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Abstract.—This short expository note aims to give the minimal amount of Lie 
theory needed to appreciate the eightfold way in particle physics. We first give a 
quick but complete account of the finite-dimensional irreducible representations 
(irreps) of 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ). Then we sketch how the theory generalizes to the irreps of 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), and close by gesturing at the role of these irreps in the eightfold way.

1 Introduction

Consider the space of traceless, 2 × 2 complex matri-
ces, which we denote 𝔰𝔰𝔰𝔰𝔰2𝔰 ℂ):

𝔰𝔰𝔰𝔰𝔰2𝔰 ℂ) = {(
𝑎𝑎 𝑎𝑎
𝑐𝑐 𝑐𝑎𝑎) ∶ 𝑎𝑎𝔰 𝑎𝑎𝔰 𝑐𝑐 𝑎 ℂ} .

This is a vector space, but more importantly, it is a Lie
algebra—it is closed under the Lie bracket, defined in
this case to be the commutator:

[𝑋𝑋𝔰 𝑋𝑋 𝑋 = 𝑋𝑋𝑋𝑋 𝑐 𝑋𝑋 𝑋𝑋𝔰 for 𝑋𝑋𝔰 𝑋𝑋 𝑎 𝔰𝔰𝔰𝔰𝔰2𝔰 ℂ).
Lie algebras, like their cousins Lie groups, encode
symmetries. In the case of 𝔰𝔰𝔰𝔰𝔰2𝔰 ℂ), for instance, each
element acts on the vector space ℂ2 as a linear trans-
formation, and we think of such a transformation as
a symmetry of ℂ2. This situation, where a Lie algebra
acts on a vector space, is the subject of Lie theory. The
vector space equipped with such an action is called a
‘representation’.

The representations of 𝔰𝔰𝔰𝔰𝔰2𝔰 ℂ) on finite-
dimensional vector spaces are startling in their sim-
plicity. Though there are infinitely many such repre-
sentations, each one can be decomposed into simpler
pieces, called the ‘irreducible representations’, or ir-
reps, and each irrep is uniquely determined by the
choice of a single natural number. Curiously, we will
see that it is useful to describe the irrep associated to
the natural number 𝑚𝑚 with a diagram consisting of

2𝑚𝑚 𝑚 𝑚 dots arranged in a line, labeled from 𝑐𝑚𝑚 to 𝑚𝑚
in increments of 2:

⋯
𝑐𝑚𝑚 𝑐𝑚𝑚 𝑚 2 𝑚𝑚 𝑐 2 𝑚𝑚

This picture is our first hint that irreps are surprisingly
discrete, being determined by points in a lattice, here
just the integers. They also exhibit some hidden sym-
metry, which we see here by the symmetry between
𝑚𝑚 and 𝑐𝑚𝑚.

Passing to the next case of 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), the special lin-
ear Lie algebra on ℂ𝔰, reveals even more structure.
Again, the irreducible representations, or irreps, are
determined by points in a lattice with some symme-
try:

Now, however, the lattice is two-dimensional, and
the symmetry group is bigger, generated by all the
reflection symmetries manifest in the picture. The
circle around the center dot tells us to count it with
multiplicity two.
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This representation theory is pure linear algebra,
but it magically appears in particle physics, where it
is part of the ‘eightfold way’. In the middle of the
20th century, experiments where physicists collided
particles together at high energies produced scores of
a new particles beyond the familiar electron, proton
and neutron that constitute atoms. Searching for or-
der in the chaos, physicists discovered that these new
particles could be organized into representations of
𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ):

𝜋𝜋0

𝜂𝜂
𝜋𝜋+

𝐾𝐾+𝐾𝐾0

𝜋𝜋−

𝐾𝐾− 𝐾𝐾
0
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2 Lie algebras

To get started, let us give some precise definitions of
the objects we want to study, namely Lie algebras and
their representations. Although we could work over
any field, we choose to work over the complex num-
bers, ℂ. Thanks to ℂ being algebraically closed, every
matrix has an eigenvalue. Since computing eigenval-
ues and diagonalizing matrices will play an essential
role in our analysis, it pays to work over ℂ.

Definition 1.— A Lie algebra 𝔤𝔤 is a complex vector
space equipped with a bilinear operation called the
Lie bracket

[−𝔰 −]∶ 𝔤𝔤 𝔤 𝔤𝔤 𝔤 𝔤𝔤𝔰

satisfying the following axioms:

• skew-symmetry: [𝑋𝑋𝔰 𝑋𝑋 ] 𝑋 −[𝑋𝑋 𝔰 𝑋𝑋] for all
𝑋𝑋𝔰 𝑋𝑋 𝑋 𝔤𝔤;

• the Jacobi identity: [𝑋𝑋𝔰 [𝑋𝑋 𝔰 𝑋𝑋]] 𝑋 [[𝑋𝑋𝔰 𝑋𝑋 ]𝔰 𝑋𝑋] +
[𝑋𝑋 𝔰 [𝑋𝑋𝔰 𝑋𝑋]], for all 𝑋𝑋𝔰 𝑋𝑋 𝔰 𝑋𝑋 𝑋 𝔤𝔤.

Example 1.— We have already met two examples of
our favorite Lie algebra in the Introduction, namely
the special linear Lie algebra of traceless 𝑛𝑛 𝑛 𝑛𝑛 com-
plex matrices:

𝔰𝔰𝔰𝔰𝔰𝑛𝑛𝔰 ℂ) 𝑋 {𝑋𝑋 𝑋 𝑋𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝔰ℂ) ∶ 𝑋r𝔰𝑋𝑋) 𝑋 0} 𝔰
where the Lie bracket is given by the commutator:

[𝑋𝑋𝔰 𝑋𝑋 ] 𝑋 𝑋𝑋𝑋𝑋 − 𝑋𝑋 𝑋𝑋𝔰 𝑋𝑋𝔰 𝑋𝑋 𝑋 𝔰𝔰𝔰𝔰𝔰𝑛𝑛𝔰 ℂ).
It is a worthwhile if somewhat tedious exercise to
check that the Jacobi identity holds.

Example 2.— Dropping the condition on the trace,
we have the general linear Lie algebra of all 𝑛𝑛 𝑛 𝑛𝑛
complex matrices:

𝔤𝔤𝔰𝔰𝔰𝑛𝑛𝔰 ℂ) 𝑋 𝑋𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝔰ℂ).
Again, the Lie bracket is given by the commutator.

Example 3.— More abstractly, for any complex vector
space 𝑉𝑉 , we have the general linear Lie algebra on 𝑽𝑽 ,
consisting of all linear maps:

𝔤𝔤𝔰𝔰𝔰𝑉𝑉 ) 𝑋 {𝑇𝑇 ∶ 𝑉𝑉 𝔤 𝑉𝑉 ∶ 𝑇𝑇 linear} .
Once again, the Lie bracket is given by the commu-
tator. Of course, fixing a basis of 𝑉𝑉 gives us an iso-
morphism of Lie algebras, 𝔤𝔤𝔰𝔰𝔰𝑉𝑉 ) 𝔤 𝔤𝔤𝔰𝔰𝔰𝑛𝑛𝔰 ℂ), where
𝑛𝑛 𝑋 𝑛𝑛𝑛𝔰𝑉𝑉 ).

Definition 2.— Let 𝔤𝔤 be a Lie algebra. A repre-
sentation of 𝔤𝔤 is a pair 𝔰𝑉𝑉 𝔰 𝑉𝑉) where 𝑉𝑉 is a finite-
dimensional complex vector space, and 𝑉𝑉∶ 𝔤𝔤 𝔤
𝔤𝔤𝔰𝔰𝔰𝑉𝑉 ) is a homomorphism of Lie algebras. Explicitly,
this means that 𝑉𝑉 is a linear map such that

𝑉𝑉 𝔰[𝑋𝑋𝔰 𝑋𝑋 ]) 𝑋 𝑉𝑉𝔰𝑋𝑋)𝑉𝑉𝔰𝑋𝑋 )−𝑉𝑉𝔰𝑋𝑋 )𝑉𝑉𝔰𝑋𝑋)𝔰 for all 𝑋𝑋𝔰 𝑋𝑋 𝑋 𝔤𝔤𝔰
since the bracket on 𝔤𝔤𝔰𝔰𝔰𝑉𝑉 ) is the commutator.

Example 4.— Every Lie algebra 𝔤𝔤 has a god-given rep-
resentation on itself, called the adjoint representa-
tion, 𝑋𝑛∶ 𝔤𝔤 𝔤 𝔤𝔤𝔰𝔰𝔰𝔤𝔤). An element 𝑋𝑋 𝑋 𝔤𝔤 acts on
𝑋𝑋 𝑋 𝔤𝔤 by bracketing: 𝑋𝑛𝔰𝑋𝑋)𝑋𝑋 𝑋 [𝑋𝑋𝔰 𝑋𝑋 ].

It is a useful exercise to check that this is a repre-
sentation. The Jacobi identity will play a key role.

3 The representations of 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ)

We will study the representations of the complex spe-
cial linear Lie algebra, 𝔰𝔰𝔰𝔰𝔰𝑛𝑛𝔰 ℂ). In fact, we are mainly
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interested in 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), because of the role it plays in
particle physics. But to get started, we need to study
𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ).

Definition 3.— A Cartan subalgebra 𝔥𝔥 𝔥 𝔰𝔰𝔰𝔰𝔰𝔥𝔥𝔰 ℂ) is
a maximal abelian subalgebra such that the adjoint
action ad𝔰𝐻𝐻) on 𝔰𝔰𝔰𝔰𝔰𝔥𝔥𝔰 ℂ) can be diagonalized for all
𝐻𝐻 𝐻 𝔥𝔥.

Example 5.— Let 𝔥𝔥 be the diagonal matrices in
𝔰𝔰𝔰𝔰𝔰𝔥𝔥𝔰 ℂ). This subalgebra is:

• abelian, because diagonal matrices commute;

• maximal, because additional elements would
have off-diagonal entries and no longer com-
mute;

• ad𝔰𝐻𝐻) is diagonalizable for all 𝐻𝐻 𝐻 𝔥𝔥.

Let us check this last claim: let 𝐻𝐻 be the diagonal
matrix with entries 𝑎𝑎1𝔰 … 𝔰 𝑎𝑎𝔥𝔥 on the diagonal, let 𝐸𝐸𝑖𝑖𝑖𝑖
be the elementary matrix with 1 in the 𝑖𝑖𝑖𝑖th entry and
zeroes elsewhere. A quick computation shows that
[𝐻𝐻𝔰 𝐸𝐸𝑖𝑖𝑖𝑖] = 𝔰𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖)𝐸𝐸𝑖𝑖𝑖𝑖 . For 𝑖𝑖 𝑖 𝑖𝑖 (why?), this shows
that 𝐸𝐸𝑖𝑖𝑖𝑖 is an eigenvector of ad𝔰𝐻𝐻) with eigenvalue
𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖 , and we can thus write down a basis of eigen-
vectors for 𝔰𝔰𝔰𝔰𝔰𝔥𝔥𝔰 ℂ). This diagonalizes ad𝔰𝐻𝐻).

For 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), there’s a one-dimensional Cartan
subalgebra 𝔥𝔥 = 𝔥𝔥a𝔥𝔰𝐻𝐻), spanned by the element

𝐻𝐻 = (
1 0
0 −1) .

This matrix is part of the standard basis for 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ):

𝐸𝐸 = (
0 1
0 0) 𝔰 𝐻𝐻 = (

1 0
0 −1) 𝔰 𝐹𝐹 = (

0 0
1 0) .

These matrices satisfy the important relations:

[𝐻𝐻𝔰 𝐸𝐸] = 𝔰𝐸𝐸𝔰 [𝐸𝐸𝔰 𝐹𝐹 ] = 𝐻𝐻𝔰 [𝐻𝐻𝔰 𝐹𝐹 ] = −𝔰𝐹𝐹 .

Definition 4.— Let 𝔰𝑉𝑉 𝔰 𝑉𝑉) be a representation of 𝔤𝔤.
A subspace 𝑊𝑊 𝔥 𝑉𝑉 is called invariant under 𝔤𝔤 if
𝑉𝑉𝔰𝜌𝜌)𝜌𝜌 𝐻 𝑊𝑊 for all 𝜌𝜌 𝐻 𝔤𝔤 and 𝜌𝜌 𝐻 𝑊𝑊 . A repre-
sentation 𝑉𝑉 of 𝔤𝔤 is irreducible if the only invariant
subspaces of 𝑉𝑉 are 0 and 𝑉𝑉 . A representation 𝑉𝑉 is
called completely reducible if it is the direct sum of
irreducible representations, i.e., 𝑉𝑉 = ⨁𝜆𝜆 𝑉𝑉𝜆𝜆, where
each 𝑉𝑉𝜆𝜆 is irreducible.

To help us analyze the representations of 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), we
note the following without proof:

Theorem 5.— All complex, finite-dimensional repre-
sentations of 𝔰𝔰𝔰𝔰𝔰𝔥𝔥𝔰 ℂ) are completely reducible.

This theorem says we can focus on the irreducible
representations, or irreps, since all others arise by tak-
ing direct sums. From now on, we assume 𝑉𝑉 is an ir-
reducible, finite-dimensional representation over ℂ.
The key result for understanding 𝑉𝑉 is a bit deep, and
we give it without proof:

Theorem 6.— Given any complex finite-dimensional
representation 𝔰𝑉𝑉 𝔰 𝑉𝑉) of 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), 𝑉𝑉𝔰𝐻𝐻) is diagonaliz-
able.

This should be plausible, since 𝐻𝐻 itself is a diagonal
matrix, and we already know that ad𝔰𝐻𝐻) is diagonal-
izable. The remarkable thing is that 𝑉𝑉𝔰𝐻𝐻) is diago-
nalizable for any 𝑉𝑉. We use this diagonalizability as
follows: decompose the irrep 𝑉𝑉 into a direct sum of
eigenspaces

𝑉𝑉 = ⨁
𝜆𝜆

𝑉𝑉𝜆𝜆𝔰

where the direct sum is over all complex numbers 𝜆𝜆
which are eigenvalues of 𝑉𝑉𝔰𝐻𝐻), and each summand 𝑉𝑉𝜆𝜆
is an eigenspace for 𝜆𝜆. In other words, for all 𝑣𝑣 𝐻 𝑉𝑉𝜆𝜆,
we have 𝐻𝐻𝑣𝑣 = 𝜆𝜆𝑣𝑣. (Really, 𝑉𝑉𝔰𝐻𝐻)𝑣𝑣 = 𝜆𝜆𝑣𝑣, but it is
standard to suppress 𝑉𝑉.)

In Lie theory, the eigenvalues occurring here have
a special name: they are called the weights of 𝑉𝑉 . The
eigenspaces 𝑉𝑉𝜆𝜆 are called weight spaces, and an eigen-
vector 𝑣𝑣 𝐻 𝑉𝑉𝜆𝜆 is called a weight vector. Given the de-
composition of 𝑉𝑉 into weight spaces, we thus know
how 𝐻𝐻 acts—it acts diagonally, by multiplication by
the corresponding weight. Next, we would like to
determine how the other basis elements 𝐸𝐸 and 𝐹𝐹 act:

Proposition 7.— If 𝑣𝑣 𝐻 𝑉𝑉𝜆𝜆, then 𝐸𝐸𝑣𝑣 𝐻 𝑉𝑉𝜆𝜆𝜆𝔰 and
𝐹𝐹 𝑣𝑣 𝐻 𝑉𝑉𝜆𝜆−𝔰. (Really, 𝑉𝑉𝔰𝐸𝐸)𝑣𝑣 and 𝑉𝑉𝔰𝐹𝐹 )𝑣𝑣, but we’re con-
tinuing to suppress 𝑉𝑉.)

The proof of this proposition is so important, that we
call it the fundamental calculation: fix 𝑣𝑣 𝐻 𝑉𝑉𝜆𝜆, and
compute

𝐻𝐻𝐸𝐸𝑣𝑣 = 𝐸𝐸𝐻𝐻𝑣𝑣 𝜆 [𝐻𝐻𝔰 𝐸𝐸]𝑣𝑣 = 𝜆𝜆𝐸𝐸𝑣𝑣 𝜆 𝔰𝐸𝐸𝑣𝑣 = 𝔰𝜆𝜆 𝜆 𝔰)𝐸𝐸𝑣𝑣.
Similarly, 𝐻𝐻𝐹𝐹 𝑣𝑣 = 𝔰𝜆𝜆−𝔰)𝐹𝐹 𝑣𝑣. This is what we wanted
to check.

So, we have arrived at the following picture of 𝑉𝑉 :

𝑉𝑉 = 𝑉 𝑉 𝑉𝑉𝜆𝜆−𝔰 𝑉 𝑉𝑉𝜆𝜆 𝑉 𝑉𝑉𝜆𝜆𝜆𝔰 𝑉 𝑉
where 𝐻𝐻 multiplies by the weight, 𝐸𝐸 raises the
weight, and 𝐹𝐹 lowers the weight. We do not know
that all the weights of 𝑉𝑉 lie in this sequence—we will
see that soon!—but because 𝑉𝑉 is finite-dimensional,
we know this sequence cannot go on forever, so there
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must be a largest weight:

𝑉𝑉 𝑉 𝑉 𝑉 𝑉𝑉𝜆𝜆𝜆𝜆 𝑉 𝑉𝑉𝜆𝜆 𝑉 𝑉𝑉𝜆𝜆𝜆𝜆 𝑉 𝑉 𝑉 𝑉𝑉𝜆𝜆max
.

The weight 𝜆𝜆max is called the highest weight, and a
nonzero vector 𝑣𝑣 𝑣 𝑉𝑉𝜆𝜆max

is called a highest weight
vector. A highest weight vector has the property that
𝐸𝐸𝑣𝑣 𝑉 𝐸.

Similarly, there must be a lowest weight:

𝑉𝑉 𝑉 𝑉𝑉𝜆𝜆min
𝑉 𝑉 𝑉 𝑉𝑉𝜆𝜆𝜆𝜆 𝑉 𝑉𝑉𝜆𝜆 𝑉 𝑉𝑉𝜆𝜆𝜆𝜆 𝑉 𝑉 𝑉 𝑉𝑉𝜆𝜆max

,
For any 𝑣𝑣 𝑣 𝑉𝑉𝜆𝜆min

, we must have 𝐹𝐹 𝑣𝑣 𝑉 𝐸.
Now, if we pick a highest weight vector 𝑣𝑣 𝑣 𝑉𝑉𝜆𝜆max

and keep lowering it with 𝐹𝐹 , we will eventually get a
vector in 𝑉𝑉𝜆𝜆min

. Let us suppose this happens in 𝑚𝑚 steps.
That is, 𝑚𝑚 is the natural number such that 𝐹𝐹 𝑚𝑚𝑣𝑣 𝑣 𝐸,
but 𝐹𝐹 𝑚𝑚𝜆𝑚𝑣𝑣 𝑉 𝐸.

Proposition 8.— The vectors {𝑣𝑣, 𝐹𝐹 𝑣𝑣, 𝑣 , 𝐹𝐹 𝑚𝑚𝑣𝑣𝑣 form
a basis of 𝑉𝑉 .

Proof.— These vectors are linearly independent be-
cause they are eigenvectors (weight vectors) with dis-
tinct eigenvalues (weights). To show they span 𝑉𝑉 , let
𝑊𝑊 𝑉 𝑊𝑊an𝑊𝑣𝑣, 𝐹𝐹 𝑣𝑣, 𝑣 , 𝐹𝐹 𝑚𝑚𝑣𝑣𝑣. The nonzero subspace
𝑊𝑊 is preserved by the action of 𝐸𝐸, 𝐹𝐹 , and 𝐻𝐻 . Hence,
𝑊𝑊 is invariant and we conclude 𝑊𝑊 𝑉 𝑉𝑉 , because 𝑉𝑉
is irreducible. ∎

In this basis, we know exactly how 𝐻𝐻 and 𝐹𝐹 act:

𝐻𝐻𝐹𝐹 𝑘𝑘𝑣𝑣 𝑉 𝑊𝜆𝜆max 𝜆 𝜆𝑘𝑘𝑣𝐹𝐹 𝑘𝑘𝑣𝑣, 𝐹𝐹 𝐹𝐹 𝑘𝑘𝑣𝑣 𝑉 𝐹𝐹 𝑘𝑘𝜆𝑚𝑣𝑣,
but it is less clear how 𝐸𝐸 acts. Let us derive a formula
for the action of 𝐸𝐸, inductively. First of all, we know
𝐸𝐸𝑣𝑣 𝑉 𝐸. For 𝐸𝐸𝐹𝐹 𝑣𝑣, we compute:

𝐸𝐸𝐹𝐹 𝑣𝑣 𝑉 𝐹𝐹 𝐸𝐸𝑣𝑣 𝜆 𝐸𝐸𝐸, 𝐹𝐹 𝐸𝑣𝑣 𝑉 𝐸 𝜆 𝐻𝐻𝑣𝑣 𝑉 𝜆𝜆max𝑣𝑣.
And for 𝐸𝐸𝐹𝐹 𝜆𝑣𝑣, we have:

𝐸𝐸𝐹𝐹 𝜆𝑣𝑣 𝑉 𝐹𝐹 𝐸𝐸𝐹𝐹 𝑣𝑣 𝜆 𝐸𝐸𝐸, 𝐹𝐹 𝐸𝐹𝐹 𝑣𝑣 𝑉 𝜆𝜆max𝐹𝐹 𝑣𝑣 𝜆 𝐻𝐻𝐹𝐹 𝑣𝑣 𝑉
𝑉 𝑊𝜆𝜆𝜆max 𝜆 𝜆𝑣𝐹𝐹 𝑣𝑣.

Continuing in this way, we can discover the pattern:

𝐸𝐸𝐹𝐹 𝑘𝑘𝜆𝑚𝑣𝑣 𝑉 𝑊𝜆𝜆max 𝜆 𝑊𝜆𝜆max 𝜆 𝜆𝑣 𝜆 𝑉 𝜆 𝑊𝜆𝜆max 𝜆 𝜆𝑘𝑘𝑣𝑣𝐹𝐹 𝑘𝑘𝑣𝑣,
which simplifies to 𝐸𝐸𝐹𝐹 𝑘𝑘𝜆𝑚𝑣𝑣 𝑉 𝑊𝑘𝑘 𝜆 𝑚𝑣𝑊𝜆𝜆max 𝜆 𝑘𝑘𝑣𝐹𝐹 𝑘𝑘𝑣𝑣.

We learn something magical from this formula
when we set 𝑘𝑘 𝑉 𝑚𝑚:

𝐸𝐸𝐹𝐹 𝑚𝑚𝜆𝑚𝑣𝑣 𝑉 𝐸 𝑉 𝑊𝑚𝑚 𝜆 𝑚𝑣𝑊𝜆𝜆max 𝜆 𝑚𝑚𝑣𝐹𝐹 𝑚𝑚𝑣𝑣.
It vanishes because 𝐹𝐹 𝑚𝑚𝑣𝑣 is in the lowest weight space,
so 𝐹𝐹 𝑚𝑚𝜆𝑚𝑣𝑣 𝑉 𝐸. But on the right hand side, the 𝑚𝑚𝜆𝑚 is
nonzero, and the vector 𝐹𝐹 𝑚𝑚𝑣𝑣 is nonzero. So the only
way this can vanish is if

𝜆𝜆max 𝑉 𝑚𝑚.

Look! The highest weight 𝜆𝜆max is a natural number!
Specifically, it is the number of times we need to ap-
ply 𝐹𝐹 to go from the highest weight vector 𝑣𝑣 to the
lowest. We have nearly proved:

Theorem 9.— For each natural number 𝑚𝑚 (including
zero), there is a unique finite-dimensional irreducible
representation 𝑊𝑉𝑉 𝑊𝑚𝑚𝑣, 𝜌𝜌𝑊𝑚𝑚𝑣𝑣 of 𝔰𝔰𝔰𝔰𝑊𝜆, ℂ𝑣 with highest
weight 𝑚𝑚. All finite-dimensional irreps of 𝔰𝔰𝔰𝔰𝑊𝜆, ℂ𝑣
have this form.

To recap, if 𝑉𝑉 is an irrep with highest weight 𝑚𝑚,
𝑉𝑉 decomposes into the weight spaces 𝑉𝑉 𝑉 𝑉𝑉𝜆𝑚𝑚 𝑉
𝑉𝑉𝜆𝑚𝑚𝜆𝜆 𝑉 𝑉 𝑉 𝑉𝑉𝑚𝑚𝜆𝜆 𝑉 𝑉𝑉𝑚𝑚. Each weight space is one-
dimensional, spanned by one of the basis vectors in
{𝑣𝑣, 𝐹𝐹 𝑣𝑣, 𝑣 , 𝐹𝐹 𝑚𝑚𝑣𝑣𝑣. We summarize all of these facts in
the weight diagram of 𝑉𝑉 :

𝑉
𝜆𝑚𝑚 𝜆𝑚𝑚 𝜆 𝜆 𝑚𝑚 𝜆 𝜆 𝑚𝑚

Each dot represents a weight space. In more general
weight diagrams such as those in the next section, the
dots can have multiplicities. Here, they all have mul-
tiplicity one, telling us that each weight space is one-
dimensional.

4 The representations of 𝔰𝔰𝔰𝔰𝑊𝔰, ℂ𝑣

The representation theory of 𝔰𝔰𝔰𝔰𝑊𝔰, ℂ𝑣 begins the same
way: we choose a Cartan subalgebra 𝔥𝔥 𝔥 𝔰𝔰𝔰𝔰𝑊𝔰, ℂ𝑣. As
before, we take 𝔥𝔥 to consist of traceless diagonal ma-
trices. Thus 𝔥𝔥 𝑉 𝑊𝑊an𝑊𝐻𝐻𝑚, 𝐻𝐻𝜆𝑣 is two-dimensional,
and we pick:

𝐻𝐻𝑚 𝑉
⎛
⎜
⎜
⎝

𝑚 𝐸 𝐸
𝐸 𝜆𝑚 𝐸
𝐸 𝐸 𝐸

⎞
⎟
⎟
⎠

, 𝐻𝐻𝜆 𝑉
⎛
⎜
⎜
⎝

𝐸 𝐸 𝐸
𝐸 𝑚 𝐸
𝐸 𝐸 𝜆𝑚

⎞
⎟
⎟
⎠

.

As before, the Cartan subalgebra 𝔥𝔥 is maximal abelian,
and ad𝑊𝐻𝐻𝑣 is diagonalizable for any 𝐻𝐻 𝑣 𝔥𝔥, thanks to
the formula 𝐸𝐻𝐻, 𝐸𝐸𝑖𝑖𝑖𝑖𝐸 𝑉 𝑊𝑎𝑎𝑖𝑖 𝜆 𝑎𝑎𝑖𝑖𝑣𝐸𝐸𝑖𝑖𝑖𝑖 , where

𝐻𝐻 𝑉
⎛
⎜
⎜
⎝

𝑎𝑎𝑚 𝐸 𝐸
𝐸 𝑎𝑎𝜆 𝐸
𝐸 𝐸 𝑎𝑎𝔰

⎞
⎟
⎟
⎠

,

and 𝐸𝐸𝑖𝑖𝑖𝑖 is the matrix with 1 in the 𝑖𝑖𝑖𝑖th entry, and ze-
roes elsewhere.

To analyze representations, we need a version of
Theorem 6 for 𝔰𝔰𝔰𝔰𝑊𝔰𝔰, ℂ𝑣:
Theorem 10.— For any complex finite-dimensional
representation 𝑊𝑉𝑉 , 𝜌𝜌𝑣 of 𝔰𝔰𝔰𝔰𝑊𝔰𝔰, ℂ𝑣, and any choice of
Cartan subalgebra 𝔥𝔥 𝔥 𝔰𝔰𝔰𝔰𝑊𝔰𝔰, ℂ𝑣, 𝜌𝜌𝑊𝐻𝐻𝑣 is diagonaliz-
able for all 𝐻𝐻 𝑣 𝔥𝔥.
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In analogy with 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), we use this to write any rep-
resentation as a direct sum over weights:

𝑉𝑉 𝑉 ⨁
𝜆𝜆

𝑉𝑉𝜆𝜆.

For 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), there was only one 𝐻𝐻 , and a weight
was simply an eigenvalue of 𝐻𝐻 . But now 𝔥𝔥 is two-
dimensional, and there are many 𝐻𝐻 𝐻 𝔥𝔥. In this in-
stance, what is a weight?

Definition 11.— Given a representation 𝔰𝑉𝑉 𝔰 𝑉𝑉), a
nonzero vector 𝑣𝑣 𝐻 𝑉𝑉 is a weight vector if 𝑉𝑉𝔰𝐻𝐻)𝑣𝑣 𝑉
𝜆𝜆𝔰𝐻𝐻)𝑣𝑣 for all 𝐻𝐻 𝐻 𝔥𝔥 and some linear map 𝜆𝜆𝜆 𝔥𝔥 𝜆 ℂ.
Here, 𝜆𝜆 is called a weight of the representation 𝑉𝑉 .

Weights are a generalization of eigenvalues, and
weight vectors are a generalization of eigenvectors
that allow us to diagonalize all the 𝐻𝐻 𝐻 𝔥𝔥 at once.
And we really can diagonalize all the 𝐻𝐻 𝐻 𝔥𝔥 simulta-
neously, because they commute!

To get a feel for the weights of a representation of
𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ), let us consider an example:

Example 6.— We already know the weight vectors—
they are the elementary matrices 𝐸𝐸𝑖𝑖𝑖𝑖 , at least when
𝑖𝑖 𝑖 𝑖𝑖. This is because of the formula:

ad𝔰𝐻𝐻)𝐸𝐸𝑖𝑖𝑖𝑖 𝑉 𝔰𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖)𝐸𝐸𝑖𝑖𝑖𝑖.
(For 𝑖𝑖 𝑉 𝑖𝑖, 𝐸𝐸𝑖𝑖𝑖𝑖 has trace 1 and is not in 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ).)

So let us define the weight 𝛼𝛼𝑖𝑖𝑖𝑖 𝜆 𝔥𝔥 𝜆 ℂ by the for-
mula 𝛼𝛼𝑖𝑖𝑖𝑖𝔰𝐻𝐻) 𝑉 𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖 , where 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑖𝑖 are the 𝑖𝑖th
and 𝑖𝑖th entries of the diagonal matrix 𝐻𝐻 . Then we
have ad𝔰𝐻𝐻)𝐸𝐸𝑖𝑖𝑖𝑖 𝑉 𝛼𝛼𝑖𝑖𝑖𝑖𝔰𝐻𝐻)𝐸𝐸𝑖𝑖𝑖𝑖 .

To get a feel for the weights of the adjoint repre-
sentation, note that we have the relations:

𝛼𝛼𝑖𝑖𝑖𝑖 𝑉 −𝛼𝛼𝑖𝑖𝑖𝑖𝔰 𝛼𝛼𝑖𝑖𝑖𝑖 𝑉 0𝔰 𝛼𝛼𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑗𝑗 𝑉 𝛼𝛼𝑖𝑖𝑗𝑗.
These imply that all the weights of the adjoint can
be expressed as a linear combination of two such
weights. Let us pick 𝛼𝛼 𝑉 𝛼𝛼1𝔰 and 𝛽𝛽 𝑉 𝛼𝛼𝔰𝔰 as a ba-
sis. Then the other nonzero weights are 𝛼𝛼1𝔰 𝑉 𝛼𝛼 + 𝛽𝛽,
𝛼𝛼𝔰1 𝑉 −𝛼𝛼, 𝛼𝛼𝔰𝔰 𝑉 −𝛽𝛽, and 𝛼𝛼𝔰1 𝑉 −𝛼𝛼 − 𝛽𝛽 . To really get
a picture, we plot these weights:

𝛼𝛼

𝛼𝛼 + 𝛽𝛽
𝛽𝛽

−𝛼𝛼

−𝛼𝛼 − 𝛽𝛽
−𝛽𝛽

In the plot, we draw one dot for each weight space
in the adjoint representation, except in the middle:
the weight space of weight zero is two-dimensional—
it is 𝔥𝔥!—and we depict this by adding the extra circle
around the zero weight. We have six dots around the
outside and two in the middle. The total is eight, as
it must be: dim𝔰𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ)) 𝑉 8.

This picture is usually drawn with more symme-
try, as a regular hexagon with two dots in the middle:

𝛼𝛼

𝛼𝛼 + 𝛽𝛽𝛽𝛽

−𝛼𝛼

−𝛼𝛼 − 𝛽𝛽 −𝛽𝛽

This is the weight diagram of the adjoint representa-
tion.

Remarkably, all the irreps of 𝔰𝔰𝔰𝔰𝔰𝔰𝔰 ℂ) have similar
weight diagrams. For instance, here is the weight dia-
gram of a 10-dimensional irrep:
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𝛼𝛼

𝛽𝛽

We have indicated 𝛼𝛼 and 𝛽𝛽 on this diagram to show
how it compares to the adjoint.

5 The eightfold way

In the 1940s and 1950s, physicists built particle accel-
erators and began to collide protons together at high
energies. Protons are strongly interacting particles, in
the sense that they feel the strong nuclear force that
binds them together in the atomic nucleus. Collid-
ing protons produced many new, hitherto unknown
particles, likewise strongly interacting. In physics,
strongly interacting particles are called hadrons—the
Greek root hadros means strong.

No one expected such a zoo of new particles, and
so a search was on for some kind of order, some
system to classify the hadrons. Many properties of
the particles were measured. Each particle 𝑋𝑋 had an
electric charge 𝑞𝑞𝑞𝑋𝑋𝑞, which is an integer in suitable
units. But several other kinds of “charge” were dis-
covered. It turned out each particle had a property,
called strangeness 𝑠𝑠𝑞𝑋𝑋𝑞, which was also an integer.

When you plot the charge and the strangeness of
hadrons on a plane, certain patterns emerge. For in-
stance, here is the spin-0 meson octet (mesons are a
type of hadron):

𝜋𝜋0

𝜂𝜂
𝜋𝜋+

𝐾𝐾+𝐾𝐾0

𝜋𝜋−

𝐾𝐾− 𝐾𝐾
0

𝑞𝑞 𝑞 −𝑞 𝑞𝑞 𝑞 0 𝑞𝑞 𝑞 𝑞

𝑠𝑠 𝑞 −𝑞

𝑠𝑠 𝑞 0

𝑠𝑠 𝑞 𝑞

And here is the spin-1/2 baryon octet. (Baryons are
another type of hadron, which includes the proton
and neutron. In fact, the proton and neutron are the
particles 𝑛𝑛 and 𝑝𝑝 at the top):

Σ0

Λ
Σ+

𝑝𝑝𝑛𝑛

Σ−

Ξ− Ξ0

𝑞𝑞 𝑞 −𝑞 𝑞𝑞 𝑞 0 𝑞𝑞 𝑞 𝑞

𝑠𝑠 𝑞 𝑠

𝑠𝑠 𝑞 𝑞

𝑠𝑠 𝑞 0

As you can clearly see, both of these are pictures
of the adjoint representation of 𝔰𝔰𝔰𝔰𝑞𝔰𝔰 ℂ𝑞! This led the
American physicist Murray Gell-Mann and the Israeli
physicist Yuval Ne’emann to propose independently
the eightfold way hypothesis. The name comes from
appearance of eight particles in the octets, and was
Gell-Mann’s allusion to the eightfold path to enlight-
enment in Buddhism. Here is the hypothesis:

Hypothesis (The eightfold way).— Hadrons are
classified by representations of 𝔰𝔰𝔰𝔰𝑞𝔰𝔰 ℂ𝑞. ∎

In its original form, the eightfold way used the Lie
group SU𝑞𝔰𝑞 in place of the Lie algebra 𝔰𝔰𝔰𝔰𝑞𝔰𝔰 ℂ𝑞. It is a
marvelous result of Lie theory that these objects have
equivalent representation theory, so we have substi-
tuted 𝔰𝔰𝔰𝔰𝑞𝔰𝔰 ℂ𝑞 to ease exposition.

The vindication of the eightfold way came with
the prediction of new particles. This followed not
from the octets above, but from the spin-3/2 baryon
decuplet:
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Σ∗0 Σ∗+

Δ+Δ0

Σ∗−

Ξ∗− Ξ∗0

Δ++Δ−

Ω−

𝑞𝑞 𝑞 −𝑞 𝑞𝑞 𝑞 0 𝑞𝑞 𝑞 𝑞 𝑞𝑞 𝑞 𝑞

𝑠𝑠 𝑞 𝑠

𝑠𝑠 𝑞 𝑞

𝑠𝑠 𝑞 𝑞

𝑠𝑠 𝑞 0

The particle at the bottom, the Ω−, was previously un-
known. Gell-Mann predicted it in 1962 on the basis
of the eightfold way, and it was discovered in 1964.

6 Further reading

The best reference for the Lie theory we have dis-
cussed is the book by Fulton and Harris [1], to which
our treatment of 𝔰𝔰𝔰𝔰𝔰𝑞𝔰 ℂ) owes everything. Of course,
Lie algebras are closely related to Lie groups, and a
good first introduction can be found in the book of

Hall [2]. For the eightfold way, a wonderful treatment
can be found in Sternberg [3], who frames the ques-
tion in terms of the representations of the Lie group
SU𝔰𝑠), rather than the Lie algebra 𝔰𝔰𝔰𝔰𝔰𝑠𝔰 ℂ) we used
here.
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