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of ℛ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝜋𝜋𝑛𝑛Σ, Sp𝑛􏺾􏺾𝑛𝑛,􏺾𝑛𝑛 in Theorems 7.1 and 7.2. For 
more information, in particular on the rather delicate is-
sue of the exact count of the connected components, we 
refer to [15,10].
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When did you realize your interest for mathematics?
My mother remembers worrying that I was late home 
from primary school one day aged 4 or 5 and she found 
me in the garden counting crocuses! I used to do a lot 
of calculating.

You did Part III Maths at Cambridge, the oldest and 
most famous mathematics examination in the world. 
What did you think about the Cambridge experience, 
in particular your mathematical education? 
I received a good education in Cambridge. Mathematics 
in Cambridge includes a lot of physics, which suited me 
well, as I’d originally intended to study Physics. So I 
learnt a lot about mechanics, waves, electromagnetism, 
fluid dynamics, and quantum mechanics, as well 
as an initiation into analysis, linear algebra, groups, 
probability, ODEs, PDEs, numerical analysis and so on.
Was there anyone who you recall as being a  major 
influence on your future choices and views?
I was particularly influenced by James Lighthill and 
Michael McIntyre, notably on the theory of waves, and 
wrote essays on solitons and on waves in stratified 
atmospheres. My director of studies John Hinch 
pointed me in good directions, like to read Hirsch and 
Smale on dynamical systems. During my final year 
Nigel Weiss and Mike Proctor welcomed me into their 
Astrophysics research seminars, which I appreciated as 
an opportunity to see what research is like.

After Cambridge you went to Princeton for a PhD. 
Why did you choose the Plasma Physics Lab?
I wanted to work on a problem of potential social value 
that was nevertheless mathematically challenging. So I 
chose plasma physics, with a view to realising controlled 
nuclear fusion energy. I wanted also to see something 
different from Cambridge: wonderful as it had been I 
was sure the world had other good things to offer. Nigel 
Weiss and Mike Proctor recommended I should go to 
Princeton Plasma Physics Laboratory.  

Who influenced you most at Princeton?
The main influences on me at Princeton were my PhD 
supervisor John Greene who gave me good problems 
to work on; John Mather whose course I attended for 
two and a half years non-stop; and fellow students 
like Rafael de la Llave with whom we met regularly to 
go through papers and books and to bring talks and 
conferences to each other’s notice.

How did you develop an interest for dynamical 
systems? 
My father copied Robert May’s 1976 Nature paper on 

chaos in population dynamics for me while I was an 
undergraduate, my director of studies recommended 
Hirsch and Smale’s book as summer reading, and 
Alistair Mees offered a Pt III project on “Period three 
implies chaos”. All these struck me as fun but not 
serious enough mathematics, so I did a Pt III project 
on wave propagation in inhomogeneous atmospheres 
instead. But in Princeton the plasma physics 
programme included an introduction to dynamical 
systems theory and I got together with a bunch of 
students mainly from the Physics department to read 
papers and books and educate each other on the topic. 
We started going to John Mather’s course, who treated 
various topics in dynamical systems theory, culminating 
in what is now called Aubry-Mather theory. We made 
day trips to a conference on Nonlinear Dynamics in 
New York in 1979 and I think that is when I decided 
nonlinear dynamics was what I wanted to do.  When 
John Greene gave a seminar three months later about 
his 1979 J Math Phys paper I asked if he could suggest 
anything similar to do and he put me on to numerical 
investigation of period doubling in area-preserving maps 
and I was hooked.

You are very much interested in the interactions 
between dynamical systems theory and concrete 
problems arising in several different areas of 
knowledge. How do you manage to talk to people 
outside mathematics?
It takes a lot of time to understand differences in use 
of language, the unstated assumptions and world-view, 
and the often huge literature, and then to formulate 
worthwhile mathematical versions of their problems. I 
do not feel particularly good at it.
Is it too hard for a mathematician to read their 
literature? 
For some topics there are good reviews or collections of 
papers setting out the subject. That is the easiest way 
in. There are also some good books, but they tend to be 
too much one author’s view or to miss the state of the 
art.

Do you share the view that there is not a clear 
distinction between pure and applied mathematics, just 
good or bad mathematics?
The usage of the terminology is unhelpful. What is 
called “applied mathematics” is often not applied to 
anything, and some “pure mathematics” is applied 
to many areas. The distinction is sometimes more 
between attention to rigour which for the purposes 
of applications can limit one’s analysis so much that 
the result is irrelevant for the original problem versus 

making approximations and plausible assumptions in 
order to get at least some form of relevant answer. Both 
approaches have their place and indeed a good analysis 
of a problem may involve moving between the two 
extremes in an iterative process that builds an answer 
that is both rigorous and relevant. The important thing 
is to be clear about what one is claiming. The other 
distinction is one of motivation: is your mathematical 
work driven by scientific problems or pure mathematical 
curiosity? Again there is a place for both.

What different cultures do you find within 
mathematics? 
Apart from the pure v. applied culture difference, there 
is the algebra v. geometry difference. Some prefer 
symbol manipulation, others pictures. I’m more on the 
geometry side but I like explicit formulae when they are 
available.

Some of your research has been strongly motivated 
by scientific problems from physics, biology and 
social sciences. Do you find any fundamental relation 
between problems in those areas?
I tend to think laterally, which can be fruitful though 
I recognise that it is also limited, as it won’t provide 
major paradigm shifts. Thus, for example, I hit on 
the idea in 1994 that the way the cochlea frequency-
analyses sound may be mode-conversion rather than 
critical layer absorption. Mode conversion seemed to be 
unknown to the physiologists and the fluid mechanics 
working in this area, though in retrospect it is what 
Andrew Huxley was proposing in 1969; but I knew 
about it from my training in plasma physics. I think it 
is the right explanation, though have not persuaded a 
suitable journal to publish my paper yet. I’m currently in 
the process, with colleague Nick Chater in the Business 
School, of trying to formulate a thermodynamics of 
economics, aided by the abstract framework of Lieb and 
Yngvason, but there is a long history of such attempts 
and it may be a mistake to force economics into a 
physics mould.

Could you describe your work trajectory, from 
renormalisation of area-preserving maps to complexity 
science and emergence phenomena? How did your 
choice of problems evolve from the previous ones?
I went to Princeton to do research in plasma physics, 
but found that basic problems like the magnetic field 
line flow in a tokamak were not understood, except in 
the axisymmetric case, for which there is a foliation 
by invariant tori. To study the question of invariant tori 
for non-symmetric perturbations, I considered area-

preserving maps. Following numerical observations of 
Kadanoff and Shenker I formulated a renormalisation 
theory for the breakup of invariant circles and verified it 
numerically. It was subsequently proved with computer-
assisted estimates by Koch, following a direction that 
I proposed in 1994 going back to the continuous-
time problem. Anyway, that led me into understanding 
the transport through the gaps of broken tori, where I 
interpreted Mather’s action difference as a flux across 
a cantorus.  I also developed a sufficient condition 
for non-existence of invariant tori that is easy to 
implement and with enough work is exhaustive. At 
IHES, Charles Tresser invited me to join a project on 
the boundary of chaos for circle maps, in which we 
proved that the boundary of complicated dynamics is 
itself complicated. At Warwick I pursued a number of 
further themes in Hamiltonian and non-Hamiltonian 
dynamics. One was stimulated by numerics presented 
at a conference by Philip Saffman on stability of 
periodic water waves, where using Hamiltonian theory 
I was able to explain his results; I followed that theme 
to also explain the diagram for instability of Karman’s 
vortex street. Another came as a by-product from a 
visit of Philip Boyland in which he introduced me to 
the topological behaviour of dynamics on surfaces: 
this led me to some nice results for example about the 
rotation set and toroidal chaos for homeomorphisms 
of the torus. Another was stimulated by breakfast with 
Serge Aubry at a workshop in Minnesota, when he 
explained his anti-integrable limit to me and I realised 
I could use the idea to prove all sorts of results about 
area-preserving maps, and also improve his results 
for some quantum-mechanical models of solid-state 
physics. Also at this time I realised I could extend my 
renormalisation theory for area-preserving maps to 
the statistical mechanics of some classical models of 
solid-state physics. Perhaps my first attempts to tackle 
complex systems came when I took over from David 
Rand management of a grant with Dave Broomhead 
on Dynamics of large-scale networks. We didn’t really 
achieve much on the subject, but it laid the seeds. 
Instead we developed an approach to extract topological 
information from time series; this was a precursor of 
what is now the very popular domain of computational 
topology. An important event was on a visit to Aubry 
he returned from a conference very excited about 
discrete breathers: spatially localised time-periodic 
solutions of networks of oscillators that physicists saw 
in numerics. He asked if we could prove their existence 
using the anti-integrable limit and I said yes and did. 
This initiated a series of results on their stability and 
interaction. In parallel I pursued a number of ideas in 
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topological dynamics, the best of which was prompted 
by happening to read Thurston and Weeks’ Scientific 
American article on Three-manifolds. I was struck by 
the example they gave of a two-manifold, namely the 
configuration space of a triple linkage, which they 
showed has genus 3. I asked myself whether the free 
dynamics of the linkage might be Anosov and following 
numerics by a PhD student Tim Hunt in Cambridge, 
managed to prove this in a certain parameter regime. In 
Cambridge I was also invited to help steer a project on 
spatially extended dynamics. I tried out an idea I had 
for responding to Sinai and Bunimovich’s challenge to 
make a coupled map lattice with non-unique phase on 
the group. One of the postdocs Guy Gielis explained to 
me some interesting stochastic systems that showed 
similar effects and I realised we could simulate them 
using coupled map lattices. This was probably my real 
entry into complex systems. Using the understanding 
gained, I proposed a mathematical formulation of the 
trendy concept of “emergence”. Actually I did this first 
in response to a new PhD student David Sanders in 
2000 when I’d just returned to Warwick, who wanted 
a project on emergence. More recently I went through 
Dobrushin’s proof of ergodicity for weakly dependent 
probabilistic cellular automata and realised it could 
be expressed more nicely in terms of a metric on 
spaces of multivariate probabilities, which I have found 
useful in talking about the amount of emergence and 
the dependence on parameters. This is just a sample 
of things I’ve worked on and how I got into them. It 
is mostly serendipitous: just happening to pick up 
something where I could see I could do something, 
putting together things I’d already understood, 
interacting with interesting people.
Is stochastic dynamics closer to real systems than 
deterministic dynamics? Do you think that that is a 
fruitful direction for future work?
My view of stochastic dynamics is that the random 
terms represent aspects of the system that we choose 
not to attempt to model more accurately. In the absence 
of further knowledge or analytical ability this can be a 
sensible approach.  Nevertheless, there are examples 
where the effect of some deterministic dynamics 
is rigorously equivalent to some noise process, the 
randomness being with respect to initial conditions, 
and then it makes sense to use the stochastic model. 
For example, a Langevin equation is widely used for the 
dynamics of slow degrees of freedom in a Hamiltonian 
system whose fast degrees of freedom are mixing. 
Anosov an I have scketched a derivation of this.

In the last few decades the number of active researchers 
and the quality of the mathematical work produced in 
Portugal has grown considerably. In your professional 
life have you ever had this perception?
It has been my privilege to interact with the dynamical 
systems group from Porto for at least 20 years and to 
supervise three PhD students from Portugal. And I’ve 
just taken on another one.

In contrast to older times, today mathematics is 
very much a collaborative effort. Do you have any 
preference between working alone or in teams? Is the 
challenge different?
There is still plenty of room in mathematics for 
single author research. But there are advantages to 
collaborations: broader perspective, shared work, wider 
dissemination.

Who is your favourite mathematician? Why?
I have many heroes, for example Moser, Arnol’d, Anosov 
and Sinai. I like what they have written and I like them 
as people (though unfortunately Arnol’d and Moser are 
no longer alive). Moser made many important advances 
in Hamiltonian dynamics; he was particularly nice 
to me, accepting me early in my career even though 
my approach was very non-standard mathematically 
and suggesting fruitful lines of research. Arnol’d was 
brilliant in a wide range of directions; he could be 
famously caustic but he was always nice to me and 
willing to answer my questions in considerable detail. 
Anosov I feel is a greatly under-rated mathematician: 
the insights he had in the 1960s about the Holder 
continuity of the foliations of hyperbolic dynamical 
systems and its implications for their measure theory 
are profound; I enjoyed making his acquaintance and 
showing him my mechanical Anosov system. Sinai I feel 
is the main architect of the theory of how deterministic 
dynamical systems can behave stochastically: he 
showed that the Markov partitions that had been 
constructed for special systems are a general feature 
of hyperbolic dynamical systems and that they give a 
correspondence of the dynamics to a generalisation of 
Markov processes called Gibbsian processes (which 
allow infinite-range but decaying memory). He has a 
very warm character and has been very supportive of 
my work. Going further back in time, I’d say Poincaré 
is my biggest hero: he developed so much interesting 
mathematics and presented it in such a readable way. 
And before him there was Newton, who was so creative, 
but apparently an awful character.

1. IntroductIon

Neurons are Nature’s solution to the problem of infor-
mation processing and information storage. Nervous sys-
tems have been engineered by evolution to sense informa-
tion from the environment, process this information and 
store experiences for the purpose of improving future 
decisions. Ubiquitous in all these stages is the necessity 
of information buffers. In the case of mammals, there are 
different mechanisms providing storage in a wide range 
of time scales: from the ephemeral facilitation of a syn-
apse to the life-long memories of childhood. As expected, 
neuronal dynamics are an extremely rich subject from a 
mathematically point of view. In this paper we focus on a 
model for a short-term memory mechanism called work-
ing memory. Regions of the mammal brain engaged in 
providing this functional resource are capable of retain-
ing neuronal spatial patterns of activity for the duration 
of a few seconds. Basically, working memory provides 
a temporary buffer where information is held for short-
time, while it is being actively used in cognitive tasks; 
this information can then be passed on to longer-term 
storage mechanisms or be simply discarded and forgot-
ten. We humans use our working memory system when 

Detailed mathematical models in 
neurobiology—Storing information in 
membrane conductances dynamics
by Eduardo Conde-Sousa* and Paulo Aguiar**

* Faculdade de Ciências da Universidade do Porto
** Centro de Matemática da Universidade do Porto

we temporarily retain a phone number or a name, when 
we mentally perform an arithmetic calculation, or when 
our wives tell us by phone the grocery list.
 Our goal in this article is to give a glimpse into some 
of the methodologies used in theoretical neuroscience 
targeting a particular problem: to describe a mathemati-
cal model, closely fitted into the biophysical constrains of 
the nervous system, that helps understanding how work-
ing memory can be produced in a network of neurons. 
Our approach is different from other working memory 
models [1] in the sense that it does not rely on synaptic 
plasticity{1} nor connectivity structure to store informa-
tion. In our model we store information in the dynamical 
states of the neuron’s membrane conductances. An im-
portant feature in working memory systems is that it is 
possible to retain complex activity patterns after a single 
exposure to the stimuli. This constrain is better support-
ed by the time scales found in conductances dynamics, 
than by synaptic plasticity temporal properties, even if 
we take into account short-term plasticity mechanisms.
 In a population of 𝑁𝑁  interconnected neurons en-
gaged in working memory, we define as information con-
tent the particular subset of neurons that are co-activated 

{1}   Synapses are the structures that mediate most of the communication and transfer of signals between 
neurons. A strong synapse produces a large signal in the target neuron while a weak synapse will produce a 
small response. By modulating the synaptic strengths it is possible to both store information and to change 
the computational/functional capabilities of populations of neurons. The present dogma in neuroscience is 
that information is stored in the efficacy, or strength, of synapses.


