstable modes,
and define 𝜼𝜼𝑢𝑢 similarly. If 𝑀𝑀 𝑀 2ℓ 𝑡 1, then there
exists a matrix 𝐾𝐾 𝐾 ℝ𝑀𝑀𝑀𝑀𝑀 such that all of the eigen-
values of the matrix 𝐴𝐴𝑢𝑢 𝑡𝜼𝜼𝑢𝑢𝐾𝐾 have negative real part,
and the state feedback controls 𝜼𝜼 𝑀 𝐾𝐾(𝜼𝜼− ̄𝜼𝜼𝑡 stabilise

̄𝜂𝜂.

Proof.— I will only sketch the proof of this result;
for more details see [7]. First, consider the problem
of controlling the system of 𝑀𝑀 ODEs

�̇�𝐲 𝑀 𝐴𝐴𝑢𝑢𝐲𝐲 𝑡 𝜼𝜼𝑢𝑢𝜼𝜼 𝑡
If each control actuator has a different location (i.e.
𝑡𝑡𝑖𝑖 ≠ 𝑡𝑡𝑘𝑘), then it is easy to show that the columns of
𝜼𝜼𝑢𝑢 are linearly independent, and therefore it can be
shown that the matrices 𝐴𝐴𝑢𝑢 and 𝜼𝜼𝑢𝑢 satisfy the Kalman
rank condition and the system is controllable. There-
fore, we can guarantee that there exists a matrix 𝐾𝐾

such that 𝐴𝐴𝑢𝑢 𝑡 𝜼𝜼𝑢𝑢𝐾𝐾 has negative eigenvalues. We can
then use an algorithm such as pole placement [12] to
find 𝐾𝐾 – in particular, we will choose 𝐾𝐾 such that all
eigenvalues of 𝐴𝐴𝑢𝑢 𝑡 𝜼𝜼𝑢𝑢𝐾𝐾 have real part smaller than
− 𝑡𝑡f |𝜂𝜂𝑡𝑡|/2.

Now we define the perturbation 𝑣𝑣 𝑀 ̄𝜂𝜂 − 𝜂𝜂 and
write a PDE for 𝑣𝑣:

𝑣𝑣𝑡𝑡 𝑡 𝜈𝜈𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡 𝑣𝑣𝑡𝑡𝑡𝑡 𝑡 𝑣𝑣𝑣𝑣𝑡𝑡 𝑡 ( ̄𝜂𝜂𝑣𝑣𝑡𝑡𝑡 𝑀
𝑀𝑀

∑
𝑘𝑘𝑀0

𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑘𝑘𝑡𝑓𝑓𝑘𝑘(𝑡𝑡𝑡𝑡

Multiplying this equation by 𝑣𝑣 and integrating by
parts, we obtain, formally,

1
2

𝑘𝑘𝑑𝑣𝑣𝑑2

𝑘𝑘𝑡𝑡
𝑀 ∫

2𝜋𝜋

0
𝑣𝑣(𝜼𝜼 𝑡 𝜼𝜼𝐾𝐾𝑡𝑣𝑣 𝑘𝑘𝑡𝑡𝑡

𝑡 ∫

2𝜋𝜋

0
𝑣𝑣2𝑣𝑣𝑡𝑡 𝑡 𝑣𝑣( ̄𝜂𝜂𝑣𝑣𝑡𝑡𝑡 𝑘𝑘𝑡𝑡𝑡

The integral of 𝑣𝑣2𝑣𝑣𝑡𝑡 vanishes due to periodic bound-
ary conditions. Furthermore, we can show that the
term ∫ 𝑣𝑣(𝜂𝜂𝑣𝑣𝑡𝑡𝑡 𝑘𝑘𝑡𝑡 is bounded by 𝑡𝑡f |𝜂𝜂𝑡𝑡|𝑑𝑣𝑣𝑑2/2, and
therefore it can be shown from the choice of eigen-
values that the right-hand side is bounded by −𝜆𝜆𝑑𝑣𝑣𝑑2

where 𝜆𝜆 is the largest eigenvalue of 𝐴𝐴𝑢𝑢 𝑡 𝜼𝜼𝑢𝑢𝐾𝐾 , show-
ing that 𝑑𝑣𝑣𝑑2 is a Lyapunov function for this system,
and therefore 𝑣𝑣 𝑀 0 is a stable solution, meaning
𝜂𝜂 𝑀 ̄𝜂𝜂 is stabilised using the controls 𝜼𝜼 𝑀 𝜼𝜼𝐾𝐾𝑣𝑣 𝑀
𝜼𝜼𝐾𝐾(𝜂𝜂 − ̄𝜂𝜂𝑡.

It can also be shown (see [8]) that the controls are ro-
bust to uncertainty in the problem parameters, as well
as to small changes in the number of controls used.
For an example of a controlled solution see Figure 3.

Motivated by the similar linear stability properties
between the KS equation and the Benney equation
(the simplest long-wave model), we studied the con-
trol problem for two long-wave models: the Benney
equation and the weighted residual model in Thomp-
son et al. [19]. We started by showing that in the un-
realistic scenario where one can observe the whole
interface and actuate everywhere, the simplest propor-
tional controls of the form

𝑓𝑓(𝑡𝑡, 𝑡𝑡𝑡 𝑀 −𝑓𝑓(𝑓(𝑡𝑡, 𝑡𝑡𝑡 − 1𝑡, (18)

for some constant 𝑓𝑓 𝜈 0 to be determined, efficiently
drive the system towards the flat solution 𝑓(𝑡𝑡, 𝑡𝑡𝑡 𝑀 1
(or indeed any desired solution 𝐻𝐻(𝑡𝑡, 𝑡𝑡𝑡, by replacing
1 by 𝐻𝐻(𝑡𝑡, 𝑡𝑡𝑡). The critical value

𝑓𝑓𝑐𝑐 𝑀
16𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶 − 𝑀

4
𝑡𝑡t 𝜃𝜃𝑡

7𝑀
can be computed from linear stability analysis of the
Benney equation or the weighted residuals model,

6
60



Figure 3.—Control of the KS equation for ν=0.01. Uncontrolled solution showing chaotic behaviour (top left), 
and controlled solution towards: a 1-pulse travelling wave (top right), a 2-pulse travelling wave (bottom left), 
and a 3-pulse travelling wave (bottom right). We used M=21 equidistant controls.

and it depends only on the Reynolds and capillary
numbers. Using linear stability analysis, we can also
calculate the number of unstable modes (see [10]) to
be

𝑀𝑀 𝑀 𝑀 𝑀 𝑀𝑀 𝑀

𝑀 𝑀 𝑀 𝑀
⌊

𝐿𝐿
𝑀𝜋𝜋 √𝐶𝐶𝐶𝐶 (

8
5

𝑅𝑅𝑅𝑅 𝑅 𝑀 𝑅𝑅𝑅 𝑅𝑅)⌋
. (19)

It is also shown in [19] that the critical 𝛼𝛼 for the
Benney equation is sufficient to obtain linear sta-
bility of the weighted residuals model and indeed
the full Navier–Stokes equations, by solving an Orr–
Sommerfeld system. As mentioned before, in this
case, because of the nonlinearities of the system, we
cannot prove that linear stability of the controlled so-
lutions guarantees that the solution of the long wave
models or the Navier–Stokes equations will indeed be
stabilised. However, we can confirm nonlinear stabil-
ity of these solutions by numerical simulations of the
initial value problem.

Similarly to the KS equation, one can compute
point actuated controls assuming we can observe the
whole interface (using pole placement or solving an
LQR problem), and unsurprisingly controls of this
type also stabilise the flat solution. A more interesting
(and realistic) case is when we not only actuate at a fi-
nite number of locations, but can also only observe
the interface at a finite number of points. In this case,
in [19] we use proportional feedback controls of the
form

𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓 𝑀 𝑅𝛼𝛼
𝑀𝑀

∑
𝑗𝑗𝑀𝑀

𝛿𝛿𝑓𝑓𝑓 𝑅 𝑓𝑓𝑗𝑗𝑓𝑓ℎ𝑓𝑓𝑓𝑗𝑗 𝑅 𝜙𝜙𝑓 𝑓𝑓𝑓 𝑅 𝑀𝑓𝑓 (20)

where 𝛿𝛿𝑓𝛿𝑓 is the Dirac delta function, the control ac-
tuators are located at the positions 𝑓𝑓𝑗𝑗𝑓 𝑗𝑗 𝑀 𝑀𝑓 𝑗 𝑓 𝑀𝑀𝑓
and observations of the interface are made at 𝑓𝑓 𝑀
𝑓𝑓𝑗𝑗 𝑅 𝜙𝜙 for some displacement 𝜙𝜙. Figure 4 shows pre-
dictions of whether these controls stabilise the non-
linear dynamics for 𝐿𝐿 𝑀 𝐿𝐿, 𝑅𝑅 𝑀 𝜋𝜋𝜃𝜃, 𝑅𝑅𝑅𝑅 𝑅 𝑀5 and
𝐶𝐶𝐶𝐶 𝑅 𝐶.𝐶𝐶𝑀 (3 unstable modes) using 𝑀𝑀 𝑀 𝜃𝑓 5𝑓 𝑀𝑓 or
9 and 𝑃𝑃 𝑀 𝑀𝑀 observers with a displacement 𝜙𝜙 from
the corresponding actuator. We observe that positive
𝜙𝜙, i.e. observations upstream of actuation, are benefi-
cial; this makes sense intuitively, since if we observe
upstream, we can predict where the wave will be by
the time the control effects reach it.

Again, linear stability does not guarantee the solu-
tion of the nonlinear equation will be stabilised, but
for most cases, we can confirm numerically that this
is the case. I will show examples of this when applied
to the full model (the Navier–Stokes equations) in the
next section.

2.3 Applying the controls to the full model

Now that we have efficient controls that stabilise
the KS equation and the long wave models, we are
ready to apply these to the full Navier-Stokes equa-
tions. As mentioned previously, the full system is
quite complex, and hard to simulate. To test the
controls, we perform direct numerical simulations
(DNS) of the Navier-Stokes equations using the open-
source software Gerris [14] and its extension Basilisk,
which solve the Navier-Stokes equations on an adap-
tive quadtree grid using a volume-of-fluid approach.

The control strategies developed in the previous

7
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Figure 5.—Comparison between the solution, (u ,v), of the Navier–Stokes equations using approx-
imations obtained from the weighted residuals model (left) and DNS (middle), and the difference 
between the two (right) for the horizontal velocity u (top) and the vertical velocity v (bottom), imme-
diately after application of controls. For details on the parameters used, see [4].

Figure 4.—Regions of stability of controls of the form (20) for several number of controls M and 
displacement φ. Left: Benney equation, and right: weighted residuals model. Inside each curve, we 
predict the controls to stabilise the flat solution, while outside we predict them to not be sufficient 
for stability.

section are efficient in stabilising the flat solution
for the Benney equation and the weighted residuals
model, and linear stability analysis predicts they also
(linearly) stabilise the full problem. Naively, we could
try to use them directly in the Navier-Stokes equa-
tions; however, we observe that we cannot simply
“translate” the controls directly to the full problem,
i.e., simply take the numerical value from the simpli-
fied models and apply it to the Navier-Stokes equa-
tions: while they seem to work on the first few time
steps, after a while the differences between the full
problem and the simplified models become too big,
the controls stop working, and the solution eventu-

ally returns to the original uncontrolled state. This is
to be expected, since there are physical effects that ap-
pear at the DNS level which are not fully resolved in
the weighted residuals model because of the physical
assumptions we made to derive the models.

To illustrate this, we show a comparison in Fig-
ure 5 between the solution, (𝑢𝑢𝑢 𝑢𝑢𝑢, of the Navier-
Stokes equations using approximations obtained
from the model (left) and DNS (middle), as well
as the difference between the two (right) for the
horizontal velocity 𝑢𝑢 (top) and the vertical ve-
locity 𝑢𝑢 (bottom), immediately after application

8
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Figure 6.—Stability predictions (top) 
and direct numerical simulations (bot-
tom) for the controlled solution of the 
Navier–Stokes equations for several 
values of α.

of controls. We can see that even though the error on
the horizontal velocity is small, there are significant
differences in the vertical velocity.

However, we can use the linear stability analysis
predictions (such as the control strategy in (20) with
the predictions for 𝛼𝛼 visible in Figure 4) and apply
these controls based on observations of the numeri-
cal solution obtained via the direct numerical simula-
tions.

We tested this methodology for several cases, with
𝐿𝐿 𝐿 𝐿𝐿, 𝜃𝜃 𝐿 𝜃𝜃𝜃𝜃 and including 𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅 𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅
(case 1), and 𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅 𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅 (case 2), with the
results shown in Figure 6, where we show the stability
predictions for case 1 in blue, and case 2 in orange (top
figure). The different curves correspond to a differ-
ent number of control actuators and observers vary-
ing from 𝑀𝑀 𝐿 𝜃 (full lines) to 𝑀𝑀 𝐿 𝑀 (dotted lines).
In the bottom figure, we pick case 2 and 𝑀𝑀 𝐿 𝑀 con-

trols, and apply controls with varying 𝜙𝜙 and fixed 𝛼𝛼.
Each curve corresponds to a dot on the vertical line in
the top figure, where orange dots signify a stabilised
solution, while black dots correspond to a failed con-
trol. We see that the direct numerical simulations con-
firm that controls predicted to linearly stabilise the
weighted residuals model do indeed stabilise the full
problem. We also performed similar tests for fixed 𝜙𝜙
and varying 𝛼𝛼 with similar results.

Our final result concerns applying the controls de-
rived for the long wave models to direct numerical
simulations of the Navier-Stokes equations. As above,
we use the control “rule” derived from linear stability
analysis (in this case, solving an LQR Problem for the
weighted residuals model), but where we use observa-
tions of the DNS solution. Motivated by the success
of the controls in Figure 6, we expect the same philos-
ophy to be applicable. We tested a range of Reynolds
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Figure 7.—The minimum number of actuators required to stabilise the Navier-Stokes 
film compared to the number of unstable modes of the linearised weighted- residual 
system (red). The number of controls needed to stabilise the uniform film never exceeds 
the number of unstable modes of the linear system M as given in (19). The ranges for 
the two parameters cover a broad range of different fluids. For more details, see [10].

numbers 𝑅𝑅𝑅𝑅 and capillary numbers 𝐶𝐶𝐶𝐶 which corre-
spond to several physically motivated fluids (see [10]
for more details). For each case, we predicted the
number of unstable modes — and therefore the num-
ber of necessary controls — using (19) and computed
the matrix 𝐾𝐾 from the weighted residuals model. We
then applied the controls to the full model using ob-
servations from the DNS. The results are summarised
in Figure 7: the red lines show the predicted num-
ber of controls, and the numbers in each square show
how many controls were needed to stabilise the flat
solution. We observe that in almost every case, we
did not need as many controls as linear stability sug-
gests, thus showing the efficiency of the controls we
designed.

3 Discussion

I presented a control methodology based on a hier-
archy of models, which I used to control a canon-
ical problem in fluid dynamics: falling liquid films.
This is a complex problem for which control is hard
due to the computational and analytical complexity of
the models involved. Using a hierarchy of models al-
lowed me to start from a weakly nonlinear model (the

Kuramoto-Sivashinsky equation), where it is possible
to derive controls analytically that stabilise the flat so-
lution, and any other unstable solution.

While the KS equation is not a very good approx-
imation to the original problem, the results at this
level provide crucial information to guide us in the
right direction for controlling the more accurate long
wave models (Benney equation and weighted resid-
uals model), and eventually the Navier–Stokes equa-
tions.

The results I presented are based on linear feed-
back control theory, and can be thought of as a
“discretise-then-optimise” framework. Other ap-
proaches can be used; for example, we can first op-
timise and then discretise, as seen, e.g., in [1], or we
can use optimal control methodologies (see [22]). We
can also use other forms of control such as electric
fields [22] or temperature [18].

This illustrates how simple mathematical models
are key players in mathematical studies and help us
push conceptual boundaries to the point where the
developed methodologies can be applied higher up in
the model hierarchy. Often in control theory, several
problems are not explored enough due to their non-
linearity, which makes analytical progress impossible,
and I hope this example shows the value of mathe-
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matical modelling and numerical simulation working
together with control theory to advance our under-
standing of complex phenomena in fluid dynamics.
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 and Gianmaria Verzini****

Atlantic Conference in Nonlinear 
PDEs Dispersive and Elliptic 
Equations and Systems

REpORt

The event Atlantic Conference in Nonlinear PDEs: Dis-
persive and Elliptic Equations and Systems took place 
at Instituto Superior Técnico, Universidade de Lisboa 
from October 30 to November 3, 2023, having 74 par-
ticipants. This conference was sponsored by the Portu-
guese government via FCT – Fundação para a Ciência e 
Tecnologia, I.P, through the research centers CAMGSD 
(grant UID/MAT/04459/2020), CEMAPRE and GFM 
(UID/00208/2020) and through the project NoDES 
(PTDC/MAT-PUR/1788/2020). It was also supported by 
CIM (Portugal), FLAD – Fundação Luso Americana para 
o Desenvolvimento and Dipartimento de Matematica - 
Politecnico di Milano (Italy). The event was organized by 
Hugo Tavares and Simão Correia (IST), James Kennedy 
(FCUL) and Gianmaria Verzini (Politecnico di Milano), 
with the help of the local assistants Gabriel Moraes, 
Francisco Agostinho and Pêdra Andrade (IST).

 The structure of the event comprise plenary talks, 
contributed talks (divided in two parallel session, one 
on Dispersive and the other on Elliptic PDEs) and post-
er sessions, bringing together the distinct but parallel 
communities working and/or interested in Elliptic and 
Dispersive Partial Differential Equations. It joined ex-
perts and early career mathematicians from both sides 
in an atmosphere that fostered an exchange of ideas and 
forged new collaborations and perspectives.
 The plenary lectures were delivered by Thomas Bartsch 
(Universität Gießen), Jean-Baptiste Casteras (Universi-
dade de Lisboa), Mónica Clapp (Universidad Nacional 
Autónoma de México), Raphaël Côte (Université de 
Strasbourg), Luca Fanelli (Ikerbasque and Universidad 
del País Vasco, BCAM), Stefan Le Coz (Université de 
Toulouse), Felipe Linares (IMPA), Yvan Martel (Universi-
té de Versailles), Ademir Pastor (Universidade Estadual 
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de Campinas), Dmitry Pelinovsky (McMaster Universi-
ty), Svetlana Roudenko (Florida International University), 
Enrico Serra (Politecnico di Torino), Jorge Silva (Univer-
sidade de Lisboa), Didier Smets (Sorbonne Université), 
Susanna Terracini (Universitá de Torino), Luis Vega 
(Basque Center for Applied Mathematics), Zhi-Qiang 
Wang (Utah State University), Tobias Weth (Goethe-Uni-
versität Frankfurt), while the contributed talks were given 
by: Pêdra Andrade (Instituto Superior Técnico – Uni-
versidade de Lisboa) Lukas Bengel (Karlsruhe Institute 
of Technology), Filippo Boni (Università degli Studi di 
Napoli “Federico II”), William Borrelli (Politecnico di Mi-
lano), Luccas Campos (UFMG – Universidade Federal 
de Minas Gerais), Andreia Chapouto (UCLA), Simone 
Dovetta (Politecnico di Torino), Amin Esfahani (Naz-
arbayev University), Francesco Esposito (University of 
Calabria), Luiz Gustavo Farah (Universidade Federal de 
Minas Gerais), Filippo Giuliani (Politecnico di Milano), 
Julia Henninger (Karlsruhe Institue of Technology), Mar-
co Morandotti (Politecnico di Torino), Giuseppe Negro 
(Instituto Superior Técnico, Universidade de Lisboa), 
Matteo Rizzi (Justus Liebig University), Makson Santos 

(Instituto Superior Técnico, Universidade de Lisboa), De-
lia Schiera (Instituto Superior Técnico, Universidade de 
Lisboa), Jacopo Schino (North Carolina State Universi-
ty), Panayotis Smyrnelis (University of Athens), Frédéric 
Valet (University of Bergen), Jianjun Zhang (Chongqing 
Jiaotong University). Posters were presented by Francis-
co Agostinho (Instituto Superior Técnico, Universidade 
de Lisboa), Laura Baldelli (Polish Academy of Sciences), 
Nicolò Cangiotti (Politecnico di Milano), Mariem Dhifet 
(University of Monastir), Umberto Guarnotta (University 
of Enna “Kore”), Zhengni Hu (Universität Gießen), Rah-
ma Jlel (University of Monastir), Gabriel Moraes (Uni-
versidade de Maringá) and Sebastian Ohrem (Karlsruhe 
Institute of Technology). 

For more information, see the website
https://sites.google.com/view/atlanticpdes/
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ENUMATH 2023

REpORt

The ENUMATH 2023 Conference was held at the Insti-
tuto Superior Técnico (IST), in Lisbon, Portugal. It was 
the 14th of a series of conferences that started in Paris 
(1995), followed by Heidelberg (1997), Jyväkylä (1999), 
Ischia Porto (2001), Prague (2003), Santiago de Com-
postela (2005), Graz (2007), Uppsala (2009), Leicester 
(2011), Lausanne (2013), Ankara (2015), Bergen (2017) 
and Egmond aan Zee (2019).
 The central goal of the Local Organizing Committee, 
composed by Adélia Sequeira (Chair), Ana Silvestre (Co-
Chair) and Jorge Tiago, from IST and CEMAT, University 

of Lisbon, Telma Guerra, from IPSetúbal and CEMAT, 
João Janela, ISEG and CEMAPRE, University of Lisbon, 
Marília Pires, CIMA, University of Évora, and Svilen S. 
Valtchev, IPLeiria and CEMAT, was to fulfill the objectives 
of the ENUMATH conferences, namely to provide a fo-
rum for presenting and discussing novel and fundamen-
tal advances in numerical mathematics and challenging 
scientific and industrial applications on the highest level 
of international expertise.
 The Scientific Program of ENUMATH 2023 included 
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Plenary talks:

Habib Ammari
ETH, Zurich, Switzerland
From condensed matter theory to sub-wavelength physics

Paola Francesca Antonietti
MOX, Politecnico di Milano, Italy
Mathematical and numerical modeling of neurodegenera-
tive diseases

Peter Bastian
University of Heidelberg, Germany
Multithreaded multilevel spectral domain decomposition

Mária Lukácová-Medvidová
University of Mainz, Germany
What is a limit of numerical methods for compressible flows?

Jean-Marie Mirebeau
University of Paris-Sud, France
Discretization of anisotropic PDEs using Voronoi’s reduction 
of positive quadratic forms

Daniel Peterseim
University of Augsburg, Germany
Numerical solution of nonlinear eigenvector problems

José A. Carrillo de la Plata
University of Oxford, UK
Primal Dual methods for Wasserstein gradient flow

Carola-Bibiane Schönlieb
University of Cambridge, UK
From differential equations to deep learning for image anal-
ysis

Luís Oliveira e Silva
IST, University of Lisbon, Portugal
Challenges in numerical modeling of extreme plasma phys-
ics in the laboratory and in astrophysics

Alessandro Veneziani
University of Emory, USA
The role of applied mathematics in the design of coronary 
stents

Sara Zahedi
KTH, Royal Institute of Technology, Sweden
Conservative cut finite element methods

Minisymposia (some of them with several sessions),

Contributed talks and

Poster presentations.

The winner of the Best Poster Award (sponsored by CIM) 
was Charlotte Milano, from Reims Mathematical Labo-
ratory (LMR), University of Reims Champagne Ardenne, 
France, with a poster entitled Numerical Methods for 
electromagnetic cartography in medical imaging. Two hon-
orable mentions were awarded to Lisa Grandjean, also 
from the University of Reims Champagne Ardenne, and 
Alessio Fumagalli, from Politecnico di Milano, Italy.
 Overall, ENUMATH 2023 was an inspiring meeting, 
both for scientific interactions and informal discussions, 
involving leading experts and young scientists from 31 
different countries, with special emphasis on contribu-
tions from Europe.
 As in the previous editions of the conference, the 
participants were invited to submit a short paper for the 
ENUMATH 2023 Proceedings to be published by Spring-
er, as a volume of the series Lecture Notes in Computa-
tional Science and Engineering.
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by Sílvia Barbeiro*and Susana Moura**

3rd Women in Mathematics 
Meeting

* CMUC, Department of Mathematics, University of Coimbra. Email: silvia@mat.uc.pt 
** CMUC, Department of Mathematics, University of Coimbra. Email: susana.moura@uc.pt

REpORt

The third edition of the conference Women in Mathemat-
ics Meeting (WM23) was held at the University of Coim-
bra, from the 24th to the 26th of July 2023.
 The motivation of this series of conferences is to pro-
mote the role of women in Mathematics and to develop 
a supportive community as well as motivate and inspire 
new generations of women mathematicians through 
high quality scientific presentations.
 The WM23 meeting brought together 68 participants, 
coming from various countries, including several experts 
in their fields of research as well as early-stage post-docs 
and graduate students. Besides the scientific talks and 
the posters session, the program included two special 
sessions addressing gender gap in Mathematics and the 

role of the Mathematical Societies in promoting gender 
parity. The conference was also an opportunity to show-
case the exhibition Women of Mathematics from around 
the world—a gallery of portraits.
 The attendance of the event was free of charge, and 
the organization acknowledges the financial support 
from the following institutions: Centre for Mathematics 
of the University of Coimbra (CMUC), Centre of Mathe-
matics of the University of Minho (CMAT), International 
Center for Mathematics (CIM), Center for Mathematical 
Analysis, Geometry and Dynamical Systems (CAMGSD).
 Further details can be found at

https://ucpages.uc.pt/events/wm23/
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Organizing Committee

Ana Jacinta Soares 
CMAT, Univ. Minho
Marina Ferreira 
CMUC, Univ. Coimbra
Milene Santos 
CMUC, Univ. Coimbra
Sílvia Barbeiro 
CMUC, Univ. Coimbra
Susana Moura 
CMUC, Univ. Coimbra

Scientific Committee

Joana Nunes da Costa
CMUC, Univ. Coimbra
Margarida Mendes Lopes
CAMGSD, Univ. Lisbon
Sofia Castro
CMUP, Univ. Porto

Invited Speakers

Ana Cristina Ferreira
CMAT, Univ. Minho
Ana Paula Dias
CMUP, Univ. Porto
Diana Rodelo
CMUC & Univ. Algarve
Eloísa Grifo
Univ. Nebraska
Fátima Silva Leite
ISR, Univ. Coimbra
Magda Rebelo
CMA, Nova Univ. Lisbon

Special Session I — Gender gap in Mathematical, 
Computing and Natural Sciences

Colette Guillopé
LAMA, CNRS et Université Paris-Est Créteil

Special Session II — The role of the Mathematical 
Societies in promoting gender parity

Moderator
Ana Cristina Casimiro
Nova University of Lisbon

Panel members
Alessandra Bernardi
University of Trento — Secretary of the Italian 
Mathematical Union
Eva A. Gallardo Gutiérrez
Complutense University of Madrid — President of the 
Royal Spanish Mathematical Society
José Carlos Santos
University of Porto — President of the Portuguese 
Mathematical Society

Exhibition — Women of Mathematics from around 
the world — a gallery of portraits
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Pedro Nunes Lectures

Using Sample Splitting for Assessing 
Goodness of Fit in Time Series

Statistical Learning of Multivariate 
Extremes

Richard Davis received 
his Ph.D. degree in 
Mathematics from the 
University of California at 
San Diego in 1979 and has 
held academic positions 
at MIT, Colorado State 
University. He was Hans 
Fischer Senior Fellow at 
the Technical University 
of Munich (2009-12), 
Villum Kan Rasmussen 
Visiting Professor at the 
University of Copenhagen 
(2011-13), and Chalmers 
Jubilee Professor at 
Chalmers University of 
Technology. His research 
interests include time 
series, applied probability, 
extreme value theory, 
heavy-tailed modeling with 
applications to network 
models, and spatial-
temporal modeling.
Richard Davis is a 
fellow of the Institute of 
Mathematical Statistics 
and the American 
Statistical Association, and 
is an elected member of 
the International Statistical 
Institute.

Richard A. Davis

DECember, 13 — 2023
Universidade de Aveiro Edifício Central e da Reitoria
15:00 — Sala dos Atos Académicos

DEcember, 15 — 2023
Academia das Ciências de Lisboa
15:00 — Sala das Sessões


