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 In this edition there were selected 5 problems pro-
posed by different companies namely, Neoturf (http://

www.neoturf.pt/en), TAP Maintenance and Engineering (http://

www.staralliance.com/en/ about/airlines/tap-Portugal_airlines/#), INESC 
(http://www2.inescporto.pt/ip-en/), Sonae Indústria – Produção e 
Comercialização de Derivados de Madeira, S.A and Eu-
roresinas – Indústrias Quimicas Euroresinas, S.A., also 
a Sonae Group company (http://www.sonaeindustria.com/). For 
us, these problems were mathematically interesting chal-
lenges. For the companies, those were open-problems 
that had not been solved with their own (and/or con-
sulting) resources, some of them for several years. This 
bouquet of problems was “multicharacteristic” in sev-
eral ways. First of all due to different origin companies, 
second, due to the “multi-scope” of the problems. And 
last, the multitude of mathematical subjects used during 
the event which comprehended statistics, classification, 
optimization, numerical analysis or partial differential 
equations, just to name a few.
 In this year’s Portuguese ESGI, the results over-
whelmed the organizers (and the companies’) best expec-
tations. For the organizers, some of them involved since 
2007 when the first Portuguese ESGI edition took place, 
the objective is to spread mathematical knowledge and 
use it to help the industrial tissue. According to them, 
the success of ESGI’s in Portugal may be measured by 
the growing number of participants, proposed problems, 
and by the fact that some companies are submitting new 
problems after their first participation. The comments 
from the companies’ representatives were very posi-
tive. Pedro Mena and Fernando Guimarães (Euroresinas 

representatives), told at the end of the Study Group: 
“ESGI’86 was the first Sonae Industria participation on 
ESGI events. This format and analysis is, as such, newer 
to the company and is being addressed with great  ex-
pectation and curiosity. After this initial experience, we 
consider of great significance this Mathematics-Industry 
partnership in the approach of subjects with most rel-
evance to the national industry.”
 Telmo Rodrigues, from Sonae Indústria, said in the 
last day: “This meeting was very important, as it allows 
us to understand some phenomena of processes that 
weren’t perfectly characterized”. Neoturf CEO, Paulo 
Palha, went a little bit further in a post-ESGI interview. 
In the context of the workshop when asked about if the 
workshop fulfilled Neoturf expectations, he stated: “Un-
doubtedly! It certainly exceeded our best expectations as 
the problem proposed was identified more than 10 years 
ago but remained unsolved since then. We had consulted 
several software companies, tried some of their propos-
als, but nothing got even closer to the result achieved by 
the ESGI study group.” The organizers, as mathema-
ticians who care about the relation between academia 
and industry, also asked him how this format could be 
improved. His answer enclosed an important clue: “I 
think it would be very important to spread extensively 
this event, as most of the Small and Medium Companies 
aren’t aware of the huge arsenal of techniques and re-
sources that mathematicians have to solve our problems. 
Another idea is to have workgroups that can be hired by 
industry.”

Kinetic approach to reactive mixtures: theory, 
modelling and applications
by Ana Jacinta Soares*

1. IntroductIon

The kinetic theory of gases is a branch of statistical me-
chanics which deals with non-equilibrium dilute gases, 
i.e. gas systems slightly removed from equilibrium. In-
stead of following the dynamics of each particle, the ki-
netic theory approach describes the evolution of the gas 
system in terms of certain statistical quantities, namely 
velocity distribution functions, which give information 
about the distribution of particles in the system as well 
as the distribution of particle’s velocities. One of the 
main tasks is then to deduce the macroscopic properties 
of the gas system from the knowledge of the molecular 
dynamics in terms of the distribution functions and, at 
the same time, to derive governing equations for these 
macroscopic  properties in the hydrodinamic limits.
 Historically, the modern kinetic theory starts with 
the contributions from August Krönig (1822–1879), Ru-
dolf Clausius (1822–1888), James Maxwell (1831–1879) 
and Ludwig Boltzmann (1844–1906) and the central re-
sult of this theory is attributed to the celebrated Boltz-
mann equation (BE), derived in 1872, see Ref. [1]. This is 
an integro-differential equation that describes the evolu-
tion of a gas as a system of particles (atoms or molecules)  
interacting through brief collisions in which momentum 
and kinetic energy of each particle are modified but the 
states of intramolecular excitation are not affected.
 The Boltzmann equation arises in the description 
of a wide range of physical problems in Fluid Mechan-

ics, Aerospace Engineering, Plasma Physics, Neutron 
Transport as well as other problems where chemical re-
actions, relativistic or quantum effects are relevant. From 
the mathematical point of view, the Boltzmann equation 
presents several difficulties, mainly associated to the inte-
gral form of the collisional term describing the molecular 
interactions. In particular a general method for solving 
the Boltzmann equation does not exist, and only equi-
librium (exact) solutions are know. Thus the mathemati-
cal analysis of the Boltzmann equation, in particular the 
properties of the collisonal terms, existence theory and 
approximate methods of solutions, constitute an inter-
esting research topic in Mathematical Physics.
 Available techniques for solving the Boltzmann 
equation and its variants are based on the approximate 
methods proposed by David Hilbert (1862–1943) in 1912
and by Sidney Chapman (1888–1970) and David Enskog 
(1884–1947) around 1916–17. The Hilbert method is a 
formal tool that obtains approximate solutions of the 
Boltzmann equation in the form of a power series of a 
small parameter inversely proportional to the gas density 
(the Knudsen number). Enskog generalized the Hilbert’s 
idea and introduced a systematic formalism for solving 
the Boltzmann equation by successive approximations, 
and Chapmann followed the method of Maxwell to de-
termine the transport coefficients of diffusion, viscos-
ity and thermal conductivity. The ideas of Enskog com-
bined with the method of Chapman led to the so called 
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Chapman-Enskog method described in Ref. [2] and then 
followed by several authors and extended to more gen-
eral gas systems.
 In this paper, we present a general review of some 
recent studies arising in the kinetic theory of chemically 
reactive mixtures, mainly oriented to the modelling of 
reactive systems, mathematical structure and properties 
of the governing equations, application to detonation 
dynamics and existence results.
 The studies presented in this paper have been ob-
tained in collaboration with several researchers, cited 
here in chronological order, Miriam Pandolfi Bianchi 
(Politecnico di Torino, Italy), Gilberto Medeiros Kremer 
(Universidade Federal do Paraná, Curitiba, Brazil), Filipe 
Carvalho (CMAT-UM, Ph.D. Student), Jacek Polewczak 
(California State University, Northridge, LA, USA).
 The paper is organized as follows. The main basic 
aspects of the kinetic theory are introduced in Section 2,
with emphasis on the mathematical modelling, consist-
ency properties of the kinetic modelling and connection 
to hydrodynamics. A particular model for symmetric 
chemical reaction is introduced in Section 3 and then 
used in Section 4 to mimic detonation problems. The 
simple reacting spheres (SRS) model is briefly described 
in Section 5 and an existence result about the solution 
of the partial differential equations of the model is pre-
sented in Section 6.

2. KInetIc theory bacKground

In kinetic theory of gases, the state of a chemically reac-
tive mixture can be described by the Boltzmann equation. 
There exist several references on this topic and we quote 
here the relevant contributions presented in the books
[3,4,5,6].
 In this section, we introduce the background of the 
kinetic theory of chemically reactive mixtures necessary 
to follow the general ideas and results presented in the 
following sections. We have tried to be as concise as pos-
sible in this presentation and do not use so much special-
ized formalisms. However some notations and nomen-
clature are needed to introduce the topic and the results.

2.1 Mathematical modelling
The present work is restricted to a dilute reactive mix-
ture consisting of four constituents, say ,  , 
with molecular masses , diameter  and chemical 
binding energies . Internal degrees of freedom, like 
translational, rotational and vibrational molecular mo-
tions, are not taken into account. Besides elastic scatter-
ing, particles undergo reactive collisions with a reversible 
bimolecular chemical reaction which can be represented 
schematically by

.

The mass conservation associated to the chemical reac-
tion results in . We assume that col-
lisions take place when the particles are separated by a 
distance  or .
 A parameter of interest for the present mod-
elling is the heat of the chemical reaction defined as

. The chemical reaction is endother-
mic when  and it is exothermic when .
 At the molecular level, the thermodynamic state of 
the mixture can be described by the constituent distri-
bution functions , , that represent, 
at time , the number of particles of constituent  
with velocity  in the point . Function , 

, are governed, in the phase space, by general-
ized Boltzmann equations of type

where the differential term in the left-hand side repre-
sents the streaming operator that describes the motion 
of particles along their trajectories in the phase space, 
and the term in the right-hand side represents the colli-
sion part that describes the changes of particles result-
ing from collisions. More in detail,  is the 
elastic collision term describing the dynamics of inert 
molecular collisions among constituent  and all other 
constituents , and  is the reactive collision 
term describing the dynamics of chemical interactions. 
Terms  and  can be written in the following form, 
see Ref. [6],

where the primes denote post-collisional states,  is the 
relative velocity between the  and  particles,  and

 are elements of solid angles for elastic and reactive 
collisional processes,  and  the corresponding do-
mains of integration,  the elastic cross section and  
the reactive cross section. For what concerns the reactive 
terms, the indices  are from the set

.

The specification of the cross sections  and  com-
plete the definition of the kinetic model at the molecu-
lar level. In general, they satisfy symmetrical relations as 
those assumed here, of type

.

(1)

(2)

(3)

(4)

In many kinetic theories,  follows a hard-spheres 
model, which means that during elastic collisions, the 
particles behave as if they are rigid spheres, and  is 
defined in terms of the activation energy of the chemical 
reaction, which means that only those particles such that 
the kinetic energy of the relative motion is greater than  
the activation energy can collide with chemical reaction.
 A kinetic theory based on the statistical description 
in terms of Eqs.(2) and (3–4) can be of great importance 
in obtaining a detailed understanding of several processes
involving chemically reactive mixtures. The investiga-
tion of transport properties and evaluation of transport 
coefficients is a valuable example. In fact, the transport 
coefficients of viscosity, diffusion, thermal conductivity 
and others can not be obtained from macroscopic theo-
ries; they have been supplied by experiments and phe-
nomenological considerations. However the kinetic the-
ory can provide these coefficients from the knowledge 
of the solution of the Boltzmann equation, even if only 
approximate soloutions are available in general.

2.2 Consistency properties of the kinetic modelling
The kinetic modelling defined in terms of Eqs. (2) and 
(3–4) possesses the following properties consistent with 
the chemical kinetics of the reaction, macroscopic laws 
and equilibrium state.

2.2.1 Proposition [Elastic terms].—The elastic colli-
sion terms are such that

 

that is, elastic collisions do not modify the number of 
particles of each constituent.

2.2.2 Proposition [Reactive terms].—The reactive col-
lision terms are such that

   

        .

that is, reactive collisions assure the correct chemical ex-
change rates for the chemical reaction (1).

Motivated by the above Proposition 2.2.2, the reaction 
rate of the -constituent, that gives the production rate 
of -particles, is defined by

.

(5)

(6)

(7)

2.2.3 Proposition [Conservation laws].—Elastic and 
reactive collision terms are such that

   

   

where  is a function of the molecular ve-
locities  whose components are given alternatively by
   

    

   

Therefore elastic and reactive collision terms are con-
sistent with the physical conservation laws for mass, 
momentum components and total energy of the whole 
mixture.

2.2.4 Proposition [Equilibrium].—The following con-
ditions are equivalent

(a)  and , 

(b) 

(c)  is Maxwellian, , given by 

  

 for , where  is the Boltzmann 
constant, and , ,  are functions of , see 
Subsection 2.3, with

.

Proposition 2.2.4 characterizes Maxwellian distributions 
defining an equilibrium solution of the Boltzmann Eqs. 
(2). More in detail, Maxwellian distributions (11) with 
uncorrelated number densities  characterize a me-
chanical equilibrium only, in the sense that  but 

 in general. Conversely, Maxwellian distributions 
(11) with the number densities constrained to the mass 
action law (12) characterize a complete thermodynami-
cal equilibrium state (mechanical and chemical), since

 and .

2.2.5 Proposition [Entropy production].—Elastic 
and reactive collision terms are such that

 .

(8)

(9)

(10)

(11)

(12)
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 .

Moreover, the convex function

 

with  being a closed domain in  where the mixture 
evolves, is a Liapunov functional for the extended Boltz-
mann equations (2), that is

 , for ,

 , iff the distribution functions are 
      Maxwellian characterized by 
      Eqs. (11–12).

The first part of Proposition 2.2.5 means that both elas-
tic and reactive collisions contribute to increase the en-
tropy of the mixture. The second part indicates that the 

 -function drives the reactive mixture from the initial 
distribution to an equilibrium state.
 The proof of the second part of the proposition, see 
Ref. [7], indicates that function  splits into a mechan-
ical part and a reactive part, , such that both 

 and  show a time decreasing behaviour and that 
 iff  are Maxwellian given by (11), whereas 
 iff  are Maxwellian constrained by (12).

2.3 Connection to hydrodynamics
The kinetic model previously introduced provides a con-
sistent macroscopic theory in the hydrodynamic limit of 
Euler or Navier-Stokes level.

2.3.1 Macroscopic variables
The starting point foi the macroscopic description is the 
definition of certain average quantities, called macroscop-
ic variables, taken over the distributions  by integrating 
with respect to the velocities . The number density of 
each constituent and the one of the mixture are given by

and the corresponding mass densities are defined as

.

The mean velocity of the mixture is given by

and the diffusion velocity of each constituent is 

.

The components of the mixture stress tensor are

 

          .

The pressure of the mixture is defined by

so that the temperature is assumed as

.

The components of the heat flux of the mixture are

        .

2.3.2 Balance equations
To complete the connection, one can derive the balance 
equations and the conservation laws describing the bal-
ance of the constituent number densities, and conserva-
tion of both momentum components and total energy of 
the whole mixture. It is enough to consider the Boltz-
mann Eqs. (2), then multiply both sides by the elemen-
tary function  whose components are  and 
functions (10) of Proposition 2.2.3, and finally integrate 
with respect to . The resulting equations are

  

  

  

  .

Macroscopic Eqs. (16–18) constitute a system of 8 equa-
tions in 36 uknowns, namely , , , , ,  and  , 
where  and . To close the system 
one passes to the hydrodynamic limit and deduces the 
constitutive equations for the 28 unknowns , ,  
and .

(16)

(17)

(18)

2.3.3 Hydrodynamic limit
The passage of the kinetic level of Eqs. (2) to the hydro-
dynamic limit requires the solution of the Boltzmann Eqs. 
(2), that can be obtained resorting to a systematic expan-
sion technique, see Refs. [2,5,6,8] for a detailed descrip-
tion of the Chapaman-Enskog method, Hilbert method 
and moment method.
 In particular, concerning the Chapaman-Enskog 
(CE) method, one starts with an appropriate scalling 
of Eqs. (2) in terms of the so called elastic and reactive 
Knudsen numbers [3], consistent with the chemical re-
gime of validity of the resulting macroscopic equations.
This scalling defines a clear separation of the effects of the 
fast and slow processes, the former being some collisonal 
processes (elastic or reactive) that drive the distribution 
function towards a local equilibrium state, and the latter 
being the other processes that contribute to disturb the 
distribution function. Then one assumes that the ther-
modynamical state of the reactive mixture is close to the 
equilibrium and looks for a solution of Eqs. (2) of type

 

where  is a quasi-equilibrium distribution function,  
represents a formal expansion parameter related to the 
Knudsen numbers (then it is settled equal to one) and 

 is the disturbance induced by the slow 
processes, that is assumed to be small.
 Introducing expansion (19) into Eqs. (2), neglecting 
non-linear terms in the disturbances and equating equal 
terms in , one obtains linear integral equations for the  
zero-order term  as well as for the disturbances , 

, etc. The consistency properties introduced in Sub-
section 2.2 are fundamental to obtain the solution of 
these integral equations. After an involved analysis of 
the equations, the disturbances are obtained as functions 
of ,  ,  and both transport fluxes and transport coef-
ficients. Inserting the considered approximate solution 
into the definitions of the reaction rate , diffusion ve-
locities , stress tensor  and heat flux , one obtains 
the constitutive equations that allow to close the macro-
scopic Eqs. (16–18).
 In particular, it comes out that the zero-order approx-
imation  is the Maxwellian distribution (11) that leads 
to the reactive Euler equations without transport effects; 
the first-order perturbed distributions, , are 
governed by linearized Boltzmann equations and lead to 
the Navier-Stokes equations involving the transport ef-
fects of diffusion, viscosity, thermal conductivity and may-
be others; successive approximations lead to the Burnett 
and super Burnett complicated equations.

(19)

 According to Propositions 2.2.4 and 2.2.5, one con-
cludes that in a hydrodynamic limit of an Eulerian regime, 
the mechanical entropy of the mixture remains constant 
and slow reactive processes contribute to drive the mix-
ture from a mechanical to a complete thermodynamical 
equilibrium state. Conversely, in the hydrodynamic limit 
associated to the Navier-Stokes equations, both elastic 
and reactive collisions contribute to increase the entropy 
of the mixture, and the entropy flux is also due to diffu-
sion, heat transfer and sheat viscosity phenomenon.
 The Chapman-Enskog method converges asymp-
totically for small Knudsen number, and the Euler and 
Navier-Stokes equations have a good accuracy. 

3 Model for syMMetrIc reactIon

A very simple model corresponds to a binary mixture of 
constituents  and  undergoing the symmetric reaction 

. In this particular case, one has  , 
, so that , ,  , 
 , . Assuming hard sphere cross 

sections for elastic collisions and step cross sections with 
activation energy for reactive interactions, the collision 
terms are (see Ref. [9] for a complete description of the 
model)

   

   .

In expression (21), the primes are used to distinguish two 
identical particles that participate in the reactive event, 
and  is given by

 

where  represents the steric factor,  is the relative 
translational energy,  the forward ( ) and back-
ward ( ) activation energy, both expressed in units 
of the thermal energy of the mixture, ,

.

At the macroscopic scale, the mixture is described by the 
variables , , , , that are governed by balance equa-
tions and conservation laws of type (16) and (17–18). At 
the hydrodynamic Euler level, and for a chemical regime 
in which elastic collisions are more frequent than reac-
tive encounters, the Chapman-Enskog method has been 
used in [9] to obtain the following approximate solution 
for the distribution function

,

(20)

(21)

(22)

(23)
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where  is a Maxwellian distribution and

   

      

with  being the concentration of constituent , 
 the reactive molecular diameter and .

Expression (23) indicates that this solution characterizes 
a non-equilibrium state and expression (24) specifies the 
deviation from the equilibrium in terms of the activation 
energy  and reaction heat . The macroscopic equa-
tions associated to this hydrodynamic limit characteriz-
es a non-difusive, non-heat conducting and non-viscous 
reactive mixture, that is

and the reaction rate is explicitly given by

  

  

     .

The hydrodynamic equations are the reactive Euler equa-
tions corrected with the effects of the reaction heat. In 
one space dimension, they are given by

   

   

   

where  is now the -component of the mixture velocity.

4 applIcatIon to detonatIon phenoMenon

Detonation is a rapid and violent form of combustion 
accompanied by an important energy release. The prop-
agation of detonation waves in gaseous explosives is a 
problem of great practical importance, due to the eco-
nomic impact as well as several engineering applications, 
such as safety and military issues, propulsion devices and 
hard rock mining.
 A detonation is essentially a reacting wave consist-
ing in a leading shock that propagates into the explosive,
followed by a reaction zone where the reactants trans-
form into products. The shock heats the material by 
compressing it so that a rapid and violent chemical re-
action is triggered.

(24)

(25)

(26)

(27)

(28)

 On the other hand, experimental and computational 
investigations show that the detonation wave, specially 
in gaseous mixtures, tends to be unstable to small pertur-
bations and exhibit a significant unsteady structure. The 
first step of a formal study of the detonation instability 
is the analysis of the hydrodynamical stability, which 
consists in imposing small deviations in the steady so-
lution and studying the evolution of the state variables 
perturbations. The assumption of small deviations allows 
to linearize the equations and determine the instability 
modes and growth rate perturbations.
 The kinetic theory of chemically reactive mixtures 
can be used to study the detonation phenomenon and 
describe some of the physical and chemical aspects ob-
served in experiments. In particular the kinetic model-
ling of Section 3 has been used in Ref. [10] to investigate
the propagation and hydrodynamic stability of a steady 
detonation wave in a binary reactive mixture with a sym-
metric chemical reaction. In this section we present the 
main aspects of this study, with emphasis on the spatial 
structure of the steady detonation wave and the response 
of the steady solution to one-dimensional disturbances.

4.1 Dynamics of steady detonation waves
We consider a detonating binary mixture undergoing a 
reversible reaction of symmetric type, described by the 
kinetic modelling of Section 3. The mathematical ana-
logue for the detonation dynamics is the hyperbolic set 
of reactive Euler equations (26–28). Such equations admit 
steady traveling wave solutions that describe a combus-
tion regime in which a strong planar shock wave ignites 
the mixture and the burning keeps the shock advancing 
and proceeding to equilibrium behind the shock. The 
Zeldovich, von Neumann and Doering (ZND) idealized 
model [11,12] gives a good and accepted description of 
the detonation wave solution. The configuration of the 
ZND wave consists of a leading, planar, non-reactive 
shock wave propagating with constant velocity , fol-
lowed by a finite reaction zone where the chemical reac-
tion takes place. The spatial structure of the detonation 
wave is determined by means of the Rankine-Hugoniot 
conditions, connecting the fluxes of the macroscopic 
quantities ahead (superscrip ) and behind (plain sym-
bols) the shock front, together with the rate equation, de-
scribing the advancement of the chemical process in the 
reaction zone. They can be written in the form

   

   

(29)

(30)

   

   

        

       .

System (29–32), with detonation velocity , reaction heat 
 and activation energy  as parameters, characterize 

any arbitrary state within the reaction zone (plain sym-
bols) in dependence of the quiescent initial state (super-
scrip +). This system has been solved numerically with 
the following input data for kinetic and thermodynami-
cal reference parameters

Some numerical simulations have been performed in Ref. 
[10] to determine the structure of the detonation wave  
in both cases of exothermic ( ) and endothermic  
( ) chemical reactions. Figures 1 and 2 show rep-
resentative profiles for the mixture pressure  in both 
cases of exothermic and endothermic chemical reactions, 
respectively. The configuration of the solution consists 
in a reactive rarefaction wave (Figure 1) when the reac-
tion is exothermic and reproduces the typical structure 
of an idealized ZND wave arising in real explosive sys-
tem with exothermic chemical reaction [11,12]. Con-
versely, the configuration of the solution consists in a 
reactive compression wave (Figure 2) when the reaction 
is endothermic and reproduces the essential features of 

(31)

(32)

the endothermic stage of a typical chain-branching re-
active system with pathological-type detonation [11,12]. 
Such detonation occurs when further complexities are 
introduced in the reactive system and some dissipative 
effects are present.
 Other  numerical simulations have been considered 
in Ref. [10] to supplement the representation of the det-
onation dynamics.

4.2 Linear stability of steady detonation waves
The stability of the steady detonation solution described 
in Subsection 4.1 is formulated in terms of an initial-
boundary value problem describing the evolution of the 
state variables perturbations.
 We assume that a small rear boundary perturbation 
is assigned so that a distortion in the shock wave posi-
tion is observed; such distortion induces further pertur-
bations in the state variables and the steady detonation 
solution can degenerate into an oscillatory solution in 
the long-time limit.
 From the mathematical point of view, the stability 
problem requires the transformation to the perturbed 
shock attached frame, and then the linearization of the 
reactive Euler equations and Rankine-Hugoniot condi-
tions around the steady detonation solution. A normal 
mode approach with exponential time dependent pertur-
bations and complex growth rate parameter is adopted
and standard techniques are used to deduce the stabil-
ity equations as well as initial and boundary conditions.
The details are omitted here due to the space limitations. 
The reader is addressed to Ref. [10] and the references 
therein cited for the a comprehensive study on the det-
onation satbility.
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Figure 1.—Detonation wave profile (exothermic chemical 
reaction) for the mixture pressure p.

Figure 2.—Detonation wave profile (endothermic chemical 
reaction) for the mixture pressure p.
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 The initial boundary value problem describing the 
detonation stability has been numerically treated in Ref. 
[10], using a rather involved numerical scheme that com-
bines an iterative shooting technique  with the argument 
principle. For a given set of thermodynamical and chemi-
cal parameters describing the steady detonation solution, 
the disturbances of the state variables have been deter-
mined in a given rectangular domain of the growth rate 
parameter, and detailed information about the instability 
parameter regimes have been provided.
 Figure 3 represents the stability boundary in the pa-
rameter plane defined by  the reaction heat  and for-
ward activation energy .
 In this representation, a pair  in the stabil-
ity zone indicates that for the corresponding values of 
the reaction heat and activation energy, no instability 
modes have been found. Conversely, a pair in the insta-
bility zone indicates that for the corresponding values 
of the reaction heat and activation energy, one instabil-
ity mode, at least, has been found. Moreover, Figure 3 
reveals that for a fixed value of the activation energy, the 
detonation becomes stable for larger values of the reac-
tion heat, whereas for a fixed value of the reaction heat, 
the detonation becomes stable for smaller values of 
the activation energy. These results are consistent with 
known experimental works and numerical simulations 
[12], in the sense that increasing the reaction heat, or 
decreasing the activation energy, tends to stabilize the 
detonation.

5 sIMple reactIng spheres Model

The simple reacting spheres model considers hard-sphere 
cross sections for elastic collisions and reactive cross sec-
tions with activation energy, of hard-spheres type. The 
molecules behave as if they were single mass points with 

two internal states of excitation. Collisions may alter the 
internal states and this occurs when the kinetic energy as-
sociated with the reactive motion exceeds the activation
energy. 
 The kinetic theory of simple reacting spheres (SRS) 
has been developed in Ref. [13] for a quaternary mix-
ture  with the assumptions of no mass exchange 
( , ) and no alteration of particle diameters 
( , ). Further advances concerning essentially 
physical and mathematical properties of the SRS sytem 
and existence theory for the partial differential equations 
of the model have been considered in Refs. [14,15,16,17]. 
The SRS  theory has been extended in Ref. [18], with no 
restrictions on the molecular masses and diameters, and 
a global existence result has been stated.
 The SRS modelling refers to the reactive mixture 
introduced in Section 2, whose particles undergo the 
reversible bimolecular reaction (1). The reactive Boltz-
mann equations for this mixture have the general form 
of Eqs. (2) but the collisional terms are corrected for the 
occurrence of reactive encounters. More specifically, the 
elastic operator contains a correction term which sub-
tracts from the total number of collisions those events 
that lead to chemical reaction. As before, we assume that  
collisions take place when the particles are separated by 
a distance  or , but only 
those particles such that the kinetic energy of the rela-
tive motion is greater than the activation energy of the 
chemical reaction can collide with chemical reaction.
 The collision terms are given by (see Ref. [18] for a 
detailed derivation)

  

   

   

  

   .

Above, the primes indicate post collisional states, 
 is a reduced mass of the colliding 

pair,  is a threshold velocity for  the chemical 
reaction,  the Heaviside step function, and  the steric 
factor. The second term in the right-hand side of Eq. (33) 
is the correction term that excludes from the total num-
ber of collisions those events that lead to chemical reac-
tion when the kinetic energy of the colliding particles is 
greater than the activation energy.
 The SRS model possesses important mathematical 
properties. At the microscopic level, the model incor-
porates the correct detailed balance and microscopic re-

(33)

(34)

versibility principle, that is direct and reverse collisions 
of both elastic and reactive types occur with the same 
probability. At the macroscopic level, the SRS model has 
good consistency properties (Subsection 2.2) concerning 
correct chemical exchange rates, conservation laws, en-
tropy production, -function and trend to equilibrium.
 Both microscopic and macroscopic properties assert-
ing the consistency of the SRS model are crucial for the 
mathematical analysis of the system of partial differen-
tial equations of the SRS model. In particular, existence, 
uniqueness, and stability results can be investigated on 
the basis of such properties.

6 exIstence result for the srs Model

In this section, the global existence result of Ref. [18], for 
the extended Boltzmann equations (2), (33) and (34) of 
the SRS model, is revisited. The proof of the theorem is 
based on the renormalized theory proposed by DiPer-
na and Lions in Ref. [19] for the inert one-component 
Boltzmann equation, and then followed in Ref. [16] for a 
reactive mixture such that reactive collisions do not cause 
neither mass transfer nor molecular diameter alteration. 
The general idea of the proof is here sketched.
 We introduce the notation ,  to represent the 
gain and loss terms of the elastic collision operator, and 

,  with analogous meaning, so that

.

6.0.1 Definition [Mild solution].—Non-negative 
functions  define a mild solution 
of the system (2), (33–34) if, for each , the gain 
and loss terms , , ,  are in , a.e. in 

 and

 

        

where  and similarly for  
and .

6.0.1 Theorem [Global existence result].—Assume 
that for , the initial distributions  are 
such that

 

with . Then, there exists a non-neg-
ative mild solution  of the system (2), (33–34) 
with  , such that , 
for  .

The result expressed in Theorem 6.0.1 states the exist-
ence of a global in time, spatially inhomogeneous, and 

(35)

(36)

 solution for the SRS model, provided that the initial 
mass, momentum, total energy and entropy are finite, as 
assumed in hypothesis (36).

Sketch of the proof of Theorem 6.0.1.—The proof of 
Theorem 6.0.1 follows similar arguments as in Ref. [16]. 
It is based on the following tools [19,16].

(i) A priory estimations of type

 

that are obtained from the conservation laws of total 
mass, momentum and total energy, as well as from a suit-
able entropy identity (see Ref. [18]). Bounds (37) assure 
that there is no infinite concentration of densities in the 
system governed by Eqs. (2), (33–34).

(ii) Velocity averaging results that, in some sense, trans-
fer the regularity of functions  for velocity averaged 
quantities, such as the macroscopic variables, see Ref. 
[20]. Velocity averaging results compensate the lack of 
regularity of the non-linear collision terms.

(iii) Renormalized theory [19], that considers a suita-
ble notion of mild solution, see Definition 6.0.2 below. 
The method of renormalization introduces a nonlinear 
change of variable that reformulates the Boltzmann equa-
tions (2), (33–34) to an equivalent form, provided that 
certain bounds are satisfied, see Lemma 6.0.1.

6.0.2 Definition [Renormalized solution].—Non-
-negative functions  are renormal-
ized solutions of the system (2), (33–34) if

 

 

in the sense of distributions on .

6.0.1 Lemma.—
Non-negative functions  are 
renormalized solutions of the system (2), (33–34) if and 
only if they are mild solutions and

.

Then the central idea of the proof is to define suitable 
approximate collision terms  and , with , 
satisfying the main consistency properties of  and  , 
such that the approximate problems

  

  

(37)
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can be studied with known methods for PDE’s (semi-
group techniques have been used, see [16] for details). 
Then one takes the weak limit  and uses sta-
bility results to show that the sequence  
converges to a renormalized solution of the system (2), 
(33–34). A crucial part in this passage to the limit is the 
estimation of the renormalized collision terms, for which 
the velocity averaging results provide an important tool.

6.0.1 Remark [Relevance of Theorem 6.0.1].—The 
existence result stated in Theorem 6.0.1 has important 
implications at the level of approximation questions.

6.0.2 Remark [Future perspectives].—The spatially 
homogeneous theory of the SRS model, in which the dis-
tribution functions do not depend on the  variable, is a 
topic of great interest. Some advances have been made in 
view of studying existence of solutions, uniqueness and 
stability results for the homogeneous reactive equations.
 Another regime of interest corresponds to the case 
in which the distribution functions are assumed very 
close to the equilibrium. In this case, one considers the 
linearized version of the SRS model around an equilib-
rium solution and uses the spectral properties of the lin-
earized collision operators to prove existence and stabil-
ity of close to equilibrium solutions for the SRS system.
Some studies have been developed also in this direction. 
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On the Fourier-Stieltjes transform of 
Minkowski’s question mark function and 
the Riemann hypothesis: Salem’s type 
equivalences
by Semyon Yakubovich*

1 IntroductIon and auxIlIary results

In this presentation we pay tribute to the work in analysis 
and analytic number theory of the famous mathematician 
Raphaël Salem (1898–1963). Precisely, we will extend his 
approach to study Fourier-Stieltjes coefficients behavior 
at infinity with singular measures. In particular, we will 
prove an equivalent proposition related to the known 
and still unsolved question posed by Salem in [8], p. 439 
whether Fourier-Stieltjes coefficients of the Minkowski’s 
question mark function vanish at infinity. Furthermore, 
we establish a class of Salem’s type equivalences to the 
Riemann hypothesis, which is based on Wiener’s closure 
of translates problem.
 It is well known in the elementary theory of the 
Fourier-Stieltjes integrals that if  is absolutely con-
tinuous then

 

tends to zero as , because in this case the Fourier-
Stieltjes transform  is an ordinary Fourier transform 
of an integrable function. Thus  supports a meas-
ure whose Fourier transform vanishes at infinity. Such 
measures are called Rajchman measures (see details, for 
instance, in [4]). However, when  is continuous, the 
situation is quite different and the classical Riemann-
Lebesgue lemma for the class , in general, cannot be 
applied. The question is quite delicate when it concerns 
singular monotone functions (see [11], Ch. IV). For
such singular measures there are various examples and 

(1)

the Fourier-Stieltjes transform need not tend to zero, 
although there do exist measures for which it goes to 
zero. For instance, Salem [8,10] gave examples of sin-
gular functions, which are strictly increasing and whose 
Fourier coefficients still do not vanish at infinity. On the 
other hand, Menchoff in 1916 [5] gave a first example of 
a singular distribution whose coefficients vanish at in-
finity. Wiener and Wintner [17] (see also [2]) proved in 
1938 that for every  there exists a singular mono-
tone function such that its Fourier coefficients behave 
as .
 Our goal here is to construct some Rajchman’s meas-
ures, which are associated with continuous functions of 
bounded variation. In particular, we will prove  that the 
famous Minkowski’ s question mark function  [1] is 
a Rajchman measure if and only if its Fourier-Stieltjes 
transform has a limit at infinity, and then, of course, the 
limit should be zero. This probably can give an affirma-
tive answer on the question posed by Salem in 1943 [8}.
 The Minkowski question mark function 

 is defined by [1]

,

where  stands for the representation of 
 by a regular continued fraction. We will keep the no-

tation , which was used in the original Salem’s paper 
[8], mildly resisting the temptation of changing it and 
despite this symbol is quite odd to denote a function 
in such a way.  It is well known that  is continuous, 

(2)
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