MATHEMATICS AND MusIC

by José Francisco Rodrigues™

In four movements — Pythagorean Arithmiusic, Tone Algebra, Harmonisation of Analysis, Digital Mu-
surgia — and through a few examples, we will present a brief introduction to the numerous interac-
tions between mathematics and music throughout history, which can help us understand the modern
interpretation of Leibniz’s expression:

Musica est exercitium arithmeticae occultum
nescientis se numerare animi.l*!

1. PYTHAGOREAN ARITHMUSIC

C’est par les nombres et non par le sens qu’il faut estimer la
sublimité de la musique. Etudiez le monocorde.[**]

—Diderot, Pythagoreanism, Encyclopédie XII (1765)

Guido d’Arezzo (992-1050?) in the Micrologus, attri-
butes to Pythagoras (6th century BCE) the fundamen-
tal discovery of the dependence of musical intervals
on the quotients of the first integers numbers, writing:

A certain Pythagoras, on one of his journeys, happened to pass
a workshop where an anvil was being beaten with five ham-
mers. Astonished by the pleasant harmony (concordiam) they
produced, our philosopher approached them and, thinking at
first that the quality of the sound and harmony (modulationis)
lay in the different hands, exchanged the hammers. In this way,
each hammer retained its own sound. After removing one that
was dissonant, he weighed the others and, marvellously, by These ratios can be obtained from those four num-
the grace of God, the first weighed twelve, the second nine, the
third eight, the fourth six of I don’t know what unit of weight.

Left: Bust of Pythagoras. Right: Denis Diderot (1713-1784)

bers, corresponding respectively to a string length
equal to 12 units (unison), halved to 6 (octave), 8 units
For the Pythagorean School, the harmony of sounds  (fifth) or 9 (fourth).

was in direct correspondence with the arithmetic of The Greek heritage, was transmited in particular
proportions: by the Roman Boethius (6th century CE), “the great,

unison — ratio 1 : 1 octave (diapason) 1 : 2 astonishing and very sudden relationship (concor-

fifth (diapente) 2 : 3 fourth (diatessaron) 3 : 4 diam) that exists between music and the proportions
of numbers (numerum proportione)”.

[*] Music is a hidden arithmetic exercise of a mind unconscious that it is counting.
[*+11t’s by the numbers and not by the sense that one should evaluate the sublimity of music. Study the monochord.

* CEMsUL/Ciéncias/ULisboa
Email: jfrodrigues @ciencias.ulisboa.pt

CIM Bulletin .46 December 2024 25



Top: Franchinus Gafurius (Theorica musicae, 1492)

Bottom: Boetius; c. 480-524, De Institutione Musi-
ca. Division of intervals (Paris, Bibl Nat, 12th cent.)
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The arithmetic of proportion establishes: the prod-
uct of 2/3 (fraction associated with the fifth) by 3/4
(fraction associated with the fourth) gives the frac-
tion 1/2 associated with the octave; its division (sub-
traction of intervals) is associated with the fraction
8/9 = (2/3) + (3/4) which represents a tone, i.e. the
difference between a fifth and a fourth. Analogous-
ly, an octave is made up of two fourths and a tone
1/2 = 3/4 x 3/4 x 8/9.

The Sectio Canonis, or the “Division of a mono-
chord”, 300 BCE, by Euclid, has twenty propositions
argued in the form of theorems, treatment of intervals
as ratios between integers numbers and culminates
with the division of the Kanon, For example, its 15th
Proposition says “the fourth is less than two and a half
tones and the fifth less than three and a half tones”,
and others, like the 9 th (<= VIII.2), are consequenc-
es of the Book VIII of the Elements.

The ancient Greeks also divided the mathematical
sciences into four parts:

arithmetic (static discrete quantities)
music (discrete quantities in motion)
geometry (stationary magnitudes)
astronomy (dynamic magnitudes).

This classification constituted the Quadrivium, as part
of the seven liberal arts of the medieval curriculum,
which were complemented by the Trivium (grammar,
dialectic and rhetoric).

Arithmetic, geometric and harmonic proportional-
ity are present throughout medieval science and mu-
sic, where the latter is defined as number associated
with sound—numerus relatus ad sonum. For example,
in the speculative treatise Ars novae musicae (1319), the
Parisian mathematician and astronomer Jean de Mu-
ris wrote:

Sound is generated by movement, since it belongs to the class
of successive things. It therefore exists only as long as it is
produced, ceasing to exist once it has been produced . . . All

music, especially measurable music, is based on perfection,
combining in itself number and sound.

Claudius Ptolemy (an century, CE), author of Math-
ematike Syntaxis (Almagest) and of the treatise Har-
monica, in which he transmitted the myth of how the
mathematical relationships underlying the structures
of audible music constitute the forms of the essence
and cause of harmonies both in the human soul and
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Neumas, Micrologus, Guido d'Arezzo
Manuscript, 12th cent. (Biblioth. Nationale, Paris)

in the movements and configurations of the stars.

In the Boeotian terminology, this corresponded
to musica instrumentalis (produced by the lyre, flute,
etc.), musica humana (inaudible, produced in man by
the interaction between body and soul), musica mun-
dana (produced by the cosmos itself, also known as
the music of the spheres).

The cube with 6 faces, 8 vertices and 12 edges, and
therefore considered a harmonic solid, together with
other more subtle parallelisms between arithmetic and
geometry, led classical civilisation to the doctrine of
the music of the spheres and, in Aristotle’s expression,
to consider that the whole sky is number and harmo-
ny.

For Joannes Kepler (1571-1630), the movement of
the planets was still an immanent music of divine per-
fection, but this didn’t prevent him to conclude the
three laws of motion:

1. the planets revolve around the Sun in elliptical

orbits;

2. with the Sun as a foci and their orbital areas are

travelled in proportion to time;

3. the squares of the periods of revolution of each

planet are proportional to the cubes of their av-
erage distances from the Sun.

Following his third law, in 1619 Kepler wrote: musi-
cal modes or tones are reproduced in a certain way
at the extremities of planetary movements. Consid-
ering the seven consonant intervals of the octave of
his time, he established the following harmonies of

‘entius perihelia,
eoncurrit pesihclivs Tellitis motus,
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Kepler’s metaphysics goes so far as to states that the
Earth sings the notes MI, FA, M1, so that from them it
can be conjectured that misery (MIseria) and hunger
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Pythagorean scales are based on the elementary “ratio-
nal” intervals (octave, fifth and fourth) and their alter-
nating successions, i.e., starting from a sound from a
Kepler's Mysterium cosmographicum (1596), with the embe-  sound f, = f and the sound f; = 3 f/2located a fifth
ding of the cube (Saturn-JupiFer), tetrahedron (Jupiter-Mars), higher on the scale, the sound f, = 3 f,/4 = 9 £/8will
dodecahedron (Mars-Earth), icosahedron (Earth-Venus) and b fourth bel th J ffih ab

octahedron (Venus-Mercury) in the sphere. ¢ one four ' € ?W f1, the sound f3a above f;

and so on. This gives the cycle of fifths as

n=(3) ()"

the six known planets: . .
P which isn’t a real cycle, because if it were, there would

Saturn 4:5 (a major tertia) have to be two integers n and p such that 3" = 2"*7;
Jupiter 5:6 (a minor tertia) but an odd number is different from an even number,
Mars 2:3 (a fifth) so it is impossible!
Earth 5:16 (a half-tone) In classical solfege “12 fifths correspond to 7 oc-
Venus 24:25 (a sharp) taves”, mathematically it would be 3'% = 2!°, which
Mercury 5:12 (an octave and a minor tertia); is false. We have that

by calculating the aphelion/perihelion ratios for each 312 531441

of them: Saturn travels an arc of 106 or 135 seconds 519 ~ 524288 ~

er day when it is at its furthest point (aphelion) or . . .
P Y p Q0 ) This only translates into a certain tolerance of the ear

to that tuning and this difference is the Pythagore-
an coma.

closest (perihelion) to the Sun, respectively, obtaining
the ratio 106/135 ~ 4/5.

A theoretical formulation of equal temperament can

| — T
__ﬁ -—-Qm& E;%ﬂ °‘§¢. m already be found in the work De musica by F. Salinas,

h“““n“’ Jupiter o Mansgere leara published in Salamanca in 1577, which states that the
)
octave must be divided into twelve equally proportional
mﬁg mf”““' = st be equally prop
Ee_g =>—————~ parts, which will be the equal semitones.
Venus Mercurms Hrclocum habeteciam)
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Referring to Salinas and Mersenne as authors who

had already considered this division to be of no great
consequence, Huygens remarked that if their prede-
cessors had been mistaken because “they hadn’t known
how to divide the octave into 31 equal parts (. . .) for
this the intelligence of Logarithms was necessary.”

In Euler (1707-1783) we find one of the most inge-
nious algebraic theories of the division of the octave
and the degree of consonance of musical intervals.

In the Essay on a new theory of music (Tentamen
novae theoriae musicae, 1739), Euler develops an ar-
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Calculations of 1691 of the division of the
octave into 31 tones by Huygens
using logarithms

gument in which proportions generate musical plea-
sure, via order and perfection — music is the science
of combining sounds in a pleasing harmony — so that,
for this mathematician, a musical object is a simple
arithmetical object.

December 2024 29



: @ 4 @ ; ® W
+ fenter cxallement Jes tons, que jo-noae fecan Vioidi et
TENTAMEN - fe el o e ot Gongs Vi
T ™ Tons nombees Tons bre:
NOVAE THEORIAE VERITABLE CARACTERE - Pl e
i . | Ly = 4096, 2% 3%y I gepe
Fr j2% 3% 5 = gg00] Fr [ad3 sh0 — 200
MUSIQ_UB MODERNE " & ‘é. a5y = 4480
X < Ao L M
CERTISSIMIS “ﬂ* & ol R D
H \R\[O‘HAF PRINCIPIIS & o B lear S
IR, EXIOSITAB A % ‘N“Y‘ uoe & m‘-ﬁdﬁnmﬁ: g‘ g{ a:. ;"17 E,ﬁoqs
LEONHARDO EVLERO. o Wl ks & e sk Bt i 5 A I R
&k,mksﬁ-mﬁmkmm&m‘,wum{hﬂuh D w’;-_is?: ’“
iinion, font fort partayds: &d:ﬂwmkmqucrﬁqe E o e I et
= &l v “ Ceux qui simagine q-u:munehﬂ&- f e S
w‘,mq\p dans cemaing wours, que les Muficiens metient - - ﬂe&&ﬂd&uqﬂn‘ill’md&wlr dérormint un feol des toos émangors,
‘aujourdhui - en pratique, - & qui oot &b lncooous aurefas, ‘re Tes austres &n p &niorms par de ﬁmpk!
diftingucnt mundwn@emdtwm Of coux qui mer, - gaiates & rierces majeures. St

— u&!awmmmﬂnmmmm
diroient ‘parn infopporrables sux n. r

“FETRGGLT, B% TVTOGEATIEA MADDGAE SRSV

2 c&m.;wammm:, M‘}"d‘?‘.ﬂ"‘“‘“ﬂ* 3
foie a di Tune & Tau:

wwaqﬂthﬂreﬂwuﬁ\mmtummw‘ﬁ.
eque avec foccds. . Le jugement de Foreille, auquel wour doir &ve pe -
P"Wéi quelque bizarre quHl, paroidle fouvent, welt upend.mr rien

Euler introduced a mesure of the degree of conso-
nance (agrément) of an interval through an algebraic
formula in which p; are prime numbers and m;, inte-

Musical notes can be grouped into equivalence
classes and hence called by the same name, i.e. two
notes are said to be equivalent if they are separated by

an exact number of octaves, i.e. if they have frequen-
cies p and g, the interval between them is of the form
plqg =2k, withk = 0,+1, +2, ... and will be denoted
byp~agq.

In the 12-note tempered system, the interval is char-

ger exponents:
n

a(l) = Z (mipl- -

i=1
Euler also wrote other essays, such as Du véritable car-
actere de la musique moderne (On the true character of
modern music), in Mémoires de I’Académie des Sci-
ences de Berlin (1764), 1766.
But the algebra of tones is not limited to the prob-
lems associated with temperament, but also appears

m,-) + L.

acterised by the number of semitones and the notes
can be associated with the set of integers

Zy,=10,1,2,3,4,5,6,7,8,9,10, 11}

in the structure of sounds and in musical composition which is a group for addition (mod 12).

itself.
J
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Another typical example is given in J.S. Bach’s Mu-
sical Offering of 1747, which presents three types of
transformations: translations (upward transpositions,
as in the canon ascendenteque Modulationem ascen-
dat gloria Regis), horizontal symmetries (melodic in-
versions, as in the canon Per Motum Contrarium) and
vertical symmetries (retrogrades, as in the canon a 2
which plays the same theme starting on the last note
and moving backwards to the first). Also known as
palindromes or crab canons: y = —x.

3. HARMONISATION OF ANALYSIS

Marin Mersenne (1588-1648) is credited with estab-
lishing the basic laws of modern string acoustics. Har-
monie universelle (1636), establishes the experimental
laws on the proportionality of the period of vibration
of the string, in relation to its length, to the inverse of
the square root of its tension and to the square root
of its thickness or cross-sectional area.

Galileo Galilei, in Discorsi e dimostrazioni matem-
atiche . . . (1638) refers to the question of vibrating
strings and consonance as follows:

... the first and immediate reason on which the ratios of mu-
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sical intervals depend is neither the length of the strings nor
their thickness, but the proportion existing between the fre-
quencies of the vibrations, and therefore of the waves which,
propagating in the air, reach the eardrum of the ear causing
it to vibrate at the same intervals of time.

The mathematical analysis of the sound starts with
the modeling of the vibrating string, namely with the
computation of its fundamental period by B. Taylor
in 1713, with the first ODE analysis by Jean Bernoulli
in 1727 and the famous controversy between D’Alem-
bert and Euler on the admissible initial conditions on
the wave equation.

It is above all with the introduction of the equation

o~ ox

in D’Alembert’s 1747 memoire published by the Berlin
Academy, Recherche sur la courbe que forme une corde
tendue mise en vibration, and with the subsequent
works of Euler, Daniel Bernoulli and Lagrange, that the
mathematical theory of the “musical string” acquires
the appropriate model for small vibrations, which will
be decisive in the study of oscillations in continuous
media, in particular the propagation of sound in air.

During the course of the famous “vibrating string
controversy”, a scientific dispute involving the lead-
ing mathematicians of the 1700s, Daniel Bernoulli, in
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a 1753 letter, established the principle of the superpo-
sition of small harmonic oscillations as a physical law
and not so much as a mathematical result, concluding
that

every sounding body potentially contains an infinity of sounds

and a corresponding infinity of ways of producing their re-
spective vibrations.

wave equation which, in the 19th century, after the
work of Fourier, will allow us to demonstrate D. Ber-
noulli’s principle of superposition of waves. Lagrange
not only sought to analyse the propagation of sound,
he also tried to provide a scientific explanation for
Tartini’s theory of the combination of tones, set out
in his Treatise on Music of 1754.

In a memoir by the Turinese mathematician Lagrange The musical string is just the first mathematical ex-

(1736-1813), we find a formula for the solution of the ample of sound analysis. Both the sound produced by

@ IWMAAMAAWAAAAMAAMARAMAMAWY Soit = X Ja raison générale des indices des Y et des V au nombre m,
© YAV~~~ \ X déuotera la partie de I'axe qui leur est correspondante dans le premier
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Left: Ratios of frequencies of two pure tones (a) 1:1(b) 15:16 (c) 4:5 (d) 2:3 (e) 20:31 (f) 30:59 (g) 1:2.
Right: An excerpt of Recherches sur la nature de la propagation du son (1579) by Lagrange.



most musical instruments and the human ear itself re-
quire mathematical models that take into account the
various dimensions of physical space and geometry.

In the mathematical analysis of the sound a famous
question arouse: is it possible to hear the shape of a
drum? This question, which has a precise and profound
meaning in maths, consists of knowing whether from
the same family of eigenvalues, i.e., numbers 4 = 4,
n=1,2,.., that satisfy the equation Au + Au = 0 in
two domains Q; and Q, it is possible to say that these
regions are congruent in the sense of Euclidean geom-
etry. Of all the drums with the same area, the round
one has the deepest sound.

Gs

a) Isospectral (reproducing the same sound)
drum shapes (flat polygons) with different
shapes ( C. Gordon and D. Webb, 1991).

b) Isospectral spatial shapes of bells
(Riemannian surfaces) by P. Buser (1986).
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4. DIGITAL MUSURGIA

As early as the 17th century, an obscure German math-

ematician, K. Schott, following the ideas of Mersenne
and his teacher Kircher, author of a Musurgia Uni-
versalis (1650), argued in his Organum mathematicum
(1668) that to compose harmonic chants it was enough
to master the new art of music-arithmetic, which con-
sisted of combining the bacilli musurgici (the musical
keys) and using the abaci melothetici and the tabulae
musarithmeticae.

These ideas were based on the new combinatorial art
of Mersenne, in Harmonie Universelle (1636), for whom
composing was reduced to combining, he had distin-
guished permutations without repetition of a given
number of n notes (ordinary combinations which he
calculated up to n = 64) S, = n!, from permutations
with repetition of n notes (p are different), which he
used to calculate the table of chants that can be made
from 9 notes, he also calculated arrangements with-
out repetition (p different notes among n given) and
also combinations without repetition.

In the evolution of mathematics from the 17t to the
18t century, particularly for GW. Leibniz, the math-
ematical sciences acquired a broader role as a science
about the representations of all possible relationships
and dependencies of the simplest elements, seeking a
universal language and an algebra of reasoning, perfect-
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peuuent faireanec les 15 notesprecedentes, :

Maisafinguel'on fache cnl'on peuc fairede chantsd'vn certain nor-
bre de notesen quelque forte que Pork kes puifle repeter ic prends neufnotes,
dont on void plufieits charite dahs cetee rable, qui'menltre au prémicrrang
combienil y en a de femblables, 8¢ atifecond lenombre des chants.

M. Mersenne, Harmonie Universelle (1636-37)
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De Cantibus;

33452526613716380710823 4012051 4407 516473 52000000000
1405006117751879398 5700289261 4451569188784 000000000
604172630615738356376512438:85350747 s117 712000000800

265827157 478844876801667472847461§88800717952800000000 @
1075659998778932174106294516512411943§006 5976178 40000000020
495135994385088600888954775957094940103034008806 40000000000
132176091736005136041780874406 993326218348 4264071390080 000000000
1172424043181 46 730005 £81974559:0618437244677426713840000000000
$47 4536776308 40799701686167 114011050 1874989095909468160000000000
1373726818815 420592811143083 767005 1152957 40 44793473 408 000000000600
12960068;79586440392418497272172312 7998122219476 914380800000 0000000 L1
1725913566:3899 49004055618 58170098856 119023 5541175954 78016000000000000

3347394.9005166729721494778431957227737627848;88112 5603348 48000000000000 I}j}!
2077593246:89803404 96071803801 58219783190381:834 582 780517920000 80000000 LIy
114267628545939187271849402091407016;807747056536 070 si9sosdsbo000ceconoccs Lv
M. Mersenne 124594191470§3 3106000121 441109547 7290188501 8061901577 4614111936000 0000000000 LVl
: i ! 71075803098303876420070361741312205740733:93952838992¢3 0194 601 s200000c8000000 LVIi
Harmonie 4122396579711624484364083969396i0791136 12571936 4661676717 0 87004 16500000CLAC000 LVt
Universelle '243221398101986344577480777194380;6716038 9018033517 02891 866813531 4 440000000000600 Lix
(1636-37) 145932838 921792106746 483466316618 1104162334108195090173 17 : 0087994 716 40000000000 OGS LY
838 r19035174229418111535796 4453143214 45390238 05999005005 87801536767810 40000000000u000 . LXI

748817996302217747715110379609 487912961 41947597191811056 44933727 960f 5244800000 000000096 LX]L
345796357981387181060 18820911197759 56569 427984251113 f5 206, 0824861 5148 0422 400000000000000 X LITT
1212840593106 47795378786 4538, Bs545531220443 337188 5546718763 7279113 594747 033600 00000000000 LXIV:

XL1
XLIt
XLt
XLIv
XLV
XLVI
XLVII
XLV
XLIX
L

PROPOSITIO 1V.

‘Quatuor vocum Tetrachordi feu Diateflaron, VT, RE, MI, FA , Combina-
riones feuvarietates notis vulgaribus exprimere.

ing calculation and creating new algorithms to which
it became necessary to give a symbolism appropriate
to the essence of the concepts and operations.

In his dissertation on the art of combinatorics
(1666), the young Leibniz already intended to reorga-
nise logic, but it was after the creation of the Calculus
that he referred to binary notation in a 1701 letter to J.
Bernoulli: Many years ago an original idea occurred
to me about a type of arithmetic where everything is
expressed with 0 and 1.

However, this new type of binary arithmetic was

only realised in modern computers, where each bit
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represents an electrical state: on (current) is associat-
ed with the number 1; off (no current) is associated
with 0; and sequences of electrical impulses, such as
01000001 which represents the number 65 in the bi-
nary system, and which can also be assigned to the
capital letter A using another code.

Forerunners of modern calculators, the machines
of the 17th century had a limited impact, in particular
those of W. Schickard (1592-1635) and B. Pascal (1623—
1662), capable of adding and subtracting mechanically,
or that of Leibniz in 1671, which could also multiply
and divide.

Left:
G. W. Leibniz (1646-1716)

Right;

Binary system designed by
Leibniz, which reads “one
created everything out of
nothing” at the top and
“one is necessary” at the
bottom.



However, only C. Babbage’s (1791-1871) mechanical
machines, namely the Difference Engine (1821) and
the Analytical Engine (1834), are considered to be the
forerunners of electronic computers, even though
they were never built.

In a passage on the conception of that machine, Ada
Lovelace specifically states that its operative mechanism
could act on things other than numbers, objects such
that their fundamental reciprocal relationships could
be expressed by the abstract science of operations and,
as a concrete example within the framework of the
operative notation and mechanisms of the Analyti-
cal Engine, explicitly supposes that the fundamental
relationships of sounds determined in the science of
harmony and musical composition could be expressed
and adaptable to its action; the machine could com-
pose scientific and elaborate musical pieces, with any
degree of complexity or extension.

However, a sufficiently powerful mechanism ca-
pable of incorporating the science of operations only
appeared with the modern computer in the second
half of the 20th century.

The first experiments in computer-assisted musical
composition appeared from the start L. Hiller in 1956
in the USA, followed by P. Barbaud and I. Xenakis in
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Left:
Ada Lovelace (1815-1852)

Right:

RCA Mark 11

Electronic Music
Synthesizer,

H. Olson e H. Belar (1957)

France and others. At Bell Laboratories, in 1957, M.
Mathews and his collaborators made the first numer-
ical record and the first computer synthesis of sounds
and, in 1965, J.C. Risset computer-simulated the first
sounds of musical instruments.

In 1973, the first numerical synthesiser was built,
Synclavier, which was then commercialised, and about
ten years later theten years later, the public had access
to digital recording CD’s (compact discs).

Since 1983, the MIDI (Musical Instrumental Digital
Interface) standard has allowed computers to record
and edit music.

If today we have the mastery of numerisation in
the analysis and synthesis of musical sound, if we have
begun to outline the mathematisation of certain musi-
cal structures and computers allow us to hear mathe-
matical calculations and structures, i.e. to paraphrase
Saccheri we have Pythagoras ab omni naevo vindica-
tus sive Conatus arithmeticus quo stabiliuntur prima
ipsa universa musica principia (Pythagoras freed from
all taint or the arithmetical attempt to establish the first
principles of all music). we can continue to agree with
Aristoxenus and accept that the justification of music
lies in the pleasure of its hearing and its enjoyment.

December 2024 35



