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Sympletic surface group representations
and Higgs bundles
by Peter Gothen*

1. IntroductIon

A surface group is the fundamental group of a surface. In 
this article we survey some results on representations of 
a surface group on a real vector space preserving a sym-
plectic form.  We emphasize in particular some results 
which have been obtained using holomorphic and alge-
braic geometry, through the use of Higgs bundles and 
a fundamental result known as the non-abelian Hodge 
Theorem. Though this theory itself is rather involved, the 
results on surface group representations can be explained 
without bringing it into play and this is one of our main
aims.
 This paper is organized as follows. After some pre-
liminaries, we start by focusing on the case of represen-
tations in ℝ􏺾􏺾 with its standard symplectic form. Here 
we explain some seminal results of W. Goldman which 
are closely related to uniformization of surfaces by the 
hyperbolic plane.
 We then move on to higher dimensional representa-
tions and explain some results which generalize those of 
Goldman and also point out some differences with the 
2-dimensional situation.
 Finally, we briefly outline how methods from ho-
lomorphic and algebraic geometry can be applied to the 
study of surface group representations through Higgs 
bundles and the non-abelian Hodge Theorem. This beau-
tiful theory involves algebra, geometry, topology and 
analysis and has a long history. A few important mile-
stones can be found in the work of Narasimhan-Seshadri 
[22], Atiyah-Bott [1], Donaldson [5], Hitchin [17], Cor-
lette [4] and Simpson [24].
 We have left out many important and fascinating as-
pects of surface group representations. To finish this in-
troduction we mention a few places where the interested 
reader may find further information and references and 
also other points of view. Nice surveys are provided in 
Goldman [14] (emphasizing the point of view of geomet-
ric structures on surfaces) and Burger-Iozzi-Wienhard
[3] (emphasizing methods from bounded cohomology). 
For an application of Higgs bundle theory to representa-

tions in isometry groups of hermitian symmetric spaces 
of the non-compact type, see the survey [2].

2. Surface group repreSentatIonS 
and character varIetIeS

Let Σ be a compact oriented surface without boundary 
of genus 𝑔𝑔. The fundamental group of Σ has the stand-
ard presentation

𝜋𝜋􏺽􏺽Σ = ⟨𝑎𝑎􏺽􏺽, 𝑏𝑏􏺽􏺽, … , 𝑎𝑎𝑔𝑔, 𝑏𝑏𝑔𝑔 ∣ ∏􏺽􏺽􏺽􏺽􏺽􏺽𝑔𝑔[𝑎𝑎􏺽􏺽, 𝑏𝑏􏺽􏺽] = 􏺽􏺽􏺽

in terms of generators and relations.
 Let 𝐺𝐺 be a connected semisimple Lie group. In 
this paper we are mainly interested in the case when 
𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is the real symplectic group but we shall 
also have occasion to consider the cases 𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺𝐺 𝐺𝐺 and 
𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐺𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. Since all of these groups 
are defined via a linear action on a vector space, the mo-
tivation for the following definition is clear
Definition 2.1.—A representation of 𝜋𝜋􏺽􏺽Σ in 𝐺𝐺 is a ho-
momorphism

𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → 𝐺𝐺.
In view of (2.1) a representation 𝜌𝜌 is uniquely prescribed 
by a 􏺾􏺾􏺾􏺾-tuple (𝐴𝐴􏺽􏺽, 𝐵𝐵􏺽􏺽, … ,𝐴𝐴𝑔𝑔, 𝐵𝐵𝑔𝑔) of matrices in 𝐺𝐺 satisfy-
ing the relation ∏[𝐴𝐴𝑖𝑖, 𝐵𝐵𝑖𝑖] = 􏺽􏺽. Thus, if we denote  the set 
of all representations by

Hom(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺 𝐺 𝐺𝐺𝐺 𝐺 𝜋𝜋􏺽􏺽Σ → 𝐺𝐺𝐺.

we get an identification

Hom(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺 𝐺 􏿺􏿺(𝐴𝐴􏺽􏺽, 𝐵𝐵􏺽􏺽, … ,𝐴𝐴𝑔𝑔, 𝐵𝐵𝑔𝑔𝐺

           ∣ ∏􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽[𝐴𝐴􏺽􏺽, 𝐵𝐵􏺽􏺽] = 􏺽􏺽􏿽􏿽 ⊂ 𝐺𝐺
􏺾􏺾􏺽􏺽

.

with a subspace of the set of 􏺾􏺾􏺾􏺾-tuples of matrices in 𝐺𝐺.

3. fuchSIan repreSentatIonS

Consider the upper half plane model of the hyperbolic 
plane

ℍ􏺾􏺾 = {𝑧𝑧 = 𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧 𝑧 𝑧𝑧 𝑧 𝑧𝑧𝑧.

The metric is 𝑑𝑑𝑑𝑑􏺾􏺾 = (𝑑𝑑𝑑𝑑􏺾􏺾 + 𝑑𝑑𝑑𝑑􏺾􏺾)/𝑑𝑑􏺾􏺾 which has constant cur-
vature −􏺽􏺽. The group of orientation preserving isometries 
of ℍ􏺾􏺾 can be identified with PSL(􏺾􏺾􏺾􏺾􏺾, acting on ℍ􏺾􏺾 via 

(2.1)

(2.2)

This is a very iterative process, even though in terms 
of disciplines you have people doing machine learning, 
optimization, etc., but clearly there are interactions that 
have to be effective.

Your research topic – Computational Sustainability - 
involves very different areas.
Yes, we have a very interdisciplinary group, which 
involve mathematicians, biologists, sociologists, 
computer scientists, and that’s exactly the point of our 
project.

You succeed in a very competitive society. What 
are your recommendations for those who aspire to 
become leaders on their research field? 
Be passionate about your research. Always set high-
standards, have the courage to ask and address very 
hard and risky questions, since those are the most 
rewarding when you succeed. Be driven and committed. 
Work hard, very hard. Focus on important questions 
and not trivial ones, and be obsessed about that. For 
women, you need to be really confident and positive, 
since they tend to think they are not good enough. 
Challenge yourself. In terms of research topics it is very 
important to know what the community is doing and to 
be aware of the hard topics, not only for you to follow 
the literature, but at the same time for you to have a 

chance to pose different questions, but related to those 
of the community. Sometimes you do not really know 
the answers to your problems, but you need to be able 
to deal with this kind of uncertainty. One thing that is 
very important is collaborations and networking. That it 
is how you make progress in research, how you bridge 
together areas that are completely different and that will 
generate fundamental new ways to solve the problems. 
For the young people, it is important to network, go 
to conferences, to try to interact with researchers, 
to actively look for collaborations, to get involved in 
research projects, to network a lot, to travel a lot, to 
be on program committees, etc. Basically, you need to 
learn how to “sell your work”, which means that it is 
important to do great work, but it is also very important 
to be able to talk about your work in a way that’s going 
to be easy to communicate with people. You need to 
learn how to give talks that are going to be appealing, 
that people find exciting, so they can get interested and 
follow up on your work. Write beautiful papers. Publish 
a lot, otherwise you may perish. It is often good to do 
a Pos-doc so that you can go and collaborate and get a 
lot of research going. Finally, make your own luck, your 
serendipity, and create opportunities by interacting, 
collaborating and doing a lot of things, since as Louis 
Pasteur said “chance favors the prepared minds”.

* CMUP, Faculdade de Ciências da Universidade do Porto
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Möbius transformations:

𝑧𝑧 𝑧 𝑎𝑎𝑧𝑧 𝑎 𝑎𝑎
𝑐𝑐𝑧𝑧 𝑎 𝑐𝑐

.

for a ×􏺾􏺾-matrix

𝐴𝐴 𝐴 􏿴􏿴 𝑎𝑎 𝑎𝑎𝑐𝑐 𝑐𝑐 􏿷􏿷 ∈ SL(􏺾􏺾􏺾􏺾􏺾􏺾

A subgroup Γ ⊂ PSL(􏺾􏺾􏺾􏺾􏺾 is Fuchsian if it is discrete. In 
this case the orbit space ℍ􏺾􏺾/Γ is a surface of constant neg-
ative curvature. If ℍ􏺾􏺾/Γ is compact, it must have genus 
at least 2, as follows from the Gauss-Bonnet Theorem.
 Conversely, assume that Σ is a compact oriented sur-
face without boundary of genus 𝑔𝑔 𝑔 𝑔𝑔. Then Σ admits a 
hyperbolic metric and is therefore locally isometric to 
ℍ􏺾􏺾 . The local isometries patch together to give the glob-
ally defined developing map

Σ̃ → ℍ􏺾􏺾,

where Σ̃ → Σ is the universal cover. This map is a ho-
meomorphism and therefore we obtain a Fuchsian rep-
resentation

𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → PSL(􏺾􏺾􏺾􏺾􏺾

an a corresponding isometry

Σ ≅ ℍ􏺾􏺾/𝜋𝜋􏺽􏺽Σ.

4. reductIve repreSentatIonS and the   
 character varIety

Suppose that 𝐺𝐺 is a linear group with a defining funda-
mental representation 𝑉𝑉 , such as all of the previously 
mentioned groups (with the exception of PSL(􏺾􏺾􏺾􏺾􏺾). It 
is then clear what we should mean by a reductive (or 
semisimple) representation. Namely, it should be one for 
which the fundamental representation 𝑉𝑉  is semisimple, 
i.e., such that each invariant subspace has an invariant 
complement.{1} We denote by

Hom+(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺 𝐺 Hom(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺
the subspace of reductive representations.
 Of course we should consider representations equiv-
alent if they correspond under some change of basis in 
the fundamental representation 𝑉𝑉 . Therefore we make 
the following definition.

Definição 4.1.—Representations 𝜌𝜌􏺽􏺽 and 𝜌𝜌􏺾􏺾 are isomor-
phic if there exists a 𝑔𝑔 𝑔 𝑔𝑔 such that

𝜌𝜌􏺽􏺽(𝛾𝛾𝛾 𝛾 𝛾𝛾𝜌𝜌􏺾􏺾(𝛾𝛾𝛾𝛾𝛾
−􏺽􏺽            for all 𝛾𝛾 𝛾 𝛾𝛾􏺽􏺽Σ.

We wish to consider the set of all isomorphism classes 
of representations. For technical reasons, which we shall 
explain below, we restrict attention to reductive repre-
sentations.

Definição 4.2.—The character variety for representa-
tions of 𝜋𝜋􏺽􏺽Σ in 𝐺𝐺 is the orbit space

ℛ(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺 𝐺 𝐺𝐺𝐺
+(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺𝐺𝐺𝐺,

where 𝐺𝐺 acts by overall conjugation:

𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−􏺽􏺽          for 𝛾𝛾 𝛾 𝛾𝛾􏺽􏺽Σ.

Since by (2.2), the space Hom+(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺  is contained 
in 𝐺𝐺􏺾􏺾􏺾􏺾 it has a natural topology and we give ℛ(Σ,𝐺𝐺𝐺 
the quotient topology. The restriction to reductive 
representations makes it possible to show that in this 
topology the character variety is Hausdorff.
 There is a very natural notion of deformation equiva-
lence of representations 𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → 𝐺𝐺 which can be con-
veniently encoded in the language of character varieties. 
Two representations 𝜌𝜌􏺼􏺼 and 𝜌𝜌􏺽􏺽 are said to be deformation 
equivalent if there is a continuous family of representa-
tions 𝜌𝜌𝑡𝑡 ∶ 𝜋𝜋􏺽􏺽Σ → 𝐺𝐺, 𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡 𝑡𝑡𝑡 connecting them. Since 𝐺𝐺 
is connected we have the following result.

Proposition 4.3.—Two representations 𝜌𝜌􏺼􏺼 and 𝜌𝜌􏺽􏺽 are 
deformation equivalent if and only if the points they rep-
resent in the character variety ℛ(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺 belong to the 
same connected component.

Thus, if we wish to classify representations of 𝜋𝜋􏺽􏺽Σ up to 
deformation equivalence, we are actually looking to de-
termine the set of path connected components

𝜋𝜋􏺼􏺼(ℛ(𝜋𝜋􏺽􏺽Σ,𝐺𝐺𝐺𝐺.

5. InvarIantS of repreSentatIonS

Let 𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → 𝐺𝐺 be a representation. We shall associate 
an invariant 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐􏺽􏺽𝐺𝐺 as follows. Let 􏾪􏾪𝐺𝐺 be the univer-
sal covering group of 𝐺𝐺. Then we have an exact sequence

􏺽􏺽 􏺽 􏺽􏺽􏺽􏺽𝐺𝐺 􏺽 􏾪􏾪𝐺𝐺
𝑝𝑝
−􏺽 𝐺𝐺 􏺽 􏺽􏺽.

Take elements �̃�𝐵𝐴𝐴𝑖𝑖, �̃�𝐵𝑖𝑖 ∈ 􏾪􏾪𝐺𝐺  such that

𝑝𝑝𝑝 �̃�𝐵𝐴𝐴𝑖𝑖) = 𝜌𝜌𝑝𝜌𝜌𝑖𝑖)     and     𝑝𝑝𝑝􏾪􏾪𝐵𝐵𝑖𝑖) = 𝜌𝜌𝑝𝜌𝜌𝑖𝑖).

The invariant is then defined as

𝑐𝑐𝑐𝑐𝑐𝑐 𝑐 ∏𝑔𝑔
𝑖𝑖𝑐𝑖𝑖[�̃�𝐵𝐴𝐴𝑖𝑖,􏾪􏾪𝐵𝐵𝑖𝑖] ∈ 𝜋𝜋𝑖𝑖𝐺𝐺.

Let 𝐻𝐻 𝐻 𝐻𝐻 be a maximal compact subgroup. Then 𝐺𝐺 re-
tracts onto 𝐻𝐻  and hence the invariant takes values in 
𝜋𝜋􏺽􏺽𝐻𝐻 𝐻 𝜋𝜋􏺽􏺽𝐺𝐺 . For example, if 𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, we have de-
fined an integer invariant

𝑐𝑐𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐􏺽􏺽SO𝑐􏺾􏺾𝑐 􏺾 􏺾.

In this case the invariant 𝑐𝑐𝑐𝑐𝑐𝑐 is known as the Toledo in-
variant.

Remark 5.1.—An equivalent definition of the invar-
iant can be given as follows. Given a representation 
𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → 𝐺𝐺, let 𝐸𝐸𝜌𝜌 = Σ̃ ×𝜋𝜋􏺽􏺽􏸼􏸼 𝐺𝐺  be the corresponding 
flat principal 𝐺𝐺-bundle. The invariant is defined to be 
the characteristic class 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐􏺾􏺾𝑐Σ, 𝜋𝜋􏺽􏺽𝐺𝐺𝑐 𝐺 𝜋𝜋􏺽􏺽𝐺𝐺 which 
classifies topological 𝐺𝐺-bundles.

It is clear that isomorphic representations have the same 
Toledo invariant. Hence we can define the subspace of 
the character variety consisting of representations of To-
ledo invariant 𝑑𝑑 𝑑 𝑑 to be

ℛ𝑑𝑑(𝜋𝜋􏺽􏺽Σ, (􏺾􏺾, 􏺾􏺾 􏺾 􏺾􏺾􏺾􏺾􏺾 􏺾 􏺾􏺾(􏺾􏺾􏺾 􏺾 𝑑𝑑􏺾.

6. the MIlnor-Wood InequalIty and   
 goldMan’S theoreM

For the remainder of this article, we shall assume that 
𝑔𝑔 𝑔 𝑔𝑔.
 A classical theorem of Milnor [20] states that not 
all integers are possible values for the Toledo invariant 
𝑐𝑐𝑐𝑐𝑐𝑐 of a representation 𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → SL(􏺾􏺾􏺾􏺾􏺾. To be pre-
cise, the following, usually known as the Milnor-Wood 
inequality, holds

|𝑐𝑐𝑐𝑐𝑐𝑐| 𝑐 𝑐𝑐 𝑐 𝑐𝑐.

It is natural to ask whether there is any connection be-
tween the Toledo invariant of a representation and its 
geometric properties, such as being Fuchsian. The fol-
lowing theorem of Goldman answers this affirmatively.

Theorem 6.1 [Goldman [11,12]].—A representation

𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → SL(􏺾􏺾􏺾􏺾􏺾

is Fuchsian if and only if 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐.

Remark 6.2.—One might ask what is the significance of 
the sign of the Toledo invariant. Define the matrix

𝑇𝑇 𝑇 􏿶􏿶
􏺼􏺼 􏺼􏺼
􏺼􏺼 􏺼􏺼􏿹􏿹 ∈ GL(􏺾􏺾􏺾􏺾􏺾.

Note that |𝑇𝑇| 𝑇 𝑇𝑇𝑇. One can check that conjugation 
takes representations with Toledo invariant 𝑑𝑑 to rep-
resentations with Toledo invariant −𝑑𝑑 , in other words, 
𝑐𝑐𝑐𝑐𝑐−􏺽􏺽) = −𝑐𝑐𝑐𝑐𝑐). Hence there is an identification

ℛ𝑑𝑑(𝜋𝜋􏺽􏺽Σ, SL(􏺾􏺾,􏺾􏺾􏺾 􏺾 ℛ−𝑑𝑑(𝜋𝜋􏺽􏺽Σ, SL(􏺾􏺾,􏺾􏺾􏺾
and, whenever convenient, we can restrict attention to 
𝑑𝑑 𝑑 𝑑𝑑.

Representations 𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → SL(􏺾􏺾􏺾􏺾􏺾  which satisfy 
|𝑐𝑐𝑐𝑐𝑐𝑐| 𝑐 𝑐𝑐 𝑐 𝑐𝑐 are called maximal.
 The question of deformation equivalence of repre-
sentations into SL(􏺾􏺾􏺾􏺾􏺾 was also answered by Goldman.

Theorem 6.3 [Goldman [13]].—For any 𝑑𝑑 with 
|𝑑𝑑| 𝑑 𝑑𝑑 𝑑 𝑑𝑑, the space ℛ𝑑𝑑(𝜋𝜋􏺽􏺽Σ, SL(􏺾􏺾,􏺾􏺾􏺾 is connected. If 

|𝑑𝑑| 𝑑 𝑑𝑑 𝑑 𝑑𝑑, the space ℛ𝑑𝑑(𝜋𝜋􏺽􏺽Σ, SL(􏺾􏺾,􏺾􏺾􏺾 has 􏺾􏺾􏺾􏺾􏺾􏺾 connect-
ed components.

Goldman also proved that each of the 􏺾􏺾􏺾􏺾􏺾􏺾 connected 
components of ℛ𝑔𝑔𝑔𝑔𝑔(𝜋𝜋𝑔𝑔Σ, SL(􏺾􏺾,􏺾􏺾􏺾  project isomorfically 
onto a unique connected component of ℛ(𝜋𝜋􏺽􏺽Σ, PSL(􏺾􏺾,􏺾􏺾􏺾 
under the natural map 

ℛ(𝜋𝜋􏺽􏺽Σ, SL(􏺾􏺾,􏺾􏺾􏺾 􏺾 ℛ(𝜋𝜋􏺽􏺽Σ, PSL(􏺾􏺾,􏺾􏺾􏺾.

Recall that the Teichmüller space 𝒯𝒯  of Σ may be viewed 
as the space of hyperbolic structures.{2} Thus, in the light 
of the discussion in Section 3,

 𝒯𝒯 𝒯 􏿺􏿺𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → PSL(􏺾􏺾􏺾􏺾􏺾
    ∣ 𝜌𝜌 is Fuchsian 􏿽􏿽/PSL(􏺾􏺾􏺾􏺾􏺾,

where PSL(􏺾􏺾􏺾􏺾􏺾 acts by overall conjugation as in (4.1). 
Hence it follows from Goldman’s Theorem that each of 
the components of maximal representations can be iden-
tified with Teichmüller space.

7. repreSentatIonS In the SyMplectIc group

Let (𝑥𝑥􏺽􏺽, 𝑦𝑦􏺽􏺽, … , 𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛)  be coordinates on ℝ􏺾􏺾􏺾􏺾. The real 
symplectic group Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 is the group of linear trans-
formations of ℝ􏺾􏺾􏺾􏺾 which preserve the standard sym-
plectic form

𝜔𝜔 𝜔 𝜔𝜔𝜔𝜔􏺽􏺽 ∧ 𝜔𝜔𝑑𝑑􏺽􏺽 ∧⋯ ∧ 𝜔𝜔𝜔𝜔𝑛𝑛 ∧ 𝜔𝜔𝑑𝑑𝑛𝑛.

In particular, Sp(􏺾􏺾􏺾􏺾􏺾 􏺾 S􏺾(􏺾􏺾􏺾􏺾􏺾 . It turns out that cer-
tain key properties of representations 𝜋𝜋􏺽􏺽Σ → SL(􏺾􏺾􏺾􏺾􏺾 
generalize to representations in Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 . However 
there are also some important differences.
 Note that the maximal compact subgroup of 
Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 is the unitary group U(𝑛𝑛𝑛. Hence the topolog-
ical invariant of representations 𝜋𝜋􏺽􏺽Σ → Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 takes 
values in

𝜋𝜋􏺽􏺽U(𝑛𝑛𝑛 𝑛 𝑛.

There is also a Milnor-Wood type inequality for rep-
resentations in the symplectic group, which states that

|𝑐𝑐𝑐𝑐𝑐𝑐| 𝑐 𝑐𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐𝑐

for any representation 𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 . This ine-
quality—as well as other generalizations—is the result 
of the work of many people, we mention the general re-
sults of Dupont [6] and the result of Turaev [25] which 
gives (7.1) in its sharp form.
 Just as for the case 𝑛𝑛 𝑛 𝑛𝑛, representations of the form 
𝜋𝜋􏺽􏺽Σ → Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 with |𝑐𝑐𝑐𝑐𝑐𝑐| 𝑐 𝑐𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐𝑐 are called maxi-
mal.
 The question of deformation equivalence of repre-
sentations in Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 for general 𝑛𝑛 so far only has a 
complete answer for maximal representations. We have 
the following results.

(7.1)

(4.1)

(5.1)

(6.1)

(6.2)

{1}  In general one may define a representation 𝜌𝜌 to be semisimple if the linear representation obtained by 
composing 𝜌𝜌 with the adjoint representation Ad∶ 𝐺𝐺 𝐺 A𝐺𝐺𝐺𝐺𝐺𝐺 of 𝐺𝐺 on its Lie algebra 𝔤𝔤 is semisimple.
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Theorem 7.1 [[15]].—The character variety 

ℛ􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾𝜋𝜋􏺾􏺾Σ, Sp􏺾􏻀􏻀,􏻀􏺾􏺾

has 􏺿􏺿 􏺿 􏺿􏺿􏺿􏺿􏺾􏺾 + 􏺿􏺿􏺾􏺾 􏺾 􏺾􏺾 connected components.

Theorem 7.2 [[10]].—Assume that 𝑛𝑛 𝑛 𝑛𝑛. Then the char-
acter variety

ℛ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜋𝜋𝑛𝑛Σ, Sp𝑛􏺾􏺾𝑛𝑛,􏺾𝑛𝑛

has 􏺿􏺿 􏺿 􏺿􏺿􏺿􏺿􏺾􏺾 connected components.

One might expect ℛ𝑑𝑑(𝜋𝜋􏺽􏺽Σ, Sp(􏺾􏺾􏺾􏺾,􏺾􏺾􏺾 to be connected for 
|𝑑𝑑| 𝑑 𝑑𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑. However, so far this has only been proved 
for 𝑛𝑛 𝑛 𝑛𝑛, by García-Prada and Mundet [9].
 Some of the components of maximal representations 
are natural generalizations of Teichmüller space which, 
as we have seen, appears as the components of maximal 
representations for 𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. These are known as 
Hitchin components and were first studied by Hitchin 
[18]. To explain this, write 𝕍𝕍 𝕍 𝕍􏺾􏺾 for the standard 2-di-
mensional representation of SL(􏺾􏺾􏺾􏺾􏺾. The 𝑚𝑚-fold sym-
metric power

𝑆𝑆𝑚𝑚𝕍𝕍 𝕍 𝕍𝕍⊗𝑚𝑚

is an irreducible representation of SL(􏺾􏺾􏺾􏺾􏺾 of dimension 
𝑚𝑚 𝑚 𝑚𝑚. The standard symplectic form 𝑑𝑑𝑑𝑑􏺽􏺽 ∧ 𝑑𝑑𝑑𝑑􏺾􏺾 on ℝ􏺾􏺾 in-
duces a non-degenerate bilinear form 𝜔𝜔 on the symmet-
ric power 𝑆𝑆𝑚𝑚𝕍𝕍 which is antisymmetric when 𝑚𝑚 is odd 
(and symmetric when 𝑚𝑚 is even). Hence, for 𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚 , 
𝜔𝜔 is a symplectic form on 𝑆𝑆𝑚𝑚𝕍𝕍 𝕍􏺾􏺾􏺾􏺾 and we have a natu-
ral embedding

𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟.

Definition 7.3.—A representation 𝜌𝜌 𝜌 𝜌𝜌􏺽􏺽Σ → Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 
is called a Hitchin representation if it is deformation 
equivalent to a representation of the form 𝑟𝑟 𝑟 𝑟𝑟􏺼􏺼, where 
𝜌𝜌􏺼􏺼 ∶ 𝜋𝜋􏺽􏺽Σ → SL(􏺾􏺾􏺾􏺾􏺾 is Fuchsian.

Hitchin [18] proved that there are exactly 􏺾􏺾􏺾􏺾􏺾􏺾 connect-
ed components of ℛ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜋𝜋𝑛𝑛Σ, Sp𝑛􏺾􏺾𝑛𝑛,􏺾𝑛𝑛 consisting of 
Hitchin representations. In complete analogy with the 
case 𝑛𝑛 𝑛 𝑛𝑛 , these components are all homeomorphic 
to a euclidean space ℝ𝑁𝑁  and projectively equivalent to 
a unique connected component of representations in 
PSp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 . These components are the Hitchin com-
ponents referred to above. However, in contrast to the 
case of 𝑛𝑛 𝑛 𝑛𝑛, non-Hitchin components exist for 𝑛𝑛 𝑛 𝑛𝑛, 
as follows from the result of Hitchin just mentioned and 
Theorems 7.1 and 7.2.
 There are other ways in which maximal represen-
tations in Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾  share properties with representa-
tions in SL(􏺾􏺾􏺾􏺾􏺾. Recall that the mapping class group of 
Σ acts properly discontinuously on Teichmüller space. 

{2}  This identification is a consequence of Riemann’s uniformization Theorem.

Generalizing this fact, it was proved by Labourie [19] 
and Wienhard [26], that the mapping class acts properly 
discontinuously on the whole space ℛ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜋𝜋𝑛𝑛Σ,𝐺𝐺𝑛 of 
maximal representations.

8. hIggS bundleS

In this final section we briefly outline how methods from 
holomorphic and algebraic geometry provide insights 
leading to some of the above mentioned results on sur-
face group representations.
 The first step is to equip the surface Σ with a com-
plex structure, i.e. local coordinate systems taking val-
ues in ℂ with biholomorphic coordinate changes. This 
makes Σ into a Riemann surface which we shall denote 
by 𝑋𝑋.
 We shall assume that the reader is familiar with the 
basic language of complex manifolds and holomorphic 
bundles (see, e.g., Miranda [21] or Griffiths-Harris [7]). 
However, we briefly recall a couple of central notions.
 Let 𝐸𝐸 𝐸 𝐸𝐸  be a rank 𝑛𝑛 holomorphic vector bundle. 
Roughly speaking, this is a holomorphic family of com-
plex vector spaces 𝐸𝐸𝑥𝑥 parametrized by 𝑥𝑥 𝑥 𝑥𝑥 which lo-
cally looks like the trivial product family 𝑋𝑋 𝑋 𝑋𝑚𝑚. The 
rank of 𝐸𝐸, denoted by rk(𝐸𝐸𝐸 is the dimension of the vec-
tor spaces 𝐸𝐸𝑥𝑥. A holomorphic vector bundle of rank one 
is called a line bundle.
 The determinant bundle det(𝐸𝐸𝐸 of a rank 𝑛𝑛 vector 
bundle 𝐸𝐸 𝐸 𝐸𝐸  is a holomorphic line bundle naturally as-
sociated to 𝐸𝐸. It has the property that there is a canonical 
identification of fibres det(𝐸𝐸𝐸𝑥𝑥 ≅ Λ

𝑛𝑛𝐸𝐸𝑥𝑥, where the latter 
denotes the top exterior power of the vector space 𝐸𝐸𝑥𝑥.
 A section of a holomorphic vector bundle 𝐸𝐸 𝐸 𝐸𝐸  is 
a holomorphic map 𝑠𝑠 𝑠 𝑠𝑠 𝑠 𝑠𝑠 such that 𝑠𝑠𝑠𝑠𝑠𝑠 𝑠 𝑠𝑠𝑠𝑠 for all 
𝑥𝑥 𝑥 𝑥𝑥 . We denote by 𝐻𝐻􏺼􏺼(𝑋𝑋𝑋 𝑋𝑋𝑋 the space of sections of 
𝐸𝐸 𝐸 𝐸𝐸 .
 The canonical bundle 𝐾𝐾 𝐾 𝐾𝐾 is by definition the ho-
lomorphic cotangent bundle of 𝑋𝑋. It is a holomorphic 
line bundle. A section of 𝐾𝐾 is nothing but a holomorphic 
one-form on 𝑋𝑋.

Definition 8.1.—A Higgs bundle on 𝑋𝑋 is a pair (𝐸𝐸𝐸𝐸𝐸 , 
where 𝐸𝐸 𝐸 𝐸𝐸  is a holomorphic vector bundle and 

Φ ∈ 𝐻𝐻􏺼􏺼(𝐾𝐾 𝐾 𝐾𝐾𝐾(𝐾𝐾𝐾𝐾

is a holomorphic 1-form on 𝑋𝑋 with values in the bundle 
End(𝐸𝐸𝐸 of endomorphisms of 𝐸𝐸.

We can view the Higgs field Φ as a holomorphic bundle 
map Φ ∶ 𝐸𝐸 𝐸 𝐸𝐸 𝐸 𝐸𝐸. Higgs bundles (𝐸𝐸􏺽􏺽, Φ􏺽􏺽) and (𝐸𝐸􏺾􏺾, Φ􏺾􏺾) 
are isomorphic if there is an isomorphism 𝐸𝐸􏺽􏺽 ≅ 𝐸𝐸􏺾􏺾 inter-
twining the Higgs fields Φ􏺽􏺽 and Φ􏺾􏺾.

 There is an integer invariant, called the degree of 𝐸𝐸 
and denoted by deg(𝐸𝐸𝐸 which topologically classifies the 
vector bundle. It can be identified with the total num-
ber of zeros and poles of any meromorphic section of 
the line bundle det(𝐸𝐸𝐸, taking into account multiplicities. 
The degree has the following useful properties. If

􏺼􏺼 􏺼 􏺼􏺼􏺽􏺽 􏺼 􏺼􏺼 􏺼 􏺼􏺼􏺾􏺾 􏺼 􏺼􏺼

is a short exact sequence of vector bundles, then
deg(𝐸𝐸𝐸 𝐸 deg(𝐸𝐸􏺽􏺽𝐸 + deg(𝐸𝐸􏺾􏺾𝐸. Moreover, if 𝐿𝐿 and 𝑀𝑀 are 
line bundles, then deg(𝐿𝐿 𝐿𝐿𝐿𝐿 𝐿 deg(𝐿𝐿𝐿 𝐿 deg(𝐿𝐿𝐿.
 The notion of degree of a vector bundle is required 
for defining the following notion of polystability of a 
Higgs bundle, which is central for the link with repre-
sentations of surface groups.

Definition 8.2.—A Higgs bundle (𝐸𝐸𝐸𝐸𝐸 with 𝐸𝐸 of de-
gree zero is polystable if every holomorphic subbundle 
𝐹𝐹 𝐹 𝐹𝐹 such that Φ(𝐹𝐹𝐹 𝐹 𝐹𝐹 𝐹 𝐹𝐹  satisfies deg(𝐹𝐹𝐹 𝐹 𝐹𝐹 and, 
moreover, if such an 𝐹𝐹 satisfies deg(𝐹𝐹𝐹 𝐹 𝐹𝐹, then there 
is a another holomorphic subbundle 𝐹𝐹⟂ ⊂ 𝐸𝐸 such that 
𝐸𝐸 𝐸 𝐸𝐸 𝐸 𝐸𝐸⟂ and Φ(𝐹𝐹⟂) ⊂ 𝐹𝐹⟂ ⊗ 𝐾𝐾.

The fundamental result linking surface group represen-
tations with Higgs bundles is the following, known as 
non-abelian Hodge Theorem. It was proved by Hitchin 
[17] and Donaldson [5] and (for more general bundles 
and also higher dimensional base varieties) by Corlette 
[4] and Simpson [23].

Theorem 8.3.—There is a bijective correspondence be-
tween isomorphism classes of reductive representations 
of 𝜋𝜋􏺽􏺽𝑋𝑋 in GL(𝑛𝑛𝑛 𝑛𝑛 and isomorphism classes of polysta-
ble Higgs bundles of rank 𝑛𝑛 and degree 0.

In order to apply these ideas to representations of 𝜋𝜋􏺽􏺽𝑋𝑋 
in Lie groups 𝐺𝐺 beyond the case of 𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺𝐺 𝐺𝐺, a more 
elaborate theory of 𝐺𝐺-Higgs bundles is required, as was 
already realized by Hitchin [17,18]. We shall not go into 
the full details of this theory here (the interested reader 
may consult, for example, [2,8].) In the case of represen-
tations of 𝜋𝜋􏺽􏺽𝑋𝑋 in the symplectic group, the relevant no-
tion is the following.
Definition 8.4.—An Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾-Higgs bundle on 𝑋𝑋 is 
a triple (𝑉𝑉𝑉 𝑉𝑉𝑉 𝑉𝑉𝑉, where 𝑉𝑉 𝑉 𝑉𝑉  is a rank 𝑛𝑛 holomorphic 
vector bundle,

 𝛽𝛽 𝛽 𝛽𝛽􏺼􏺼(𝑋𝑋𝑋 𝑋𝑋 𝑋 𝑋𝑋􏺾􏺾𝑉𝑉𝑉  and
 𝛾𝛾 𝛾 𝛾𝛾􏺼􏺼(𝑋𝑋𝑋 𝑋𝑋 𝑋 𝑋𝑋􏺾􏺾𝑉𝑉∗).

There is an obvious notion of isomorphism of 
Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 -Higgs bundles. Note also that we can view 𝛽𝛽 
and 𝛾𝛾 as holomorphic bundle maps

 𝛽𝛽𝛽 𝛽𝛽∗ → 𝛽𝛽 𝑉 𝑉𝑉 ,
 𝛾𝛾𝛾 𝛾𝛾 𝛾 𝛾𝛾∗ ⊗ 𝐾𝐾,

which are  symmetric. Hence we can associate in a natu-
ral way a Higgs vector bundle (i.e. a Higgs bundle in the  
sense of Definition 8.2) of rank 􏺾􏺾􏺾􏺾 and degree 0 by letting

𝐸𝐸 𝐸 𝐸𝐸 𝐸 𝐸𝐸∗,     Φ = 􏿶􏿶
􏺼􏺼 􏺼􏺼
𝛾𝛾 􏺼􏺼􏿹􏿹.

The non-abelian Hodge Theorem takes the following 
form in the case of representations in Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾.

Theorem 8.5.—There is a bijective correspondence be-
tween isomorphism classes of reductive representations 
of 𝜋𝜋􏺽􏺽𝑋𝑋 in Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾 of Toledo invariant 𝑑𝑑 𝑑 𝑑 and iso-
morphism classes of polystable Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾-Higgs bundles 
with rk(𝑉𝑉𝑉 𝑉 𝑉𝑉 and deg(𝑉𝑉𝑉 𝑉 𝑉𝑉.

We now illustrate the power of Higgs bundle theory by 
outlining a simple proof of the Milnor-Wood inequality 
(7.1). Let (𝑉𝑉𝑉 𝑉𝑉𝑉 𝑉𝑉𝑉 be a polystable Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾-Higgs bun-
dle with deg(𝑉𝑉𝑉 𝑉 𝑉𝑉 𝑉 𝑉𝑉. By polystability of the Higgs 
bundle (𝐸𝐸𝐸𝐸𝐸 defined in (8.1), the map 𝛾𝛾 𝛾 𝛾𝛾 𝛾 𝛾𝛾 𝛾 𝛾𝛾∗ 
must be non-zero. Let 𝑁𝑁 𝑁 𝑁𝑁  and ̃𝐼𝐼 𝐼 𝐼𝐼 𝐼 𝐼𝐼∗ be the sub-
bundles associated to the kernel and image of 𝛾𝛾 respec-
tively. Let 𝐼𝐼 𝐼 ̃𝐼𝐼 𝐼 𝐼𝐼−􏺽􏺽 ⊂ 𝑉𝑉∗. Then 𝛾𝛾 induces a non-zero 
holomorphic section �̃�𝛾 of the line bundle

det((𝑉𝑉𝑉𝑉𝑉𝑉∗ ⊗ 𝐼𝐼 ⊗ 𝐼𝐼𝑉.

which therefore has positive degree:

deg(𝑁𝑁𝑁 𝑁 deg(𝑁𝑁𝑁 𝑁 deg(𝑁𝑁𝑁 𝑁 𝑁𝑁(𝑁𝑁𝑁(𝑁𝑁𝑁𝑁 𝑁 𝑁𝑁𝑁 𝑁 𝑁𝑁.

Moreover, the subbundles 𝑁𝑁 𝑁 𝑁𝑁 and 𝑉𝑉 𝑉 𝑉𝑉 𝑉 𝑉𝑉 are both  
preserved by Φ and hence polystability gives

 deg(𝑁𝑁𝑁 𝑁 𝑁𝑁,
 deg(𝑉𝑉𝑉 𝑉 deg(𝑉𝑉𝑉 𝑉 𝑉𝑉.

Combining (8.2), (8.3) and (8.4) we obtain

deg(𝑉𝑉𝑉 𝑉 𝑉𝑉(𝑉𝑉𝑉(𝑉𝑉 𝑉 𝑉𝑉𝑉.

From this the Milnor-Wood inequality (7.1) is immedi-
ate. But a further important consequence can be drawn: 
if equality holds in (7.1) we must have rank(𝐼𝐼𝐼 𝐼 𝐼𝐼 and 
equality in (8.2). It follows that we have an isomorphism

𝛾𝛾 𝛾 𝛾𝛾 ≅−→ 𝛾𝛾∗ ⊗ 𝐾𝐾 .

In other words, 𝛾𝛾 induces a non-degenerate 𝐾𝐾-valued 
quadratic form on 𝑉𝑉! This can be used to induce a struc-
ture of orthogonal bundle on 𝑉𝑉 𝑉 𝑉𝑉−􏺽􏺽􏺽􏺽􏺽 (for any choice 
of square root of 𝐾𝐾). This gives us new invariants of rep-
resentations of surface groups in Sp(􏺾􏺾􏺾􏺾􏺾􏺾􏺾, namely the 
Stiefel-Whitney classes of the orthogonal bundle.{3} This 
explains the appearance of more connected components 

{3}  A different point of view on these invariants was provided by Guichard-Wienhard [16]

(8.1)

(8.2)

(8.3)
(8.4)
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of ℛ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜋𝜋𝑛𝑛Σ, Sp𝑛􏺾􏺾𝑛𝑛,􏺾𝑛𝑛 in Theorems 7.1 and 7.2. For 
more information, in particular on the rather delicate is-
sue of the exact count of the connected components, we 
refer to [15,10].
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