
Unraveling the Dynamics of impUlsive semiflows: 
ergoDic anD topological featUres

by Jaqueline Siqueira*

* Departamento de Matemática, Instituto de Matemática, Universidade Federal do Rio de Janeiro 
 Email: jaqueline@im.ufrj.br

Everything is logical. To understand is to justify.
— Eugène Ionesco

1 Introduction

The time evolution of various natural phenomena
often exhibits sudden changes of state, occurring
at certain points where the duration of these dis-
turbances is either null or minimal in comparison
to the overall duration of the phenomenon. These
sudden changes are referred to as impulses and can
be observed in fields such as physics, biology, eco-
nomics, control theory, and information science, see
[20, 24, 29, 32, 6, 26] and references therein.

Impulsive dynamical systems (IDS) are effective
mathematical models of real world phenomena that
display abrupt changes in their behavior. More pre-
cisely, an IDS is defined by three objects: a continu-
ous semiflow on a phase space 𝑀𝑀 ; an impulsive re-
gion 𝐷𝐷 𝐷 𝑀𝑀 , where the flow experiences sudden
perturbations; and an impulsive map 𝐼𝐼 𝐼 𝐷𝐷 𝐼 𝑀𝑀 ,
which determines the change in the trajectory each
time it hits the impulsive region 𝐷𝐷.

Under broad conditions an IDS generates a semi-
flow, called impulsive semiflow, that is not continu-
ous in general. This inherent feature of the dynamics
of an impulsive semiflow is a key challenge when try-
ing to describe its topological and ergodic behavior.

In [21, 22], Kaul initiated the study of impulsive dy-
namical systems with impulses at variable times and
since then several authors have contributed to the de-
velopment of the theory. We mention the important
contributions of Ciesielski [14, 15, 16], as well as those
of Bonotto and his collaborators [9, 11, 12, 10].

However the study of impulsive semiflows from
the perspective of smooth topological dynamics and
ergodic theory has been initiated only recently. In

this work we aim to outline the development of the
theory to date and to propose potential directions for
its further advancement.

Definition and first properties

Since the lack of continuity of an impulsive semiflow
happens independently of the regularity of the IDS
that generates it, we shall not consider the most gen-
eral class of impulsive semiflows (see [10]). We thus
start by assuming some regularity on the IDS.

Let 𝑀𝑀 be a compact manifold endowed with the
Riemannian metric 𝑑𝑑 and let 𝜑𝜑𝐼 𝑀𝑀 𝜑 ℝ+

0 𝐼 𝑀𝑀
be a semiflow: 𝜑𝜑0(𝑥𝑥𝑥 𝑥 𝑥𝑥 and 𝜑𝜑𝑡𝑡+𝑡𝑡(𝑥𝑥𝑥 𝑥 𝜑𝜑𝑡𝑡(𝜑𝜑𝑡𝑡(𝑥𝑥𝑥𝑥
for all 𝑥𝑥 𝑥 𝑀𝑀 and 𝑡𝑡𝑡 𝑡𝑡 𝑥 ℝ+

0 . We assume that
𝜑𝜑 is generated by a 𝐶𝐶1-vector field 𝑋𝑋, that 𝐷𝐷 is a
submanifold of codimension one transversal to 𝑋𝑋,
and that 𝐼𝐼 𝐼 𝐷𝐷 𝐼 𝑀𝑀 is a continuous map so that
𝐼𝐼(𝐷𝐷𝑥 Z 𝐷𝐷 𝐷 𝐷. The IDS (𝑀𝑀𝑡 𝜑𝜑𝑡 𝐷𝐷𝑡 𝐼𝐼𝑥 generates an
impulsive semiflow as follows.

The first impulsive time map 𝜏𝜏1 𝐼 𝑀𝑀𝐼𝑀0𝑡 +𝑀𝑀 is the
map that records the first visit of each 𝜑𝜑-trajectory
to 𝐷𝐷: 𝜏𝜏1(𝑥𝑥𝑥 𝐼𝑥 𝑥𝑥𝑥 {𝑡𝑡 𝑡 0𝐼 𝜑𝜑𝑡𝑡(𝑥𝑥𝑥 𝑥 𝐷𝐷} if 𝜑𝜑𝑡𝑡(𝑥𝑥𝑥 𝑥
𝐷𝐷 for some 𝑡𝑡𝑡0 and 𝜏𝜏1(𝑥𝑥𝑥 𝐼𝑥 +𝑀, otherwise. Given
𝑥𝑥 𝑥 𝑀𝑀 , the impulsive trajectory 𝛾𝛾𝑥𝑥 and the subsequent
impulsive times 𝜏𝜏2(𝑥𝑥𝑥𝑡 𝜏𝜏3(𝑥𝑥𝑥𝑡 𝜏𝜏4(𝑥𝑥𝑥𝑡 𝑥 are defined in-
ductively. For 0 ≤ 𝑡𝑡 𝑡 𝜏𝜏1(𝑥𝑥𝑥 we set 𝛾𝛾𝑥𝑥(𝑡𝑡𝑥 𝑥 𝜑𝜑𝑡𝑡(𝑥𝑥𝑥𝑥
Assuming that 𝛾𝛾𝑥𝑥(𝑡𝑡𝑥 is defined for 𝑡𝑡 𝑡 𝜏𝜏𝑛𝑛(𝑥𝑥𝑥 for some
𝑛𝑛 𝑛 2, we set

𝛾𝛾𝑥𝑥(𝜏𝜏𝑛𝑛(𝑥𝑥𝑥𝑥 𝑥 𝐼𝐼(𝜑𝜑𝜏𝜏𝑛𝑛(𝑥𝑥𝑥𝑥𝜏𝜏𝑛𝑛𝑥1(𝑥𝑥𝑥(𝛾𝛾𝑥𝑥(𝜏𝜏𝑛𝑛𝑥1(𝑥𝑥𝑥𝑥𝑥𝑥𝑥
Defining the (𝑛𝑛 + 1𝑥th impulsive time of 𝑥𝑥 as

𝜏𝜏𝑛𝑛+1(𝑥𝑥𝑥 𝑥 𝜏𝜏𝑛𝑛(𝑥𝑥𝑥 + 𝜏𝜏1(𝛾𝛾𝑥𝑥(𝜏𝜏𝑛𝑛(𝑥𝑥𝑥𝑥𝑥𝑡
for 𝜏𝜏𝑛𝑛(𝑥𝑥𝑥 𝑡 𝑡𝑡 𝑡 𝜏𝜏𝑛𝑛+1(𝑥𝑥𝑥, we set
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Figure 1.—Building the trajectory of a point . Set , , .

𝛾𝛾𝑥𝑥(𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛(𝑥𝑥𝑡(𝛾𝛾𝑥𝑥(𝑡𝑡𝑛𝑛(𝑥𝑥𝑡𝑡𝑡𝑥

Since we assume 𝐼𝐼(𝐼𝐼𝑡Z𝐼𝐼 𝑡 𝐷 [3, Remark 1.1] we
have that 𝑇𝑇 (𝑥𝑥𝑡 𝑇𝑡 𝑇𝑇𝑇𝑇𝑡𝑡𝑛𝑛(𝑥𝑥𝑡𝑥 𝑛𝑛 𝑥 𝑥𝑥 𝑡 𝑥𝑥 thus im-
pulsive trajectories are defined for all positive times.

According to [9, Proposition 2.1], the trajectories
defined above indeed generate a semiflow which we
call an impulsive semiflow:

𝜓𝜓 𝑇 ℝ+
0 × 𝑀𝑀 𝑀 𝑀𝑀
(𝑡𝑡𝑥 𝑥𝑥𝑡 𝑡 𝛾𝛾𝑥𝑥(𝑡𝑡𝑡𝑥

In general terms, 𝜓𝜓-impulsive trajectories are built
with segments of 𝑡𝑡-trajectories in the following way.
Given a point 𝑥𝑥 𝑥 𝑀𝑀 , consider its 𝑡𝑡-trajectory until
it hits 𝐼𝐼 (𝑥𝑥𝑥, in Figure 1). Then delete the intersection
point 𝑥𝑥𝑥, restart the impulsive trajectory at the image
of the deleted point under I (𝑦𝑦𝑥 𝑡 𝐼𝐼(𝑥𝑥𝑥𝑡). From there,
follow its 𝑡𝑡-trajectory until it hits 𝐼𝐼 again, and repeat
the process. Note that since 𝐼𝐼Z𝐼𝐼(𝐼𝐼𝑡 𝑡 𝐷, an impul-
sive trajectory of a point 𝑥𝑥 𝑥 𝑀𝑀 intersects 𝐼𝐼 only if
𝑥𝑥 𝑥 𝐼𝐼. Moreover, no periodic trajectories intersect
the impulsive region 𝐼𝐼.

2 Ergodic theory of impulsive semiflows

The field of ergodic theory has been developed with
the goal of understanding the statistical behavior of
a dynamical system via measures which remain in-
variant under its action. Describing the behavior of
the orbits in a dynamical system can be challenging,
particularly for systems with complex topological and
geometrical structures. One powerful method for an-
alyzing such systems is through invariant probability
measures. For example, Birkhoff’s Ergodic Theorem
states that almost every initial condition within each
ergodic component of an invariant measure shares
the same statistical distribution in space.

We say that 𝜇𝜇 is an invariant probability measure
under a semiflow 𝑡𝑡 if 𝜇𝜇(𝑡𝑡𝑡𝑥

𝑡𝑡 (𝐴𝐴𝑡𝑡 𝑡 𝜇𝜇(𝐴𝐴𝑡 for all Borel
sets 𝐴𝐴 𝐴 𝑀𝑀 and for all 𝑡𝑡 𝑡 0. Denote by ℳ(𝑡𝑡𝑡 the
set of all invariant probability measures.

A point 𝑥𝑥 𝑥 𝑀𝑀 is called non-wandering for 𝑡𝑡 if
for every neighborhood 𝒰𝒰 of 𝑥𝑥 and for every 𝑡𝑡 𝑡 0,
there exists 𝑇𝑇 𝑥 𝑡𝑡 so that 𝑡𝑡𝑡𝑥

𝑇𝑇 (𝒰𝒰𝑡 Z 𝒰𝒰 𝒰 𝐷𝑥 Denote
by Ω(𝑡𝑡𝑡 the set of all non-wandering points for 𝑡𝑡.

The compactness of 𝑀𝑀 implies that Ω(𝑡𝑡𝑡 𝒰 𝐷 and
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is compact. Moreover, if 𝜑𝜑 is continuous, the non-
wandering set is invariant: 𝜑𝜑𝑡𝑡(Ω(𝜑𝜑𝜑𝜑 𝜑 Ω(𝜑𝜑𝜑 for all
𝑡𝑡 𝑡 𝑡𝑡 However, this does not remain true in general
for impulsive semiflows, which is quite a suprising
phenomenon (see [3]).

For an invariant measure, the relevant points are
the non-wandering ones, meaning that any invari-
ant measure is supported on the non-wandering set.
When we assume that 𝜑𝜑 is a continuous semiflow on
a compact metric space there is always a 𝜑𝜑-invariant
measure [30, Theorem 2.1]. However, one can build
examples of impulsive semiflows with no invariant
measures (e.g. [3, Example 2.2]).

Set 𝜏𝜏𝐷𝐷(𝑥𝑥𝜑 𝑥 𝜏𝜏1(𝑥𝑥𝜑 if 𝑥𝑥 𝑥 Ω(𝑥𝑥𝜑𝑥𝐷𝐷 and 𝜏𝜏𝐷𝐷(𝑥𝑥𝜑 𝑥 𝑡
if 𝑥𝑥 𝑥 Ω(𝑥𝑥𝜑 Z 𝐷𝐷. Let (𝑀𝑀𝑀 𝜑𝜑𝑀 𝐷𝐷𝑀 𝑀𝑀𝜑 be an IDS so that
𝜑𝜑 is continuous on a compact metric space 𝑀𝑀 , 𝜏𝜏𝐷𝐷 is
continuous and 𝑀𝑀(Ω(𝑥𝑥𝜑 Z 𝐷𝐷𝜑 𝜑 Ω(𝑥𝑥𝜑𝑥𝐷𝐷. Therefore,
by [3, Theorem A], the impulsive semiflow 𝑥𝑥 admits
an invariant measure.

The existence of invariant measures can also be
obtained by assuming some regularity and transver-
sality conditions on the IDS [1, Theorem I] as follows.

A criterion for existence of invariant measures

Theorem 1.— Let 𝜑𝜑𝜑 𝑀𝑀 𝜑 ℝ+
𝑡 → 𝑀𝑀 be a 𝐶𝐶1-

semiflow, 𝐷𝐷 a compact submanifold of codimension
one, transversal to the flow direction and 𝑀𝑀 𝜑 𝐷𝐷 → 𝑀𝑀
a continuous map. Then the impulsive semiflow 𝑥𝑥
admits an invariant probability measure.

2.1 Topological pressure

The topological pressure of a semiflow with respect
to a potential function is the rate of growth of trajecto-
ries of the semiflow where each point is weighted ac-
cording to the potential. We recall the classical defini-
tion of topological pressure for continuous semiflows
and generalize this concept to impulsive semiflows.

Topological pressure for continuous semiflows

Let 𝜑𝜑𝜑 𝑀𝑀 𝜑 ℝ+
𝑡 → 𝑀𝑀 be a continuous semiflow.

Given 𝜀𝜀 𝑡 𝑡 and 𝑡𝑡 𝑥 ℝ+, a subset 𝐸𝐸 of 𝑀𝑀 is said to
be (𝜑𝜑𝑀 𝜀𝜀𝑀 𝑡𝑡𝜑-separated if for any 𝑥𝑥𝑀 𝑥𝑥 𝑥 𝑀𝑀 with 𝑥𝑥 𝑥 𝑥𝑥
there is some 𝑠𝑠 𝑥 𝑠𝑡𝑀 𝑡𝑡𝑠 such that 𝑑𝑑 (𝜑𝜑𝑠𝑠(𝑥𝑥𝜑𝑀 𝜑𝜑𝑠𝑠(𝑥𝑥𝜑𝜑 𝑡 𝜀𝜀.
Given 𝑓𝑓 𝜑 𝑀𝑀 → ℝ a continuous potential, define

𝑍𝑍(𝜑𝜑𝑀 𝑓𝑓 𝑀 𝜀𝜀𝑀 𝑡𝑡𝜑 𝑥 𝑍𝑍𝑍
𝐸𝐸 {∑

𝑥𝑥𝑥𝐸𝐸
𝑒𝑒∫𝑡𝑡

𝑡 𝑓𝑓(𝜑𝜑𝑠𝑠(𝑥𝑥𝜑𝜑 𝑑𝑑𝑠𝑠
}

𝑀 where

the supremum is taken over (𝜑𝜑𝑀 𝜀𝜀𝑀 𝑡𝑡𝜑-separated sets𝑡

We also define

𝑃𝑃 (𝜑𝜑𝑀 𝑓𝑓 𝑀 𝜀𝜀𝜑 𝑥 𝑃𝑃𝑃 𝑍𝑍𝑍
𝑡𝑡→+𝑡

1
𝑡𝑡

𝑃og 𝑍𝑍(𝜑𝜑𝑀 𝑓𝑓 𝑀 𝜀𝜀𝑀 𝑡𝑡𝜑𝑡

The topological pressure of 𝜑𝜑 with respect to 𝑓𝑓 is
defined as

𝑃𝑃 (𝜑𝜑𝑀 𝑓𝑓𝜑 𝑥 𝑃𝑃𝑃
𝜀𝜀→𝑡

𝑃𝑃 (𝜑𝜑𝑀 𝑓𝑓 𝑀 𝜀𝜀𝜑𝑡

The topological entropy of 𝜑𝜑, ℎ(𝜑𝜑𝜑, is the topolog-
ical pressure of 𝜑𝜑 with respect to the identically zero
potential.

New definition for semiflows with discontinuities

Let 𝑥𝑥 𝜑 ℝ+
𝑡 𝜑 𝑀𝑀 → 𝑀𝑀 be a semiflow possibly ex-

hibiting discontinuities. Consider a function 𝑇𝑇 as-
signing to each 𝑥𝑥 𝑥 𝑀𝑀 a sequence (𝑇𝑇𝑛𝑛(𝑥𝑥𝜑𝜑𝑛𝑛𝑥𝑛𝑛(𝑥𝑥𝜑 of
nonnegative numbers, where either 𝑛𝑛(𝑥𝑥𝜑 𝑥 ℕ or
𝑛𝑛(𝑥𝑥𝜑 𝑥 𝐴1𝑀 𝐴 𝑀 𝐴𝐴 for some 𝐴 𝑥 ℕ. We say that 𝑇𝑇 is
admissible if there exists 𝜂𝜂 𝑡 𝑡 such that for all 𝑥𝑥 𝑥 𝑀𝑀
and all 𝑛𝑛 𝑥 ℕ with 𝑛𝑛 + 1 𝑥 𝑛𝑛(𝑥𝑥𝜑 we have

1𝑡 𝑇𝑇𝑛𝑛+1(𝑥𝑥𝜑 𝑥 𝑇𝑇𝑛𝑛(𝑥𝑥𝜑 𝑥 𝜂𝜂

2𝑡 𝑇𝑇𝑛𝑛(𝑥𝑥𝑡𝑡(𝑥𝑥𝜑𝜑 𝑥
{

𝑇𝑇𝑛𝑛(𝑥𝑥𝜑 𝑥 𝑡𝑡𝑀 if 𝑇𝑇𝑛𝑛𝑥1(𝑥𝑥𝜑 𝑥 𝑡𝑡 𝑥 𝑇𝑇𝑛𝑛(𝑥𝑥𝜑
𝑇𝑇𝑛𝑛+1(𝑥𝑥𝜑𝑀 if 𝑡𝑡 𝑥 𝑇𝑇𝑛𝑛(𝑥𝑥𝜑𝑡

For each admissible function 𝑇𝑇 , 𝑥𝑥 𝑥 𝑀𝑀 , 𝑡𝑡 𝑡 𝑡 and
𝑡 𝑥 𝛿𝛿 𝑥 𝜂𝜂𝛿2, we define

𝐽𝐽 𝑇𝑇
𝑡𝑡𝑀𝛿𝛿(𝑥𝑥𝜑 𝑥 𝑠𝑡𝑀 𝑡𝑡𝑠 𝑥

�
𝑗𝑗𝑥𝑛𝑛(𝑥𝑥𝜑

𝑠𝑇𝑇𝑗𝑗(𝑥𝑥𝜑 𝑥 𝛿𝛿𝑀 𝑇𝑇𝑗𝑗(𝑥𝑥𝜑 + 𝛿𝛿𝑠𝑡

Observe that 𝐽𝐽 𝑇𝑇
𝑡𝑡𝑀𝛿𝛿(𝑥𝑥𝜑 𝑥 𝑠𝑡𝑀 𝑡𝑡𝑠, whenever 𝑇𝑇1(𝑥𝑥𝜑 𝑡 𝑡𝑡.

Given 𝜀𝜀 𝑡 𝑡 and 𝑡𝑡 𝑥 ℝ+, we say that 𝐸𝐸 𝜑 𝑀𝑀 is
(𝑥𝑥𝑀 𝛿𝛿𝑀 𝜀𝜀𝑀 𝑡𝑡𝜑-separated if for any 𝑥𝑥𝑀 𝑥𝑥 𝑥 𝑀𝑀 with 𝑥𝑥 𝑥 𝑥𝑥
there is some 𝑠𝑠 𝑥 𝐽𝐽 𝑇𝑇

𝑡𝑡𝑀𝛿𝛿(𝑥𝑥𝜑 so that 𝑑𝑑 (𝑥𝑥𝑠𝑠(𝑥𝑥𝜑𝑀 𝑥𝑥𝑠𝑠(𝑥𝑥𝜑𝜑 𝑡 𝜀𝜀.
Given a continuous potential 𝑓𝑓 𝜑 𝑀𝑀 → ℝ, define

𝑍𝑍𝑇𝑇 (𝑥𝑥𝑀 𝑓𝑓 𝑀 𝛿𝛿𝑀 𝜀𝜀𝑀 𝑡𝑡𝜑 𝑥

𝑥 𝑍𝑍𝑍
𝐸𝐸 {∑

𝑥𝑥𝑥𝐸𝐸
ex𝑍 (∫

𝑡𝑡

𝑡
𝑓𝑓(𝑥𝑥𝑠𝑠(𝑥𝑥𝜑𝜑 𝑑𝑑𝑠𝑠)}

𝑀

where the supremum is taken over all finite separated
sets. We also define

𝑃𝑃 𝑇𝑇 (𝑥𝑥𝑀 𝑓𝑓 𝑀 𝛿𝛿𝑀 𝜀𝜀𝜑 𝑥 𝑃𝑃𝑃 𝑍𝑍𝑍
𝑡𝑡→+𝑡

1
𝑡𝑡

𝑃og 𝑍𝑍𝑇𝑇
𝑡𝑡 (𝑥𝑥𝑀 𝑓𝑓 𝑀 𝛿𝛿𝑀 𝜀𝜀𝜑𝑀

𝑃𝑃 𝑇𝑇 (𝑥𝑥𝑀 𝑓𝑓 𝑀 𝛿𝛿𝜑 𝑥 𝑃𝑃𝑃
𝜀𝜀→𝑡

𝑃𝑃 𝑇𝑇 (𝑥𝑥𝑀 𝑓𝑓 𝑀 𝛿𝛿𝑀 𝜀𝜀𝜑𝑡

Finally, define the 𝑇𝑇 -topological pressure of 𝑥𝑥 with re-
spect to 𝑓𝑓 as

𝑃𝑃 𝑇𝑇 (𝑥𝑥𝑀 𝑓𝑓𝜑 𝑥 𝑃𝑃𝑃
𝛿𝛿→𝑡

𝑃𝑃 𝑇𝑇 (𝑥𝑥𝑀 𝑓𝑓 𝑀 𝛿𝛿𝜑𝑡

This concept was strongly inspired by the
𝑇𝑇 𝑥topological entropy introduced in [4]. Moreover,
when 𝑓𝑓 is identically null the 𝑇𝑇 -topological pressure
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becomes the 𝑇𝑇 -topological entropy.
Note that the sequence 𝜏𝜏 𝜏 𝜏𝜏𝜏𝑛𝑛} of impulsive

times is admissible and we call 𝑃𝑃 𝜏𝜏(𝜑𝜑𝜑 𝜑𝜑𝜑 the impul-
sive topological pressure.

The next result states that for continuous semi-
flows the classical and the new notion of topological
pressure coincide [5, Theorem B].

Theorem 2.— Let 𝜑𝜑 be a continuous semiflow on a
compact metric space 𝑀𝑀 , 𝑇𝑇 an admissible sequence
and 𝜑𝜑 𝑓 𝑓𝑓 𝑓 ℝ a continuous potential. Then
𝑃𝑃 𝑇𝑇 (𝜑𝜑𝜑 𝜑𝜑𝜑 𝜏 𝑃𝑃 (𝜑𝜑𝜑 𝜑𝜑𝜑𝜑

2.2 Variational Principle

The concept of topological entropy is, a priori, purely
topological. Nevertheless it is intrinsically related to
invariant measures. For instance, given a continuous
flow, on a compact metric space, the classical vari-
ational principle [31] shows that the topological en-
tropy is the supremum over all invariant measures of
the measure theoretical entropy.

The entropy of a continuous map 𝑔𝑔 𝑓 𝑀𝑀 𝑓 𝑀𝑀
with respect to a probability measure 𝜇𝜇 is given by:

ℎ𝜇𝜇(𝑔𝑔𝜑 𝜏 ∫ ℎ𝜇𝜇(𝑔𝑔𝜑 𝑔𝑔𝜑 𝑔𝑔𝜇𝜇(𝑔𝑔𝜑𝜑 where

ℎ𝜇𝜇(𝑔𝑔𝜑 𝑔𝑔𝜑 𝜏 𝑔𝑔𝑔
𝜀𝜀𝑓𝜀

𝑔𝑔𝑔 sup
𝑛𝑛𝑓𝑛

−1
𝑛𝑛

𝑔og 𝜇𝜇 (𝐵𝐵𝑔𝑔(𝑔𝑔𝜑 𝑛𝑛𝜑 𝜀𝜀𝜑) 𝜑 and

𝐵𝐵𝑔𝑔(𝑔𝑔𝜑 𝑛𝑛𝜑 𝜀𝜀𝜑𝜏𝜏𝑥𝑥𝑥𝑀𝑀𝑓 𝑔𝑔(𝑔𝑔𝑗𝑗(𝑔𝑔𝜑𝜑 𝑔𝑔𝑗𝑗(𝑥𝑥𝜑𝜑𝑦𝜀𝜀𝜑 𝑦𝑗𝑗𝜏𝜀𝜑𝑦 𝜑𝑛𝑛 − 1}𝜑
The entropy of a semiflow 𝜓𝜓 with respect to a

probability measure 𝜇𝜇 is defined as ℎ𝜇𝜇(𝜓𝜓𝜑 𝜏 ℎ𝜇𝜇(𝜓𝜓1𝜑,
where 𝜓𝜓1 stands for the time-1 map.

A variational principle [1, Theorem II] holds for
impulsive semiflows, (see[5] a topological pressure
version).

Theorem 3.— Let 𝜑𝜑𝑓 𝑀𝑀 𝜑 ℝ+
𝜀 𝑓 𝑀𝑀 be a 𝐶𝐶1-

semiflow, 𝐷𝐷 a compact submanifold of codimension
one and 𝐼𝐼 𝑓 𝐷𝐷 𝑓 𝑀𝑀 a 1-Lipschitz map. If 𝐷𝐷 and
𝐼𝐼(𝐷𝐷𝜑 are transversal to the flow direction, then the
impulsive semiflow 𝜓𝜓 generated by (𝑀𝑀𝜑 𝜑𝜑𝜑 𝐷𝐷𝜑 𝐼𝐼𝜑 sat-
isfies

ℎ𝜏𝜏
𝑡𝑡𝑡𝑡𝑡𝑡(𝜓𝜓𝜑 𝜏 sup

𝜇𝜇𝑥𝜇(𝜓𝜓𝜑
𝜏ℎ𝜇𝜇(𝜓𝜓𝜑}𝜑

2.3 Equilibrium states

In general a dynamical system admits more than one
invariant measure, so it is important to choose a suit-
able one for analysis. One way to do this is by select-

ing measures that maximize the system’s free energy,
known as equilibrium states.

A 𝜓𝜓-invariant probability measure 𝜇𝜇 is said to be
an equilibrium state for 𝜓𝜓 with respect to a potential
function 𝜑𝜑 𝑓 𝑀𝑀 𝑓 ℝ if it satisfies:

ℎ𝜇𝜇(𝜓𝜓𝜑 + ∫ 𝜑𝜑 𝑔𝑔𝜇𝜇 𝜏 sup
𝜂𝜂 {ℎ𝜂𝜂(𝜓𝜓𝜑 + ∫ 𝜑𝜑 𝑔𝑔𝜂𝜂}

where the supremum is taken over all 𝜓𝜓-invariant
probability measures 𝜂𝜂.

Given an expansive continuous flow with the
specification property and a Hölder continuous po-
tential satisfying the Bowen property, there exists a
unique equilibrium state, as shown in [17]. To extend
this result to impulsive semiflows we first adapt the
concepts involved.

Existence and uniqueness for impulsive semiflows

In simple terms, expansiveness means that the system
has the property of pushing apart the trajectories of
nearby points in its phase space over time.

Taking into account that a suitable concept of ex-
pansiveness for impulsive semiflows should ensure
genuine separation of the trajectories rather than just
the artificial ones generated by the impulse map, we
introduce the following concept.

For a given 𝑟𝑟 𝑟 𝜀, denote the set 𝐵𝐵𝑟𝑟(𝐷𝐷𝜑 by the
𝑟𝑟-neighborhood of 𝐷𝐷 in 𝑀𝑀 . The semiflow 𝜓𝜓 is
called positively expansive on 𝑀𝑀 if for every 𝛿𝛿 𝑟 𝜀
there exists 𝜖𝜖 𝑟 𝜀 such that if 𝑔𝑔𝜑 𝑥𝑥 𝑥 𝑀𝑀 and
a continuous map 𝑠𝑠𝑓 ℝ+

𝜀 𝑓 ℝ+
𝜀 with 𝑠𝑠(𝜀𝜑 𝜏 𝜀

satisfy 𝑔𝑔 (𝜓𝜓𝑡𝑡(𝑔𝑔𝜑𝜑 𝜓𝜓𝑠𝑠(𝑡𝑡𝜑(𝑥𝑥𝜑𝜑 𝑦 𝜖𝜖 for all 𝑡𝑡 𝑡 𝜀 with
𝜓𝜓𝑡𝑡(𝑔𝑔𝜑𝜑 𝜓𝜓𝑠𝑠(𝑡𝑡𝜑(𝑥𝑥𝜑 𝑦 𝐵𝐵𝜖𝜖(𝐷𝐷𝜑, then either 𝑥𝑥 𝜏 𝜓𝜓𝑡𝑡(𝑔𝑔𝜑 or
𝑔𝑔 𝜏 𝜓𝜓𝑡𝑡(𝑥𝑥𝜑 for some 𝜀 𝑦 𝑡𝑡 𝑦 𝛿𝛿.

The specification property refers to the ability of
a dynamical system to approximate true trajectories
with high precision, using only a finite number of seg-
ments from other orbits. The fact that the concept de-
pends only on pieces of trajectories allows us to apply
the classical concept to impulsive semiflows.

The semiflow 𝜓𝜓 has the specification property on
𝑀𝑀 if for all 𝜖𝜖 𝑟 𝜀 there exists 𝐿𝐿 𝑟 𝜀 such that for any
sequence 𝑔𝑔𝜀𝜑 … 𝜑 𝑔𝑔𝑛𝑛 of points in 𝑀𝑀 and any sequence
𝜀 ≤ 𝑡𝑡𝜀 𝑦 𝑦 𝑦 𝑡𝑡𝑛𝑛+1 such that 𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖 𝑡 𝐿𝐿 for all
𝜀 ≤ 𝑖𝑖 ≤ 𝑛𝑛, there are 𝑥𝑥 𝑥 𝑀𝑀 and 𝑟𝑟 𝑓 ℝ+

𝜀 𝑓 ℝ+
𝜀 , which

is constant on each interval [𝑡𝑡𝑖𝑖𝜑 𝑡𝑡𝑖𝑖+1[, whose values de-
pend only on 𝑔𝑔𝜀𝜑 … 𝜑 𝑔𝑔𝑛𝑛, that also satisfy

𝑟𝑟([𝑡𝑡𝜀𝜑 𝑡𝑡1[𝜑 𝜏 𝜀 and |𝑟𝑟([𝑡𝑡𝑖𝑖+1𝜑 𝑡𝑡𝑖𝑖+𝑖[𝜑−𝑟𝑟([𝑡𝑡𝑖𝑖𝜑 𝑡𝑡𝑖𝑖+1[𝜑| 𝑦 𝜖𝜖𝜑

for which 𝑔𝑔 (𝜓𝜓𝑡𝑡+𝑟𝑟(𝑡𝑡𝜑(𝑥𝑥𝜑𝜑 𝜓𝜓𝑡𝑡−𝑡𝑡𝑖𝑖
(𝑔𝑔𝑖𝑖𝜑𝜑 𝑦 𝜖𝜖𝜑

for all 𝑡𝑡 𝑥 [𝑡𝑡𝑖𝑖𝜑 𝑡𝑡𝑖𝑖+1 − 𝐿𝐿[ and 𝜀 ≤ 𝑖𝑖 ≤ 𝑛𝑛𝜑

4
6



In addition, the specification is called periodic if
we can always choose 𝑦𝑦 periodic with the minimum
period in [𝑡𝑡𝑛𝑛𝑛𝑛 − 𝑡𝑡0 − 𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑛𝑛𝑛𝑛 − 𝑡𝑡0 𝑛 𝑛𝑛𝑛𝑛𝑛.

Finally, we adapt the concept of Bowen potentials
to include the action of the impulse on the poten-
tials. Let 𝑉𝑉 ∗(𝜓𝜓𝜓 be the set of all continuous maps
𝑓𝑓 𝑓 𝑓𝑓 𝑓 ℝ satisfying:

1. 𝑓𝑓(𝑓𝑓𝜓 𝑓 𝑓𝑓(𝑓𝑓(𝑓𝑓𝜓𝜓 for all 𝑓𝑓 𝑥 𝑥𝑥;

2. there are 𝐾𝐾 𝐾 0 and 𝑛𝑛 𝐾 0 such that for every
𝑡𝑡 𝐾 0 we have

|∫

𝑡𝑡

0
𝑓𝑓(𝜓𝜓𝑠𝑠(𝑓𝑓𝜓𝜓 𝑥𝑥𝑠𝑠 − ∫

𝑡𝑡

0
𝑓𝑓(𝜓𝜓𝑠𝑠(𝑦𝑦𝜓𝜓 𝑥𝑥𝑠𝑠| < 𝐾𝐾𝑛 (1)

whenever 𝑥𝑥 (𝜓𝜓𝑠𝑠(𝑓𝑓𝜓𝑛 𝜓𝜓𝑠𝑠(𝑦𝑦𝜓𝜓 < 𝑛𝑛 for all 𝑠𝑠 𝑥 [0𝑛 𝑡𝑡𝑛
such that 𝜓𝜓𝑠𝑠(𝑓𝑓𝜓𝑛 𝜓𝜓𝑠𝑠(𝑦𝑦𝜓 𝑦 𝑦𝑦𝑛𝑛(𝑥𝑥𝜓.

Sufficient conditions to the existence and unique-
ness of equlibrium states were first established in [5,
Theorem A]. Here we state [1, Theorem III] that re-
quires the following regularity and transversality of
the IDS.

Theorem 4.— Let 𝜑𝜑𝑓 𝑓𝑓 𝜑 ℝ𝑛
0 𝑓 𝑓𝑓 be a 𝐶𝐶𝑛 semi-

flow, 𝑥𝑥 a compact submanifold of codimension one
and 𝑓𝑓 𝑓 𝑥𝑥 𝑓 𝑓𝑓 a 1-Lipschitz map. If 𝑥𝑥 and 𝑓𝑓(𝑥𝑥𝜓
are transversal to the flow direction, 𝜓𝜓 is positively
expansive and it has the periodic specification prop-
erty in Ω(𝜓𝜓𝜓𝜓𝑥𝑥, then for any potential 𝑓𝑓 𝑥 𝑉𝑉 ∗(𝜓𝜓𝜓
there is an equilibrium state. Moreover, if there is
𝑘𝑘 𝐾 0 such that #𝑓𝑓−𝑛({𝑦𝑦𝑦𝜓 𝑦 𝑘𝑘 for every 𝑦𝑦 𝑥 𝑓𝑓(𝑥𝑥𝜓
then the equilibrium state is unique.

3 Periodic Orbits of typical impulsive
semiflows

Considering the space of impulsive semiflows param-
eterized by vector fields and impulse maps, a natural
question is whether a typical impulsive semiflow ad-
mits periodic points. Also, recall the so called Gen-
eral Density Theorem (see [25]) that ensures the ex-
istence of a Baire residual subset of 𝐶𝐶𝑛 vector fields
for which every element generates a 𝐶𝐶𝑛-flow 𝜑𝜑 such
that the set, 𝑃𝑃 𝑃𝑃𝑃𝑃(𝜑𝜑𝜓, of periodic orbits is dense in the
non-wandering set Ω(𝜑𝜑𝜓𝜑

We aim to provide a description of the non-
wandering set for a generic class of Impulsive Semi-
flows. As the genericity depends on the topology
with which the space is endowed, we present our re-
sults in the 𝐶𝐶0 and 𝐶𝐶𝑛 topologies,via permanent and

hyperbolic periodic points, respectively. All through-
out let 𝑓𝑓 be a compact Riemannian manifold of di-
mension 𝑚𝑚 𝑚 𝑚. Given an IDS (𝑓𝑓𝑛 𝜑𝜑𝑛 𝑥𝑥𝑛 𝑓𝑓𝜓, where 𝜑𝜑
is a flow generated by a vector field 𝑋𝑋, we denote its
impulsive semiflow by 𝜓𝜓𝑋𝑋𝑛𝑓𝑓 to stress the dependence
on the vector field and on the impulse map.

3.1 𝐶𝐶0-topology

We now consider impulsive semiflows for which the
underlying flow is generated by Lipschitz continuous
vector fields and impulses are chosen as homeomor-
phisms onto its image. We denote by 𝔛𝔛0𝑛𝑛(𝑓𝑓𝜓 the
space of Lipschitz vector fields endowed with the 𝐶𝐶0-
topology

‖𝑋𝑋 − 𝑋𝑋 ‖𝐶𝐶0 𝑓𝑓 max
𝑓𝑓𝑥𝑓𝑓

‖𝑋𝑋(𝑓𝑓𝜓 − 𝑋𝑋 (𝑓𝑓𝜓‖ < 𝑋𝑋𝜑

𝐶𝐶0-Baire generic impulses

Assume 𝜑𝜑 is a Lipschitz continuous flow generated
by a vector field 𝑋𝑋 𝑥 𝔛𝔛0𝑛𝑛(𝑓𝑓𝜓 and 𝑥𝑥 is a codimen-
sion one smooth submanifold of 𝑓𝑓 , transversal to the
flow direction, such that

𝑥𝑥 Z Sing(𝜑𝜑𝜓 𝑓 𝜑𝑛 (H)

where 𝑥𝑥 stands for the closure of 𝑥𝑥 and Sing(𝜑𝜑𝜓
stands for the equilibrium points of 𝜑𝜑. Let �̂�𝑥 be a
codimension one submanifold transversal to 𝑋𝑋. Con-
sider the space

ℐ𝑥𝑥𝑛�̂�𝑥 𝑓 Homeo(𝑥𝑥𝑛 �̂�𝑥𝜓
endowed with the 𝐶𝐶0-distance. We have the follow-
ing General Density Theorem [28, Theorem A].

Theorem 5.— There exists a 𝐶𝐶0-Baire generic subset
ℛ𝑋𝑋 ⊂ ℐ𝑥𝑥𝑛�̂�𝑥 of impulses such that

𝑃𝑃 𝑃𝑃𝑃𝑃(𝜓𝜓𝑋𝑋𝑛𝑓𝑓 𝜓 Z �̊�𝑥 𝑓 Ω(𝜓𝜓𝑋𝑋𝑛𝑓𝑓 𝜓 Z �̊�𝑥
for every 𝑓𝑓 𝑥 ℛ𝑋𝑋 , where 𝑃𝑃 𝑃𝑃𝑃𝑃(𝜓𝜓𝑋𝑋𝑛𝑓𝑓 𝜓 denotes the set
of periodic orbits of 𝜓𝜓𝑋𝑋𝑛𝑓𝑓 and �̊�𝑥 is the interior of 𝑥𝑥.

In general, one should not expect the density of pe-
riodic points in the all non-wandering set, however
this is the case when the impulsive semiflow is gen-
erated by a minimal flow. Moreover, the following
holds ([28, Corollary B]).

Corollary 6.— Let 𝜑𝜑 be a Lipschitz continuous flow
generated by 𝑋𝑋 𝑥 𝔛𝔛0𝑛𝑛(𝑓𝑓𝜓 and 𝑥𝑥𝑛 �̂�𝑥 ⊂ 𝑓𝑓 be
smooth codimension one submanifolds transversal to
the flow such that assumption (H) holds. The follow-
ing hold:
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1. if 𝐼𝐼0 ∈ ℐ𝐷𝐷𝐷�̂�𝐷 is such that Ω(𝜓𝜓𝐼𝐼0
) Z 𝜕𝜕𝐷𝐷 𝜕 𝜕 then

there exist 𝛿𝛿 𝛿 0, an open neighborhood 𝒱𝒱 of
𝐼𝐼0 and a Baire generic subset ℛ ⊂ 𝒱𝒱 so that, for
every 𝐼𝐼 ∈ ℛ one can write the non-wandering
set Ω(𝜓𝜓𝑋𝑋𝐷𝐼𝐼 ) as a (possibly non-disjoint) union
Ω(𝜓𝜓𝑋𝑋𝐷𝐼𝐼 ) 𝜕 𝑃𝑃 𝑃𝑃𝑃𝑃(𝜓𝜓𝑋𝑋𝐷𝐼𝐼 ) Y Ω2(𝜑𝜑𝐷 𝐷𝐷)𝐷 where
Ω2(𝜑𝜑𝐷 𝐷𝐷) ⊂ Ω(𝜓𝜓𝑋𝑋𝐷𝐼𝐼 ) is a 𝜑𝜑-invariant set which
does not intersect a 𝛿𝛿-neighborhood of the
cross-section 𝐷𝐷. Moreover, the set Ω(𝜓𝜓𝑋𝑋𝐷𝐼𝐼 ) ∖ 𝐷𝐷
is invariant under 𝜓𝜓𝑋𝑋𝐷𝐼𝐼 .

2. if 𝜑𝜑 is minimal then there exists a Baire generic
subset ℛ ⊂ ℐ𝐷𝐷𝐷�̂�𝐷 so that, for every 𝐼𝐼 ∈ ℛ, the
set of periodic orbits is dense in Ω(𝜓𝜓𝑋𝑋𝐷𝐼𝐼 ). More-
over, the set Ω(𝜓𝜓𝑋𝑋𝐷𝐼𝐼 )∖𝐷𝐷 is a 𝜓𝜓𝑋𝑋𝐷𝐼𝐼 -invariant sub-
set of 𝑀𝑀 .

3.2 𝐶𝐶1-topology

Let 𝜑𝜑 be the 𝐶𝐶1-flow generated by a vector field 𝑋𝑋
and let 𝐷𝐷 ⊂ 𝑀𝑀 be a compact codimension one sub-
manifold transversal to the flow direction.

We define the class of impulses ℐ𝐷𝐷 as the set of
𝐶𝐶1-embeddings maps 𝐼𝐼 𝐼 𝐷𝐷 𝐼 𝑀𝑀 so that 𝐼𝐼(𝐷𝐷) 𝐼 𝑋𝑋
and

sup
𝑥𝑥∈𝐼𝐼(𝐷𝐷) |

𝑑𝑑𝑑𝑑1
𝑑𝑑𝑥𝑥

(𝑥𝑥)| < +∞.

Endow the space ℐ𝐷𝐷 with the distance 𝑑𝑑𝐶𝐶1(𝐼𝐼1𝐷 𝐼𝐼2)
given by

max { sup
𝑥𝑥∈𝐷𝐷

𝑑𝑑(𝐼𝐼1(𝑥𝑥)𝐷 𝐼𝐼2(𝑥𝑥))𝐷 sup
𝑥𝑥∈𝐷𝐷

‖𝐷𝐷𝐼𝐼1(𝑥𝑥) 𝑥 𝐷𝐷𝐼𝐼2(𝑥𝑥)‖}𝐷

where the expression on the right-hand side is well-
defined after using parallel transport to identify the
corresponding tangent spaces.

In this setting [27, Theorem A] establishes:

Theorem 7.— There exists a Baire residual subset
ℛ𝑋𝑋 ⊂ ℐ𝐷𝐷 of impulses such that the impulsive semi-
flow 𝜓𝜓𝐼𝐼 determined by 𝐼𝐼 ∈ ℛ satisfies

𝑃𝑃 𝑃𝑃𝑃𝑃ℎ(𝜓𝜓𝐼𝐼 ) Z 𝐷𝐷 𝜕 Ω(𝜓𝜓𝐼𝐼 ) Z 𝐷𝐷
where 𝑃𝑃 𝑃𝑃𝑃𝑃ℎ(𝜓𝜓𝐼𝐼 ) denotes the set of hyperbolic peri-
odic orbits of 𝜓𝜓𝐼𝐼 .

We point out that the conclusion of Theorem 7 can-
not be written using the landing region 𝐼𝐼(𝐷𝐷), as there
exist 𝐶𝐶1-open sets of impulses for which the equality
𝑃𝑃 𝑃𝑃𝑃𝑃ℎ(𝜓𝜓𝐼𝐼 ) Z 𝐼𝐼(𝐷𝐷) 𝜕 Ω(𝜓𝜓𝐼𝐼) Z 𝐼𝐼(𝐷𝐷) fails (see [27, Ex-
ample 7.3]).

4 An invitation to the impulsive world

Despite their wide range of applications, IDS have
only recently begun to be studied through the lens
of ergodic theory. In this area, there remains vast po-
tential for exploration. We conclude by presenting a
few open questions, inviting the reader to delve into
the dynamics of impulsive semiflows.

1. As mentioned in Section 2.3, in general a dynam-
ical system admits more than one invariant measure,
therefore it is necessary to choose a suitable one to an-
alyze. While here we only focus on equilibrium states,
criteria for the existence and finiteness of the number
of absolutely continuous measures and/or physical
measures are also not available. See [2] for the study
of physical measures for a class of semiflows gener-
ated via impulsive perturbations of Lorenz flows.

2. In Theorem 6 we established the denseness of
periodic points in the impulsive non-wandering set
for a class of Baire generic impulses maps. The proof
is based on the concept of uniform hyperbolicity and
of perturbative results for discontinuous semiflows.
A key tool in the proof is the following impulsive con-
necting lemma [27, Theorem 4.1 ].

Given 𝛿𝛿 𝛿 0, we say that a sequence (𝑥𝑥𝑘𝑘𝐷 𝑡𝑡𝑘𝑘)𝑛𝑛
𝑘𝑘𝜕0 in

𝑀𝑀 𝑀ℝ+ is a 𝛿𝛿-pseudo orbit for the impulsive semiflow
𝜓𝜓𝐼𝐼 if 𝑑𝑑(𝑑𝑑𝑥𝑥𝑘𝑘

(𝑡𝑡𝑘𝑘)𝐷 𝑥𝑥𝑘𝑘+1) < 𝛿𝛿𝐷 for every 𝑘𝑘 𝜕 0 𝑘 𝑛𝑛 𝑥 1.
We say that 𝑦𝑦 is a chain iterate of 𝑥𝑥 (and write 𝑥𝑥 𝑥 𝑦𝑦) if
for any 𝛿𝛿 𝛿 0 there exists a 𝛿𝛿-pseudo orbit (𝑥𝑥𝑘𝑘𝐷 𝑡𝑡𝑘𝑘)𝑛𝑛

𝑘𝑘𝜕0
such that 𝑥𝑥0 𝜕 𝑥𝑥 and 𝑥𝑥𝑛𝑛 𝜕 𝑦𝑦.

Theorem 8 (Impulsive connecting lemma).— Let 𝜑𝜑
be a 𝐶𝐶1-flow generated by 𝑋𝑋 ∈ 𝑋𝑋1(𝑀𝑀) and let
𝐷𝐷𝐷 �̂�𝐷 be smooth submanifolds of codimension one
transversal to 𝑋𝑋 and 𝐼𝐼 ∈ ℐ𝐷𝐷𝐷�̂�𝐷 so that all 𝜓𝜓𝐼𝐼-periodic
orbits whose orbit closure does not intersect 𝜕𝜕𝐷𝐷 are
hyperbolic. If 𝑥𝑥 𝑥 𝑦𝑦 then for any 𝜀𝜀 𝛿 0 there exists
an 𝜀𝜀-𝐶𝐶1-perturbation 𝐽𝐽 of 𝐼𝐼 such that 𝑦𝑦 𝜕 𝑑𝑑𝐽𝐽𝐷𝑥𝑥(𝑡𝑡), for
some 𝑡𝑡 𝑡 0.

In the context of diffeomorphisms, connecting
lemmas were obtained by Arnaud [7, Théorème 22]
and Bonatti and Crovisier [8, Théorème 2.1], as refine-
ments of the 𝐶𝐶1-closing lemma by Pugh [25] and the
𝐶𝐶1-connecting lemma of Hayashi [18].

A natural and interesting open question is to ob-
tain a version of Theorem 6 when the vector field is
perturbed. It seems that one should first establish a
version of the last connecting lemma.

3. Considering the IDS (𝑀𝑀𝐷 𝜑𝜑𝐷 𝐼𝐼𝐷 𝐷𝐷), even if 𝜑𝜑 is
a flow, the IDS does not generate an impulsive flow,

6
8



but only a semiflow, when the impulse map 𝐼𝐼 is not in-
jective. It is well known that certain concepts do not
present a direct adaptation from the setting of flows
to the one of semiflows. For instance, the concept of
expansiveness presented in this paper is stronger than
the one for flows introduced by Bowen and Walters
in [13] (see [19]). In [23] the concept of eventual expan-
siveness for continuous semiflows was introduced.

A continuous semiflow 𝜑𝜑 on a metric space 𝑀𝑀 is
eventually expansive if for every 𝜀𝜀 𝜀 𝜀 there is 𝛿𝛿 𝜀 𝜀
so that if 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑀𝑀 and 𝑠𝑠 𝑠 𝑠𝜀𝑥 𝑠𝑠𝑠𝑠 𝑠𝜀𝑥 𝑠𝑠𝑠
is a continuous function with 𝑠𝑠𝑠𝜀𝑠 𝑠 𝜀 such that
𝑑𝑑𝑠𝜑𝜑𝑠𝑑𝑑𝑥 𝑥𝑥𝑠𝑥 𝜑𝜑𝑠𝑑𝑑𝑥 𝑥𝑥𝑠𝑠 𝑑 𝛿𝛿 for all 𝑑𝑑 𝜀 𝜀 then 𝜑𝜑𝑠𝜑𝜑𝑥 𝑥𝑥𝑠 𝑠
𝜑𝜑𝑠𝑠𝑠𝑥 𝑥𝑥𝑠 for some 𝜑𝜑𝑥 𝑠𝑠 𝑟 𝜀 with |𝜑𝜑 𝑟 𝑠𝑠| 𝑑 𝜀𝜀.

For an eventually expansive continuous semiflow
its topological entropy is bounded from below by the
growth rate of the periodic orbits [Theorem 1.5, [23]].
After adapting the concept of eventually expansive-
ness to impulsive semiflows, we would expect to be
able to bound the 𝜏𝜏-entropy introduced here by the
growth rate of the periodic orbits.
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