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1. notable eleMents and fIrst probleMs

A numerical semigroup is a subset of  (here  denotes 
the set of nonnegative integers) that is closed under ad-
dition, contains the zero element, and its complement 
in  is finite.
 If  is a nonempty subset of , we denote by  
the submonoid of  generated by , that is,

.

It is well known (see for instance [41, 45]) that  is a 
numerical semigroup if and only if .
 If  is a numerical semigroup and  for some 

 , then we say that  is a system of generators of , 
or that  generates . Moreover,  is a minimal system 
of generators of  if no proper subset of  generates  . 
In [45] it is shown that every numerical semigroup ad-
mits a unique minimal system of generators, and it has 
finitely many elements.
 Let  be a numerical semigroup and let 

 be its minimal system of generators. 
The integers  and  are known as the multiplicity and 
embedding dimension of , and we will refer to them by 
using  and , respectively. This notation might 
seem amazing, but it is not so if one takes into account 
that there exists a large list of manuscripts devoted to the 
study of analytically irreducible one-dimensional local 
domains via their value semigroups, which are numerical 
semigroups. The invariants we just introduced, together 
with others that will show up later in this work, have an 
interpretation in that context, and this is why they have 
been named in this way. Along this line, [3] is a good 
reference for the translation for the terminology used 
in the Theory of Numerical Semigroups and Algebraic 
Geometry.
 Frobenius (1849–1917) during his lectures proposed 
the problem of giving a formula for the greatest integer 

that is not representable as a linear combination, with 
nonnegative integer coefficients, of a fixed set of integers 
with greatest common divisor equal to 1. He also raised 
the question of determining how many positive integers 
do not admit such a representation. With our terminol-
ogy, the first problem is equivalent to that of finding a 
formula in terms of  the generators of a numerical semi-
group  of the greatest integer not belonging to  (recall 
that its complement in  is finite). This number is thus 
known in the literature as the Frobenius number of , and 
we will denote it by . The elements of  
are called gaps of  . Therefore the second problem con-
sists in determining the cardinality of , sometimes 
known as genus of  ([25]) or degree of singularity of  
([3]).
 In [60] Sylvester solves the just quoted problems 
of Frobenius for embedding dimension two. For semi-
groups with embedding dimension greater than or equal 
to three these problems remain open. The current state 
of the problem is quite well collected in [30].
 Let  be a numerical semigroup. Following the termi-
nology introduced in [39] an integer  is said to be a pseu-
do-Frobenius number of  if  and  . 
We will denote by  the set of  pseudo-Frobenius 
numbers of . The cardinality of  is called the type 
of (see [3]) and we will denote it by . It is proved 
in [18] that if , then , and if , 
then . It is also shown that if , then 

 can be arbitrarily large,  and that 
. This is the starting point 

of a new line of research that consists in trying to deter-
mine the type of a numerical semigroup, once other in-
variants like multiplicity, embedding dimension, genus 
or Frobenius number are fixed.
 Wilf in [66] conjectures that if  is a numerical sem-
igroup, then . Some fami-
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lies of numerical semigroups for which it is known that 
the conjecture is true are collected in [16]. Other such 
families can be seen in [23,59]. The general case remains 
open.
 Bras-Amorós computes in [5] the number of numeri-
cal semigroups with genus , and conjectures 
that the growth is similar to that of Fibonacci’s sequence. 
However it has not been proved yet that there are more 
semigroups of genus  than of genus . Several at-
tempts already appear in the literature. Kaplan [23] uses 
an approach that involves counting the semigroups by 
genus and multiplicity. He poses many related conjec-
tures which could be taken literally and be proposed here 
as problems. We suggest them to the reader. A different 
approach, dealing with the asymptoptical behavior of the 
sequence of the number of numerical semigroups by ge-
nus, has been followed by Zhao [69]. Some progress has 
been achieved by Zhai [68], but many questions remain 
open.

2. proportIonally Modular seMIgroups

Following the terminology introduced in [52], a propor-
tionally modular Diophantine inequality is an expression 
of the form , with ,  and  positive inte-
gers. The integers ,  and  are called the factor, the mod-
ulus and the proportion of the inequality, respectively. 
The set  of solutions of the above inequality is a 
numerical semigroup. We say that a numerical semigroup 
is proportionally modular if it is the set of solutions of 
some proportionally modular Diophantine inequality.
 Given a nonempty subset  of , we denote by 

 the submonoid of  generated by , whose 
definition is the same of that used in the previous sec-
tion. Clearly,  is a submonoid of . It is 
proved in [52] that if ,  and  are positive integers with 

, then . Since  
when , and the inequality  has the 
same integer solutions as , the 
condition  is not restrictive.
 As a consequence of the results proved in [52], we 
have that a numerical semigroup  is proportionally mod-
ular if and only if there exist two positive rational num-
bers  such that . This is also equivalent 
to the existence of an interval , with nonempty interior, 
of the form  (see [55]).
 By using the notation introduced in [54], a sequence 
of fractions  is said to be a Bé-
zout sequence if ,  are positive integers 
and  for all . The impor-
tance of the Bézout sequences in the study of propor-
tionally modular semigroups highlights in the follow-

ing result proved in [54]. If  is 
a Bézout sequence, then .
 A Bézout sequence  is prop-
er if  for all  with  . 
Clearly, every Bézout sequence can be reduced (by re-
moving some terms) to a proper Bézout sequence with 
the same ends as the original one. It is showed in [9], that 
if  are two reduced fractions, then there ex-
ists an unique proper Bézout sequence with ends  
and . Furthermore, in this work a procedure for ob-
taining this sequence is given.
 It is proved in [54] that if  
is a proper Bézout sequence, then there exists  
such that  (the sequence  
is convex). The following characterization is also proved 
there: a numerical semigroup is proportionally modular 
if and only if there exists a convex ordering if its mini-
mal generators  such that  for 
all  and  for all 

.
 A modular Diophantine inequality is a proportion-
ally modular Diophantine inequality with proportion 
equal to one. A numerical semigroup is said to be mod-
ular if it is the set of solutions of some modular Dio-
phantine inequality. Clearly, every modular numerical 
semigroup is proportionally modular, and this inclusion 
is strict as it is proved in [52]. A formula for  
in function of  and  is given in [53]. The problems of 
finding formulas for , ,  
and  remain open. It is not known if the men-
tioned conjecture of Wilf is true for modular semigroups 
neither.
 A semigroup of the form  is said to be 
ordinary. A numerical semigroup  is an open modu-
lar numerical semigroup if it is ordinary or of it is  the 
form  for some integers . 
Therefore these semigroups are proportionally modular. 
Moreover, it is proved in [55] that every proportionally 
modular numerical semigroup can be expressed as a fi-
nite intersection of open modular numerical semigroups. 
The formulas for the Frobenius number, the genus and 
the type of open modular semigroups are also obtained 
in the just quoted work. However the rest of the prob-
lems previously suggested for modular numerical semi-
groups remain still open.
 As we mentioned above, a characterization for pro-
portionally modular numerical semigroups in terms of 
its systems of minimal generators is given in [54]. The 
question of giving formulas for the Frobenius number, 
genus and type of a proportionally modular numerical 
semigroup in terms of its system of minimal generators 

remains unsolved too.
 Following the terminology in [57], a contracted 
modular Diophantine inequality is an expression of the 
form , where ,  and  are nonnegative 
integers and . Let us denote by  the set of in-
teger solutions of the last inequality. Then  
is a numerical semigroup. An algorithm that allows us 
to determine whether a semigroup is the set of solutions 
of a contracted modular Diophantine equation is given 
in [57]. A formula for the genus of  is also 
given there.
 A contracted proportionally modular Diophantine 
inequality is an expression of the form  , 
with , ,  and  nonnegative integers and . If 
we denote by  the set of solutions of such an 
inequality, then  is a numerical semigroup. 
It is not yet known an algorithm to determine whether a 
semigroup is of this form.
 The Stern-Brocot tree gives a recursive method for 
constructing all the reduced fractions , with  and  
positive integers (see [20]). For constructing this tree we 
start with the expressions  and . In each step of the 
process we insert between each two consecutive expres-
sions  and  its median . We ob-
tain in this way the sequences

The Stern-Brocot tree can now be obtained by connect-
ing each median with the fractions used for computing 
it and being in the previous level but not in the levels 
above it.
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It is proved in [9] that if  is the common predecessor 
of two fractions  in the Stern-Brocot tree, then 

 is the multiplicity of . It could be nice to 
obtain other constants of the semigroup by looking at 
this tree.

3. the quotIent of a nuMerIcal seMIgroup by 
a posItIve Integer

Let  be a numerical semigroup and  be a positive inte-
ger. Let us denote by

.

Clearly,  is a numerical semigroup, and we will call it 
the quotient of  by . According to this notation, we will 
call  one half of  and that  is a quarter of . These 
two cases will have an special importance in this section.
 It is proved in [56] that a numerical semigroup is 
proportionally modular if and only if it is the quotient 
of an embedding dimension two numerical semigroup 
by a positive integer. This result is improved in [32] 
by proving that a numerical semigroup is proportion-
ally modular if and only if it is of the form  
with  and  positive integers. We still do not have for-
mulas for , , , 

 and .
 The next step in this line of research would be study-
ing those numerical semigroups that are the quotient of 
a numerical semigroup with embedding dimension three 
by a positive integer. Unfortunately we do not have a 
procedure that allows us to distinguish such a semigroup 
from the rest. Moreover, we still do not know of any ex-
ample of semigroups that are not of this form.
 A numerical semigroup  is symmetric if  
implies . These semigroups have been wide-
ly studied. Their main motivation comes from a work 
by Kunz ([26]) from which it can be deduced that  a nu-
merical semigroup is symmetric if and only if its associ-
ated numerical semigroup ring is Gorenstein. Symmetric 
numerical semigroups always have odd Frobenius num-
ber, thus for numerical semigroups with even Frobenius 
number, the equivalent notion to symmetric semigroups 
is that of pseudo-symmetric numerical semigroups. We 
say that  is a pseudo-symmetric numerical semigroup 
if it has even Frobenius number and for all , we 
have either  or . The concept of ir-
reducible semigroup, introduced in [40], collects these 
two families of semigroups. A numerical semigroup is 
irreducible if it cannot be expressed as the intersection of 
two semigroups that contain it properly. It can be proved 
that a semigroup is irreducible if and only if it is either 
symmetric (with odd Frobenius number) or pseudo-
symmetric (with even Frobenius number).
 Intuition (and the tables of the number of numerical 
semigroups with a given genus or Frobenius number we 
have) tells us that the percentage of irreducible numerical 
semigroups is quite small. It is proved in [44] that eve-
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ry numerical semigroup is one half of an infinite num-
ber of symmetric numerical semigroups. The apparent 
parallelism between symmetric and pseudo-symmetric 
numerical semigroups fails as we can see in [37], where 
it is proved that a numerical semigroup is irreducible if 
and only it is one half of a pseudo-symmetric numeri-
cal semigroup. As a consequence we have that every nu-
merical semigroup  is a quarter of infinitely many pseu-
do-symmetric numerical semigroups. In [61], it is also 
shown that for every positive integer  and every numeri-
cal semigroup , there exist infinitely many symmetric 
numerical semigroups  such that , and if  , 
then there exist infinitely many pseudo-symmetric nu-
merical semigroups  with .
 From the definition, we deduce that a numerical sem-
igroup  is symmetric if and only if . 
Therefore these numerical semigroups verify Wilf’s con-
jecture previously mentioned. We raise the following 
question. If a numerical semigroup verifies Wilf’s con-
jecture, then does so its half?
 It can easily be seen that every numerical semigroup 
can be expressed as a finite intersection of irreducible 
numerical semigroups. A procedure for obtaining such 
a decomposition is given in [50]. Furthermore it is also 
explained how to obtain a decomposition with the least 
possible number of irreducibles. We still do not know 
how many numerical semigroups appear in these mini-
mal decompositions, moreover, we wonder if there ex-
ists a positive integer  such that every numerical semi-
group can be expressed as an intersection of at most  
irreducible numerical semigroups.
 In [62] Toms introduces a class of numerical semi-
groups that are the positive cones of the  groups of cer-
tain -algebras. Given a numerical semigroup we say, in-
spired in this work, that it admits a Toms decomposition if 
and only if there exist positive integers  ,  
and  such that  
for all  and .
 As , we have that  
if a numerical semigroup admits a Toms decomposition, 
then  is a finite intersection of proportionally modular 
numerical semigroups. It is proved in [46] that the re-
ciprocal is also true. Therefore, a numerical semigroup 
admits a Toms decomposition if and only if it is an inter-
section of finitely many proportionally modular numer-
ical semigroups. These kind of semigroups are studied 
in [14], where an algorithm for distinguishing whether a 
numerical semigroup is an intersection of finitely many 
proportionally modular numerical semigroups  is given. 
Furthermore, in the affirmative case it gives us a mini-
mal decomposition, and in the negative case it gives us 

the least numerical semigroup which is intersection of 
proportionally modular semigroups and contains the 
original numerical semigroup (its proportionally modu-
lar closure).
 It is conjectured in [57] that every contracted modu-
lar numerical semigroup admits a Toms decomposition.
 Note that the numerical semigroups that admit a 
Toms decomposition are those that are the set of solu-
tions of a system of proportionally modular Diophan-
tine inequalities. It is proved in [32] that two systems 
of inequalities are always equivalent to another  system 
with all the inequalities having the same modulus, which 
moreover can be chosen to be prime. Now we raise the 
following question: is every system of proportionally 
modular Diophantine inequalities equivalent to a system 
with all proportions being equal to one?, or equivalently, 
if a numerical semigroup admits a Tom decomposition, 
can it be expressed as an intersection of modular numeri-
cal semigroups?
 Following the terminology introduced in [51], a gap 

 in a numerical semigroup  is said to be fundamental if 
 (and therefore  for every integer with 

). Let us denote by  the set of all fundamen-
tal gaps of . If , then  will denote the union 
of all positive divisors of the elements of . It can easily 
be shown that . Therefore, a way to 
represent a semigroup is by giving its fundamental gaps. 
This representation is specially useful when studying the 
quotient of a semigroup  by a positive integer , since 

.
 The cardinality of the set of fundamental gaps of a 
semigroup is an invariant of the semigroup. We can there-
fore open a new line of research by studying numerical 
semigroups attending to their number of fundamental 
gaps. It would be also interesting to find simple suffi-
cient conditions that allow us to decide when a subset 

 of  is the set of fundamental gaps of some numeri-
cal semigroup.
 Let  be a numerical semigroup. In [33] the set  
of all numerical semigroups such that  is studied, 
the semigroup of the “doubles” of . In the just quoted 
work we raise the question of finding a formula that de-
pends on  and allows us to compute the minimum of 
the Frobenius numbers of the doubles of .
 Following this line we can ask ourselves about the 
set of all “triples” (or multiples in general) of a numeri-
cal semigroup.
 Finally, it would be interesting to characterize the 
families of numerical semigroups verifying that any of its 
elements can be realized as a quotient of some element 
of the family by a fixed positive integer.

4. frobenIus varIetIes

A directed graph  is a pair , where  is a non-
empty set whose elements are called vertices, and  is a 
subset of . The elements of  are 
called edges of the graph. A path connecting two vertices 

 and  of  is a sequence of distinct edges of the form 
 with  and . A 

graph  is a tree if there exists a vertex  (called the root 
of ) such that for any other vertex  of , there exists 
an unique path connecting  and . If  is an edge of 
the tree, then  is a son of . A vertex of a tree is a leaf 
if it has no sons.
 Let  be the set of all numerical semigroups. We 
define the graph associated to , , to be the 
graph whose vertices are all the elements of  and 

 is an edge if . In [45], it is 
proved that  is a tree with root , and that the 
sons of  are the subsets , where 

 are the minimal generators of  greater than 
. Therefore  is a leaf of  if it has no minimal 

generators greater than . These results allow us to 
construct recursively the set of numerical semigroups 
starting with .
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The level of a vertex in a directed graph is the length of 
the path connecting this vertex with the root. Note that 
in  the level of a vertex coincides with its genus as 
numerical semigroup. Therefore, the Bras-Amorós’ con-
jecture quoted in the end of the first section can be refor-
mulated by saying that in  there are more vertices 
in the th level than in the th one.
 A Frobenius variety is a nonempty family  of nu-
merical semigroups such that

1) if , then ,

2) if , , then .

The concept of Frobenius variety was introduced in [38] 
with the aim of generalizing most of the results in [6, 14, 
48, 49]. In particular, the semigroups that belong to a   
Frobenius variety can be arranged as a directed tree with 
similar properties to those of .

 Clearly,  is a Frobenius variety. If , then 
 is also a Frobenius variety. In particular, 

, the set of all numerical semigroups that contain , 
is a Frobenius variety. We next give some interesting ex-
amples of Frobenius varieties.
 Inspired by [1], Lipman introduces and motivates 
in [27] the study of Arf rings. The characterization of 
them via their numerical semigroup of values, brings 
us to the following concept: a numerical semigroups  
is said to be Arf if for every , with  we 
have . It is proved in [48] that the set of Arf 
numerical semigroups is a Frobenius variety.
 Saturated rings were introduced independently 
in three distinct ways by Zariski ([67]), Pham-Teissier 
([29]) and Campillo ([10]), although the definitions giv-
en in these works are equivalent on algebraically closed 
fields of characteristic zero. Like in the case of numerical 
semigroups with the Arf property, saturated numerical 
semigroups appear when characterizing these rings in 
terms of their numerical semigroups of values. A numer-
ical semigroup  is saturated if for every  
with  for all  and  being 
integers such that , then we have 

. It is proved in [49] that the set 
of saturated numerical semigroups is a  Frobenius vari-
ety.
 The class of Arf and Saturated numerical semigroups 
is also closed under quotients by positive integers as 
shown in [17], though the larger class of maximal em-
bedding dimension numerical semigroups is not (if  is 
a numerical semigroup, then ; a numerical 
semigroup is said to be a maximal embedding dimension 
semigroup, or to have maximal embedding dimension, if 

). What is the Frobenius variety generated by 
maximal embedding dimension numerical semigroups?
 As a consequence of [14] and [46], it can be deduced 
that the set of numerical semigroups that admit a Toms 
decomposition is a Frobenius variety. Every semigroup 
with embedding dimension two admits a Toms decom-
position. Is the variety of numerical semigroups admit-
ting a Toms decomposition the least  Frobenius variety 
containing all semigroups with embedding dimension 
two?
 The idea of pattern of a numerical semigroup was 
introduced in [6] with the aim of trying to generalize 
the concept of Arf numerical semigroup. A pattern  
of length  is a linear homogeneous polynomial with 
non-zero integer coefficients in  (for  the 
only pattern is ). We will say that numerical sem-
igroup  admits a pattern  if for every 
sequence  of elements in , we have
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. We denote by  the set of all 
numerical semigroups that admit a pattern . Then the 
set of numerical semigroups with the Arf property is 

. It is proved in [6] that for every pattern  of 
a special type (strongly admissible),  is a Frobenius 
variety. What varieties arise in this way? It would be in-
teresting to give a weaker definition of pattern such that 
every variety becomes the variety associated to a pattern.
 The intersection of Frobenius varieties is again a  
Frobenius variety. This fact allows us to construct new 
Frobenius varieties from known Frobenius varieties and 
moreover, it allows us to talk of the Frobenius variety 
generated by a family  of numerical semigroups. This 
variety will be denoted by , and it is defined to be 
the intersection of all Frobenius varieties containing  . 
If  is finite, then  is finite and it is shown in [38] 
how to compute all the elements of .
 Let  be a Frobenius variety. A submonoid  of 

 is a -monoid if it can be expressed as an intersec-
tion of elements of . It is clear that the intersection of 

-monoids is again a -monoid. Thus given  
we can define the -monoid generated by  as the in-
tersection of all -monoids containing . We will de-
note by  this -monoid and we will say that  is a 

 -system of generators of it. If there is no proper subset 
of  being a -system of generators , then  is a 
minimal  -system of generators of . It is proved 

in [38] that every -monoid admits an unique minimal 
-system of generators, and that moreover this system 

is finite.
 We define the directed graph  in the same way 
we defined , that is, as the graph whose vertices are 
the elements of , and  is an edge of the 
above graph if . This graph is a tree with 
root  ([38]). Moreover, the sons of a semigroup  in  
are , where  are the minimal 

-generators of  greater than . This fact allows us 
to find all the elements of the variety  from .
 Figure 1 represents part of the tree associated to the 
variety of numerical semigroups with the Arf property.
 Figure 2 represents part of the tree  corresponding 
to saturated numerical semigroups.
 As a generalization of Bras-Amorós’ conjecture, 
we can raise the following question. If  is a Frobenius 
variety, does there exist on  more vertices in the 

th level than in the th one? The answer to this 
question is no, as it is proved in [38, Example 26]. How-
ever, the same question  in the case of  being infinite 
remains open. Another interesting question would be 
characterizing those Frobenius varieties that verify the 
Bras-Amorós’ conjecture.
 If  is a Frobenius variety and , then it is 
known that  admits an unique minimal -system of 
generators, and moreover it is finite. The cardinality of 

the set above is an invariant of  that will be called the 
embedding -dimension of , and it will be denoted by 

. As a generalization of Wilf’s conjecture, we would 
like to characterize those Frobenius varieties  such that 
for every , then .
 Clearly, the Frobenius variety generated by irreduc-
ible numerical semigroups is , the set of all numerical 
semigroups. What is the Frobenius variety generated only 
by the symmetric ones? and by the pseudo-symmetric 
ones?

5. presentatIons of a nuMerIcal seMIgroup

Let  be a commutative monoid. A congruence  
over  is an equivalence relation that is compatible with 
addition, that is, if  with , then  
for all . The set  endowed with the operation 

 is a monoid. We will call it the quotient 
monoid of  by .
 If  is generated by , then the map 

 is a monoid 
epimorphism. Therefore  is isomorphic to , 
where  is the kernel congruence of , that is,  if 

.
 The intersection of congruences over a monoid  
is again a congruence over . This fact allows us, given 

, to define the concept of congruence generated 
by  as the intersection of all congruences over  con-

taining , and it will be denoted by .
 Rédei proves in [31] that every congruence over 

 is finitely generated, that is, there exists a subset of 
 with finitely many elements generating it. As 

a consequence we have that giving a finitely generated 
monoid is, up to isomorphism, equivalent to giving a fi-
nite subset of .
 If  is a numerical semigroup with  minimal genera-
tors system , then there exists a finite subset  
of  such that  is isomorphic to . We say 
that  is a presentation of . If moreover  has the least 
possible cardinality, then  is a minimal presentation of 
.

 A (non directed) graph  is a pair , where 
 is a nonempty set of elements called vertices, and  

is a subset of . The non ordered 
pair  will be denoted by , and if it belongs to  , 
then we say that it is an edge of . A sequence of the 
form  is a path of length  connect-
ing the vertices  and . A graph is connected if any 
two distinct vertices are connected by a path. A graph 

 is said to be a subgraph of  if  and 
. A connected component of  is a maximal con-

nected subgraph of . It is well known (see for instance 
[28]) that a connected graph with  vertices has at least 

 edges. A (finite) tree with  vertices is a connected 
graph with  edges.
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Figure 1 Figure 2
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 Let us remind now the  method described in [35] 
for computing the minimal presentation of a numerical 
semigroup. Let  be a numerical semigroup with mini-
mal system of generators . For each , let 
us define , where  and 

. If  is connected, we 
take . If  is not connected and  are the 
sets of vertices corresponding to the connected components 
in , then we define , 
where  and its -th component is zero when-
ever . It is proved in [35] that  is a 
minimal presentation for . Let us notice that the set 

 is finite, and that 
its cardinality is an invariant of . A line of research could 
be the study of , and its relation with other invari-
ants of  mentioned above. In [19] affine semigroups (and 
thus numerical semigroups) with a single Betti element are 
studied. What are those numerical semigroups having two 
or three Betti elements?
 It is also shown in [35] how all the minimal presenta-
tions of a semigroup are. In particular, we can determine 
whether a numerical semigroup admits a unique minimal 
presentation. Motivated by the idea of generic ideal, we 
may ask what are the numerical semigroups that admit 
a unique minimal presentation, and characterize them in 
terms of their minimal generators.
 If  is a numerical semigroup, then the cardinality 
of a minimal presentation of  is greater than or equal 
to . Those semigroups that attain this bound are 
said to be complete intersections. This kind of semigroup 
has been well studied, and Delorme gives in [15] a good 
characterization of them. Every numerical semigroup 
with embedding dimension two is a complete intersec-
tion, and every complete intersection is symmetric (see 
[21]). We raise the following questions. What semigroups 
can be expressed as the quotient of a complete intersec-
tion by a positive integer? What is the least Frobenius 
variety containing all the complete intersection numeri-
cal semigroups?
 Let  and  be two numerical semigroups mini-
mally generated by  and , respec-
tively. Let  and  , 
such that . We then say that 

 is a gluing to  and  . 
It is proved in [45] how given minimal presentations 
of  and , one easily gets a minimal presentation of 
. The characterization given by Delorme in [15], with 

this notation, can be reformulated in the following way: 
a numerical semigroup is a complete intersection if and 
only if is a gluing to two numerical semigroups that are 
a complete intersection. A consequence of this result is 

that the set of semigroups that are a complete intersec-
tion is the least family of numerical semigroups contain-
ing  being closed under gluing. It is well known that 
the family of numerical symmetric semigroups is also 
closed under gluing ([45]). It would be interesting to 
study other families closed under gluing. Which is the 
least family containing those semigroups with maximal  
embedding dimension and closed under gluing?
 Bresinsky gives in [7] a family of numerical semi-
groups with embedding dimension four and with cardi-
nality of its minimal presentations arbitrarily large. This 
fact proves that the cardinality of a minimal presentation 
of a numerical semigroup cannot be upper bounded  just 
in function of its embedding dimension. Bresinski also 
proves in [8] that the cardinality for a minimal presenta-
tion of a symmetric numerical semigroup with embed-
ding dimension four can only be three or five. It is conjec-
tured in [36] that if  is a symmetric numerical semigroup 
with , then the cardinality of a minimal presenta-
tion for  is less than or equal to . Ba-
rucci [2] proves with the semigroup  that 
the conjecture above is not true. However, the problem of 
determining if the cardinality of a minimal presentation 
of a symmetric numerical semigroup can be bounded in 
function of the embedding dimension remains open.
 Let  be a finite subset of . By using the re-
sults in [41, 45] it is possible to determine algorithmically 
whether  is isomorphic to a numerical semigroup. 
However we miss in the literature families of subsets  of 

 so that we can assert, without using algorithms, that 
 is isomorphic to a numerical semigroup. More 

specifically, we suggest the following problem: given

    ,

which conditions the integers  and  have to verify 
so that  is isomorphic to a numerical semigroup? 
Herzog proved in [21] that embedding dimension three 
numerical semigroups always have a minimal presenta-
tion of this form. Neat numerical semigroups introduced 
by Komeda in [24] are also of this form.

6. nuMerIcal seMIgroups wIth eMbeddIng 
dIMensIon three

Herzog proves in [21] that a numerical semigroup with 
embedding dimension three is symmetric if and only 
if it is a complete intersection. This fact allows us to 
characterize symmetric numerical semigroups with 
embedding dimension three in the following way (see 
[45]). A numerical semigroup  with  is sym-
metric if and only if , with 

, , ,  and  nonnegative integers, such that  , 
,  and  are greater than or equal to two and 

. Moreover, as it is 
proved in [45],

 
     .

We also have a formula for the genus, since  is symmet-
ric, . Finally, we also know the type, 
since it is proved in [18] that a numerical semigroup is 
symmetric if and only if its type is equal to one.
 We study in [43] the set of pseudo-symmetric nu-
merical semigroups with embedding dimension three. In 
particular, we give the following characterization. A nu-
merical semigroup  with  is pseudo-symmetric 
if and only if for some ordering of its minimal genera-
tors, by taking 

,

then

.

Moreover, in this case,  . 
We also know the genus and the type, since if  is a 
pseudo-symmetric numerical semigroups, then 

 and by [18], .
 Bresinsky ([7]) and Komeda ([24]) fully character-
ize those symmetric and pseudo-symmetric numerical 
semigroups, respectively, with embedding dimension 
four. They show that their minimal presentations always 
have cardinality five.
 Curtis proves in [13] the impossibility of giving an 
algebraic formula for the Frobenius number of a numeri-
cal semigroup in terms of its minimal generators on em-
bedding dimension three. We raise the following question. 
Given a  polynomial   , 
study the family of numerical semigroups  such that if 
 is minimally generated by , and  is the 

Frobenius number of , then .
 Our aim now is studying the set of numerical semi-
groups with embedding dimension three in general. By 
[18], we know that these semigroups have type one or 
two, and by using [22, 34] if we are concerned with the 
Frobenius number and the genus, we can focus ourselves 
in those numerical semigroups whose minimal genera-
tors are pairwise relatively prime. The following result 
appears in [42]. Let ,  and  three pairwise relatively 
prime positive integers. Then the system of equations

has a (unique) positive integer solution if and only if 
 generates minimality . In [42] the 

authors give formulas for the pseudo-Frobenius number 
and the genus of  from the solutions of the 
above system. Thus it seems natural to ask, given positive 
integers , with , when  , 

 and  are pair-
wise relatively prime?
 Let  be a numerical semigroup minimally gen-
erated by three positive integers ,  and  be-
ing pairwise relatively prime. For each , let 

. In [42] 
formulas for  and  from  and  ( ) are 
given. Therefore, if we had a formula for computing  
from  and , we would have solved the problems raised 
by Frobenius for embedding dimension three. Note that 

 is nothing but the multiplicity of the proportionally 
modular semigroup . It is proved in [58] that if 

 is a positive integer such that , then 
. We sug-

gest in this line the problem of finding a formula that 
allows us to give the multiplicity of   
from ,  and .
 Fermat’s Last Theorem asserts that for any integer 

, the Diophantine equation  does not 
admit an integer solution such that . As it is well 
known, this theorem was proved by Wiles, with the help 
of Taylor, in 1995 ([64, 65]) after 300 years of fruitless 
attempts. Let us observe that for , the Diophantine 
equation  has no solution verifying  
with some of the factors equal to . Therefore in order 
to solve this equation it can be supposed that ,  and  
are integers greater than or equal to two, and pairwise 
relatively prime. It is proved in [63], that Fermat’s Last 
Theorem is equivalent to the following statement: if  , 

 and  are integers greater than or equal to two, pair-
wise relatively prime, and  is an integer greater than 
or equal to three, then the proportionally modular nu-
merical semigroup  is not minimally generated 
by . It would be interesting to prove this fact 
without using Fermat’s last Theorem.

7. non-unIque factorIzatIon InvarIants

Let  be a numerical semigroup minimally generated by 
. Then we already know that  is isomor-

phic to , where  is the kernel congruence of the 
epimorphism , … .
 For , the elements in  are known 
as factorizations of . Given , its 
length is . The set of lengths of  is 

. If , then 
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the set of differences of lengths of factorizations of  is 
. Moreover  . 

These sets are known to be eventually periodic ([12]).
 The elasticity of  is  , 
and , which turns out to be a maxi-
mum ([47]). For numerical semigroups it is well known 
that .
 For , the great-
est common divisor of  and  is

.
The distance between  and  is

 .
An -chain (with  a positive integer) joining two 
factorizations  and  of  is a sequence  
of factorizations of  such that ,  and 

. The catenary degree of , , is the 
least  such that for every two factorizations  and  of 
, there is an -chain joining them. The catenary degree 

of  is . This supremum is a maximum 
and actually  ([11]). It was asked 
by F. Halter-Koch whether this invariant is periodic, 
that is, if there exists  such that for  “big enough”, 

.
 The tame degree of , , is the minimum  
such that for any  with  and any 

, there exists , such that  and 
. The tame degree of  is . 

This supremum is again a maximum and it is reached in 
the (finite) set of elements of the form  with  
such that  for some . F. Halter-Koch also 
proposed the problem of studying the eventual periodic-
ity of .
 The invariant  is the least positive integer 
such that whenever  divides  for some 

, then  divides  for some 
. The -primality of  is defined 

as . In [4] it is highlight-
ed that numerical semigroups fulfilling  are 
rare. A characterization for numerical semigroups ful-
filling this condition should be welcomed.
 Another problem proposed by A. Geroldinger is to 
determine when can we find a numerical semigroup and 
an element in it with a given set of lengths.
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1. IntroductIon

“There is strong shadow where there is much light”
Goethe in Götz von Berlichingen

1.1 The basic framework
In order to start playing with dynamical systems we 
need a place to play and a given rule acting on it. Once 
we establish that, we wonder what happens when we re-
peat the rule ad infinitum. We are mainly interested in 
two types of playgrounds: volume manifolds and sym-
plectic manifolds. On volume-manifolds the rule is the 
action of a volume-preserving diffeomomorphism, and 
on symplectic manifolds the rule is the action of a sym-
plectomorphism. Let us now formalize these concepts. 
 Let  stands for a closed, connected and  Rie-
mannian manifold of dimension  and let  be a 
volume-form on . Once we equip  with  we de-
nominate it by a volume-manifold. By a classic result by 
Moser (see [20]) we know that, in brief terms, there is 

Abstract.—We explore uniform hyperbolicity and its relation with the pseudo orbit tracing property. This 
property indicates that a sequence of points which is nearly an orbit (affected with a certain error) may 
be shadowed by a true orbit of the system. We obtain that, when a conservative map has the shadowing 
property and, moreover, all the conservative maps in a -small neighborhood display the same property, 
then the map is globally hyperbolic.

MSC 2000: primary 37D20, 37C50; secondary 37C05, 37J10.

Keywords.—Volume-preserving maps; pseudo-orbits; shadowing; hyperbolicity.

only one volume-form on . Actually, in [20] we find 
and atlas formed by a finite collection of smooth charts 

 where  are open sets and each  
pullbacks the volume on  into . The volume-form al-
lows us to define a measure  on  which we call Leb-
esgue measure. A  ( ) diffeomorphism  
is said to be volume-preserving if it keeps invariant the 
volume structure, say . In other words any Bore-
lian  is such that . We denote these 
maps by . We endow  with the Whitney 
(or strong)  topology (see [1]). In broad terms, two dif-
feomorphisms  and  are -close if they are uniformly 
close as well as their first  derivatives computed in any 
point . Such systems emerges quite naturally when 
considering the time-one map of incompressible flows 
which are a fundamental object in fluid mechanics (see 
e.g. [14]).
 Denote by  a -dimensional ( ) manifold 
with a Riemaniann structure and endowed with a closed 
and nondegenerate 2-form  called symplectic form. Let 

 stands for the volume measure associated to the volume 
form wedging  -times, i.e.,  . By the 
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