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topological dynamics, the best of which was prompted 
by happening to read Thurston and Weeks’ Scientific 
American article on Three-manifolds. I was struck by 
the example they gave of a two-manifold, namely the 
configuration space of a triple linkage, which they 
showed has genus 3. I asked myself whether the free 
dynamics of the linkage might be Anosov and following 
numerics by a PhD student Tim Hunt in Cambridge, 
managed to prove this in a certain parameter regime. In 
Cambridge I was also invited to help steer a project on 
spatially extended dynamics. I tried out an idea I had 
for responding to Sinai and Bunimovich’s challenge to 
make a coupled map lattice with non-unique phase on 
the group. One of the postdocs Guy Gielis explained to 
me some interesting stochastic systems that showed 
similar effects and I realised we could simulate them 
using coupled map lattices. This was probably my real 
entry into complex systems. Using the understanding 
gained, I proposed a mathematical formulation of the 
trendy concept of “emergence”. Actually I did this first 
in response to a new PhD student David Sanders in 
2000 when I’d just returned to Warwick, who wanted 
a project on emergence. More recently I went through 
Dobrushin’s proof of ergodicity for weakly dependent 
probabilistic cellular automata and realised it could 
be expressed more nicely in terms of a metric on 
spaces of multivariate probabilities, which I have found 
useful in talking about the amount of emergence and 
the dependence on parameters. This is just a sample 
of things I’ve worked on and how I got into them. It 
is mostly serendipitous: just happening to pick up 
something where I could see I could do something, 
putting together things I’d already understood, 
interacting with interesting people.
Is stochastic dynamics closer to real systems than 
deterministic dynamics? Do you think that that is a 
fruitful direction for future work?
My view of stochastic dynamics is that the random 
terms represent aspects of the system that we choose 
not to attempt to model more accurately. In the absence 
of further knowledge or analytical ability this can be a 
sensible approach.  Nevertheless, there are examples 
where the effect of some deterministic dynamics 
is rigorously equivalent to some noise process, the 
randomness being with respect to initial conditions, 
and then it makes sense to use the stochastic model. 
For example, a Langevin equation is widely used for the 
dynamics of slow degrees of freedom in a Hamiltonian 
system whose fast degrees of freedom are mixing. 
Anosov an I have scketched a derivation of this.

In the last few decades the number of active researchers 
and the quality of the mathematical work produced in 
Portugal has grown considerably. In your professional 
life have you ever had this perception?
It has been my privilege to interact with the dynamical 
systems group from Porto for at least 20 years and to 
supervise three PhD students from Portugal. And I’ve 
just taken on another one.

In contrast to older times, today mathematics is 
very much a collaborative effort. Do you have any 
preference between working alone or in teams? Is the 
challenge different?
There is still plenty of room in mathematics for 
single author research. But there are advantages to 
collaborations: broader perspective, shared work, wider 
dissemination.

Who is your favourite mathematician? Why?
I have many heroes, for example Moser, Arnol’d, Anosov 
and Sinai. I like what they have written and I like them 
as people (though unfortunately Arnol’d and Moser are 
no longer alive). Moser made many important advances 
in Hamiltonian dynamics; he was particularly nice 
to me, accepting me early in my career even though 
my approach was very non-standard mathematically 
and suggesting fruitful lines of research. Arnol’d was 
brilliant in a wide range of directions; he could be 
famously caustic but he was always nice to me and 
willing to answer my questions in considerable detail. 
Anosov I feel is a greatly under-rated mathematician: 
the insights he had in the 1960s about the Holder 
continuity of the foliations of hyperbolic dynamical 
systems and its implications for their measure theory 
are profound; I enjoyed making his acquaintance and 
showing him my mechanical Anosov system. Sinai I feel 
is the main architect of the theory of how deterministic 
dynamical systems can behave stochastically: he 
showed that the Markov partitions that had been 
constructed for special systems are a general feature 
of hyperbolic dynamical systems and that they give a 
correspondence of the dynamics to a generalisation of 
Markov processes called Gibbsian processes (which 
allow infinite-range but decaying memory). He has a 
very warm character and has been very supportive of 
my work. Going further back in time, I’d say Poincaré 
is my biggest hero: he developed so much interesting 
mathematics and presented it in such a readable way. 
And before him there was Newton, who was so creative, 
but apparently an awful character.

1. IntroductIon

Neurons are Nature’s solution to the problem of infor-
mation processing and information storage. Nervous sys-
tems have been engineered by evolution to sense informa-
tion from the environment, process this information and 
store experiences for the purpose of improving future 
decisions. Ubiquitous in all these stages is the necessity 
of information buffers. In the case of mammals, there are 
different mechanisms providing storage in a wide range 
of time scales: from the ephemeral facilitation of a syn-
apse to the life-long memories of childhood. As expected, 
neuronal dynamics are an extremely rich subject from a 
mathematically point of view. In this paper we focus on a 
model for a short-term memory mechanism called work-
ing memory. Regions of the mammal brain engaged in 
providing this functional resource are capable of retain-
ing neuronal spatial patterns of activity for the duration 
of a few seconds. Basically, working memory provides 
a temporary buffer where information is held for short-
time, while it is being actively used in cognitive tasks; 
this information can then be passed on to longer-term 
storage mechanisms or be simply discarded and forgot-
ten. We humans use our working memory system when 
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we temporarily retain a phone number or a name, when 
we mentally perform an arithmetic calculation, or when 
our wives tell us by phone the grocery list.
 Our goal in this article is to give a glimpse into some 
of the methodologies used in theoretical neuroscience 
targeting a particular problem: to describe a mathemati-
cal model, closely fitted into the biophysical constrains of 
the nervous system, that helps understanding how work-
ing memory can be produced in a network of neurons. 
Our approach is different from other working memory 
models [1] in the sense that it does not rely on synaptic 
plasticity{1} nor connectivity structure to store informa-
tion. In our model we store information in the dynamical 
states of the neuron’s membrane conductances. An im-
portant feature in working memory systems is that it is 
possible to retain complex activity patterns after a single 
exposure to the stimuli. This constrain is better support-
ed by the time scales found in conductances dynamics, 
than by synaptic plasticity temporal properties, even if 
we take into account short-term plasticity mechanisms.
 In a population of 𝑁𝑁  interconnected neurons en-
gaged in working memory, we define as information con-
tent the particular subset of neurons that are co-activated 

{1}   Synapses are the structures that mediate most of the communication and transfer of signals between 
neurons. A strong synapse produces a large signal in the target neuron while a weak synapse will produce a 
small response. By modulating the synaptic strengths it is possible to both store information and to change 
the computational/functional capabilities of populations of neurons. The present dogma in neuroscience is 
that information is stored in the efficacy, or strength, of synapses.
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at a given time. We assume that different sensory/per-
ceptual configurations produce in this population differ-
ent patterns of active units. In the neuronal population, 
the units not belonging to the memory pattern have low 
frequency stochastic activity (0.5Hz) while the units be-
longing to the pattern have a higher frequency activity 
(20Hz). The sizes of these patterns, i.e. the number of ac-
tive units in any pattern, is considered to be roughly the 
same, which is in accordance with the notion of activity 
level control in neuronal circuits. The population can act 
as a working memory system if, after a short-period of a 
few hundred milliseconds where a subset of neurons is 
consistently co-activated (the duration of a “one-shot’’ 
stimuli, such as hearing a number a single time), this spa-
tial pattern of activity is auto-preserved after the stim-
uli has been removed, for a duration of several seconds. 
In addition to this core property, our working memory 
model has to satisfy the following conditions:

•	 stochastic	activations	of	spurious	neurons	
should not be stored nor should affect the 
stored pattern

•	 the	retained	activity	pattern	should	be	stable	
for several seconds

•	 an	inhibitory	input	within	physiological	values	
should be able to clear the memory pattern and 
restore the network to its basal, low frequency, 
stochastic firing

•	 deactivation	of	isolated	neurons	in	the	pattern	
should not compromise the rest of the pattern’s 
integrity

This article is organized in the following way. First we 
describe in detail the mathematical model used to set 
the dynamics for each neuron individually, which pa-
rameters are used and how the numerical simulations 
are performed. The following section describes how the 
neuronal population is assembled, what network archi-
tecture is used and the properties of the synaptic con-
nectivity. The following two sections describe results of 
the model: first we present results regarding the single 
neuron model, after that we present the results regard-
ing the collective behavior of the neuronal population 
as a working memory system. We conclude with some 
final remarks. 

2. SIngle neuron Model

The neuronal dynamics are set using the Hodgkin-Hux-
ley (HH) formalism in order to produce biophysically 
accurate descriptions of all neuronal conductances. Neu-
rons are modeled as a single cylindrical compartment 
of length 𝐿𝐿 𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and diameter diam = 􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾. That 

is, given the context and the questions being addressed, 
there are no a priori reasons to assume a special role to 
be taken by the spatial properties of the neuron. There-
fore, the complex neuronal tree topology is collapsed 
and pointwise neurons are considered—hence the main 
variable is time only. Together with the leakage current 
and synaptic currents, a set of four ionic currents are 
considered in the membrane potential model. In addi-
tion to the canonical delayed rectifier potassium current 
and transient sodium current present in the HH equa-
tion, our model adds two more currents: a calcium cur-
rent, 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶, which produces an influx of calcium when-
ever the membrane potential is becoming depolarized, 
and a nonspecific cationic current which is dependent on 
the intracellular calcium concentration, 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶 . Together, 
these two currents can act synergetically to prolong de-
polarization in the membrane potential. These are cur-
rents that are known to exist in many neuronal types in 
the nervous system [2]. All ionic current dynamics are 
taken from Senselab [3] database. The time evolution of 
the membrane potential is described by the equation:

𝐶𝐶𝑚𝑚�̇�𝑉 𝑉 𝑉𝑉𝑉𝐿𝐿 𝑉 𝑉𝑉𝑁𝑁𝑁𝑁 𝑉 𝑉𝑉𝐾𝐾𝐾𝐾𝐾𝐾 𝑉 𝑉𝑉𝐶𝐶𝑁𝑁𝐶𝐿𝐿 𝑉 𝑉𝑉𝐶𝐶𝐶𝐶𝑁𝑁 𝑉 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠
where 𝐶𝐶𝑚𝑚 = 􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽𝑚𝑚􏺾􏺾 is the membrane capacitance; 𝑉𝑉 rep-
resents the membrane potential in 𝑚𝑚𝑚𝑚; 𝐼𝐼𝐿𝐿 = 𝑔𝑔𝐿𝐿 × (𝑉𝑉 𝑉 𝑉𝑉𝐿𝐿)
is the leakage current, where 𝑔𝑔𝐿𝐿 = 􏻀􏻀􏻀􏻀􏻀 􏻀 􏻀􏻀􏻀􏻀

−􏻁􏻁𝑆𝑆𝑆𝑆𝑆𝑆𝑆􏻀􏻀 is the 
leakage conductance and 𝐸𝐸𝐿𝐿 = −􏻂􏻂􏻂􏻂􏻂􏻂 is the leakage re-
versal potential; 𝐼𝐼𝑁𝑁𝑁𝑁 and 𝐼𝐼𝐾𝐾𝐾𝐾𝐾𝐾 are the transient 𝑁𝑁𝑁𝑁+ and 
𝐾𝐾+ currents responsible for action potentials; 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the 
high-threshold 𝐶𝐶𝐶𝐶􏺾􏺾􏺾 current and 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶  is the intracellular 
calcium concentration nonspecific cation current men-
tioned earlier; finally, 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 is the sum of all synaptic cur-
rents impinging on the neuron.
 All numerical analysis/simulations were preformed 
in the simulation environment NEURON [4].

2.1. Sodium and Potassium currents (𝐼𝐼𝑁𝑁𝑁𝑁 and 𝐼𝐼𝐾𝐾𝐾𝐾𝐾𝐾)
The fast 𝑁𝑁𝑁𝑁+ and 𝐾𝐾+ currents are modeled according to 
the canonical Hodgkin-Huxley kinetics [5] with small 
modifications proposed by Traub and Miles to model 
hippocampal pyramidal cells [6]. The key parameters are: 
maximal sodium conductance 𝑔𝑔𝑁𝑁𝑁𝑁 = 􏻄􏻄􏻄􏻄􏻄􏻄􏻄􏻄􏻄

􏺾􏺾, maximal 
potassium conductance 𝑔𝑔𝐾𝐾 = 􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾

􏺾􏺾, sodium reversal 
potential 𝐸𝐸𝑁𝑁𝑁𝑁 = 􏻁􏻁􏻁􏻁􏻁􏻁 and potassium reversal potential 
𝐸𝐸𝐾𝐾 = −􏻃􏻃􏻃􏻃􏻃􏻃.
 The model for these currents consists of:

 𝐼𝐼𝑁𝑁𝑁𝑁 = 𝑔𝑔𝑁𝑁𝑁𝑁 × 𝑚𝑚
􏺿􏺿 × ℎ × (𝑉𝑉 𝑉 𝑉𝑉𝑁𝑁𝑁𝑁)

 𝐼𝐼𝐾𝐾𝐾𝐾𝐾𝐾 = 𝑔𝑔𝐾𝐾 × 𝑛𝑛􏻀􏻀 × (𝑉𝑉 𝑉 𝑉𝑉𝑅𝑅).

The kinetic equation for the gating variables is

�̇�𝑦 𝑦 𝑦
𝑦𝑦 𝑦 𝑦𝑦∞ (𝑉𝑉)
𝜏𝜏𝑦𝑦 (𝑉𝑉)

.

where

 𝑦𝑦∞ =
𝛼𝛼𝑦𝑦

𝛼𝛼𝑦𝑦 + 𝛽𝛽𝑦𝑦
,

 𝜏𝜏𝑦𝑦 =
􏺽􏺽

𝛼𝛼𝑦𝑦 + 𝛽𝛽𝑦𝑦
.

and 𝑦𝑦 𝑦 {𝑚𝑚𝑚 𝑚𝑚 𝑚𝑚}.
 The activation and inactivation gate  functions are:

 𝛼𝛼𝑚𝑚 =
􏺼􏺼􏺼􏺼􏺼􏺼􏺼 􏺼 (􏻃􏻃􏺼􏺼 􏻃 􏻃􏻃)

exp 􏿵􏿵􏻃􏻃􏺼􏺼􏻃􏻃􏻃􏻀􏻀 􏿸􏿸 􏻃 􏺽􏺽
.

 𝛽𝛽𝑚𝑚 =
􏺼􏺼􏺼􏺼􏺼􏺼􏺼 􏺼 (𝑉𝑉 𝑉 𝑉𝑉􏺼􏺼􏺼􏺼)

exp 􏿵􏿵𝑉𝑉𝑉𝑉𝑉􏺼􏺼􏺼􏺼􏻁􏻁 􏿸􏿸 𝑉 𝑉𝑉

 𝛼𝛼ℎ = 􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼 􏺼 􏺼􏺼􏺼 􏿶􏿶
􏻃􏻃􏺼􏺼 􏻃 􏻃􏻃
􏺼􏺼􏺼􏺼 􏿹􏿹

 𝛽𝛽ℎ =
􏻀􏻀

􏺽􏺽 􏺽 􏺽􏺽􏺽 􏿵􏿵􏻅􏻅􏻅􏻅􏻅􏻅􏻅􏻅􏻅 􏿸􏿸

 𝛼𝛼𝑛𝑛 =
􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼 􏺼 (􏻃􏻃􏻃􏻃 􏻃 􏻃􏻃)

exp 􏿵􏿵􏻃􏻃􏻃􏻃􏻃􏻃􏻃􏻃􏻃 􏿸􏿸 􏻃 􏺽􏺽

 𝛽𝛽𝑛𝑛 = 􏺼􏺼􏺼􏺼􏺼 􏺼 􏺼􏺼􏺼 􏿶􏿶
􏻃􏻃􏺼􏺼 􏻃 􏻃􏻃
􏻀􏻀􏺼􏺼 􏿹􏿹.

2.2. High-threshold 𝐶𝐶𝐶𝐶􏺾􏺾􏺾 current(𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
The high-threshold 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶 current is modeled according 
to the equation [7]:

𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝑚𝑚􏺾􏺾 × GHK (𝑉𝑉𝐶 𝑉𝑉𝐶𝐶𝑉𝑉𝐶 𝑉𝑉𝐶𝐶𝑉𝑉).

were 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼 is the 𝐶𝐶𝐶𝐶􏺾􏺾􏺾 membrane permeability, 
𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑐𝑐𝑐𝑐𝑐𝑐 are respectively the intracellular and extracel-
lular calcium concentration, and GHK is the Goldman-
Hodgkin-Katz equation.
 The kinetic equation for the activation variable is

�̇�𝑚 𝑚 𝑚𝑚𝑚 𝑚 𝑚𝑚∞ (𝑉𝑉)
𝜏𝜏𝑚𝑚 (𝑉𝑉)

where

 𝑚𝑚∞ = 􏺽􏺽
􏺽􏺽 􏺽 􏺽􏺽􏺽􏺽􏺽􏺽􏺽𝑉𝑉􏺽􏺽􏺽𝑉𝑉−􏺽􏺽𝑉𝑉 )

 𝜏𝜏𝑚𝑚 =
􏺽􏺽

𝛼𝛼𝑚𝑚 + 𝛽𝛽𝑚𝑚

 𝛼𝛼𝑚𝑚 =
􏺽􏺽􏺽􏺽􏺽

􏺽􏺽 􏺽 􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽 􏺽 􏺽􏺽􏺽 􏺽 􏺽􏺽􏺽􏺽

 𝛽𝛽𝑚𝑚 = 􏺼􏺼􏺼􏺼􏺼􏺼􏺼 􏺼
􏺽􏺽􏺼􏺽􏺽􏺽􏺽 􏺽 􏺽􏺽

􏺽􏺽 􏺽 􏺽􏺽􏺽􏺽􏺽􏺽 􏿵􏿵􏺽􏺽􏺽􏺽􏺽􏺼􏺽􏺽􏺽􏺽􏻁􏻁􏺼􏺽􏺽􏻁􏻁 􏿸􏿸
.

2.3 Intracellular calcium dynamics
The dynamics of the intracellular calcium concentration, 

denoted as 𝑐𝑐𝑐𝑐𝑐𝑐, are modeled by a fast removal process due 
to an active pump, and by calcium entry which is due to 
the current 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶, as described in [8].
 The used parameters are: 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 𝑐𝑐𝑐𝑐𝑐𝑐𝜏𝜏 = 􏺽􏺽􏺽􏺽

 𝑐𝑐𝑐𝑐𝑐𝑐∞ = 􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁mM

2.4. 𝐶𝐶𝐶𝐶􏺾􏺾􏺾 dependent nonspecific cation current (𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶)

The adopted model for 𝐶𝐶𝐶𝐶􏺾􏺾􏺾-dependent nonspecific cat-
ion current [9] is described as:

𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶 × 𝑚𝑚
􏺾􏺾 × (𝑉𝑉 𝑉 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶)

with parameters 𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶 = 􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺾􏺾 and 𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 = 􏺼􏺼􏺼􏺼 . 
For our version of the model we modified the middle 
point of the activation function to 􏺼􏺼􏺼􏺼􏺼 􏺼 􏺼􏺼􏺼􏺼−􏺿􏺿 (before 
was 􏺽􏺽􏺽􏺽􏺽 􏺽 􏺽􏺽􏺽􏺽−􏺿􏺿). This change allowed a small increase in 
the sensibility of this current to lower concentrations of 
intracellular calcium.

2.5 Synaptic Current
The synaptic current is modeled by the sum:

𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 = ∑𝑖𝑖𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 × 􏿴􏿴𝑉𝑉 𝑉 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖􏿷􏿷
where 𝑖𝑖 runs over the set of pre-synaptic neurons. In 
other words, the term 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 aggregates the currents from 
all synapses established with a particular neuron. All 
synapses in the model are excitatory, and their dynamics 
are modeled according to the biological NMDA synapse 
type. The core synaptic conductance profile is modeled 
by a dual exponential function:

𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡) = 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ 𝑎𝑎 􏿰􏿰𝑒𝑒
− 𝑡𝑡
𝜏𝜏𝑑𝑑𝑒𝑒𝑑𝑑𝑎𝑎𝑠𝑠 − 𝑒𝑒−

𝑡𝑡
𝜏𝜏𝑟𝑟𝑟𝑟𝑠𝑠𝑒𝑒 􏿳􏿳

where 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑡 represents the synaptic conductance after 
𝑡𝑡 milliseconds of the synaptic activation and 𝑎𝑎 is cho-
sen so that the maximum value of 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 matches 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠, the 
maximum synaptic conductance. The values for the ris-
ing time constant 𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, the decay time constant 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  and 
the synaptic reversal potential 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 are: 𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 􏻁􏻁􏻁􏻁􏻁 􏻁􏻁􏻁􏻁, 
𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 􏻃􏻃􏻃􏻃􏻃􏻃􏻃 􏻃􏻃􏻃􏻃 and 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 = 􏺼􏺼􏺼􏺼􏺼 􏺼􏺼􏺼􏺼.
 The NMDA synaptic current has the property of 
depending on the post-synaptic membrane potential: 
independently of the synaptic activation by the pre-
synaptic neuron, an effective synaptic current will only 
be elicited if the post-synaptic membrane is sufficiently 
depolarized. In other words, this type of synapses act as 
an “AND’’ operator and has strong functional implica-
tions in the dynamics of neuronal networks. We follow 
a well established model and represent the NMDA syn-
aptic conductance multiplying the dual exponential con-
ductance profile by a factor representing the magnesium 
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block which characterize the post-synaptic dependence 
[10]. The NMDA model also accounts for the ratio of 
calcium current to total current [11] flowing through 
these channels as they introduce a relevant contribution 
to the increase of the intracellular calcium concentration.

3. netWork topology

Working memory is a emergent property of the collective 
behavior of specific populations of neurons. The commu-
nication between neurons is determined by the connectiv-
ity matrix and in this model we use random connections 
to set the network architecture. Given two neurons, 𝑖𝑖 and 
𝑗𝑗, the probability of a synapse from pre-synaptic neu-
ron 𝑖𝑖 to post-synaptic neuron 𝑗𝑗 is 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 
where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  represents the predefined connectivity 
rate of the model. The highest values in the mammalian 
brain are close to 30%, in regions with dense recurrent 
connections such as area CA3 in the hippocampus. As 
a central goal in this model is to store new information 
without involving synaptic changes, all peak conduct-
ances are taken from a common distribution and are then 
fixed for all numerical simulations.
 While not plastic, the absolute values of the synap-

tic conductances are crucial in setting the activity level 
of the network. Two constraints are used to quantify the 
synaptic peak conductances, and therefore constraint all 
connections in the network:

1. one neuron must be able to fire stochastically, 
without entering a state of persistent activity 
due to interactions with active neurons;

2. when consistently excited, one neuron must 
be able to sustain activity for a period of tens 
of seconds as a result of the interactions with 
other active neurons.

By “consistently excited’’ we mean a series of coher-
ent excitations in a small time window. The size of time 
window has to be balanced between small enough to be 
compatible with the notion of “one-shot learning’’ and 
big enough to make the probability of stochastic acti-
vations producing such an excitation profile virtually 
zero. A length of 􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾 is chosen for the stimulation 
time window.

4. reSultS

For clarity purposes the results are separated into sin-

gle neuron dynamics and population’s collective behav-
ior, where the emergence of a working memory system 
is analyzed.

4.1 Single neuron firing properties
In the absence of stimulation currents and stochastic 
noise, the neuron’s membrane potential rests in the stable 
equilibrium point of about −􏻂􏻂􏻂􏻂􏻂􏻂 . Conversely, when a 
current of amplitude 􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼 is injected for a period of 
􏻀􏻀􏻀􏻀􏻀􏻀 to an isolated neuron an action potential (AP) is 
produced. Higher current amplitudes naturally lead to 
more APs in the same time period (see Fig. 1).
 Each AP, or simply spike, results from the fast, but 
transient, 𝑁𝑁𝑁𝑁+ current and from the delayed rectifier 𝐾𝐾+ 
current. Every time a spike is generated, the high-thresh-
old calcium current activates and the intracellular calci-
um concentration rises. However, for short stimulation 
intervals like this one of 􏻀􏻀􏻀􏻀􏻀􏻀, the slowly adapting 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶  
activation variable (long time constant) suffers little or 
no variation, leading to a negligible change in the 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶  
current. Thus, the dynamics of the neuron’s membrane 
potential can be seen mainly as a result of the well know 
and well studied interaction between 𝐼𝐼𝑁𝑁𝑁𝑁 and 𝐼𝐼𝐾𝐾𝐾𝐾𝐾𝐾 cur-

rents. This is the situation where the neuron fires due to 
stochastic network activations or to very short, isolated 
and non-consistent external stimulation.
 On the other hand, longer, consistent activations 
leading to several spikes with short latency give rise to 
a different behavior in the neuron’s currents dynamics. 
The consecutive activation of the high-threshold calci-
um current generates a progressive increase in the 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶  
activation variable. The long time constant of the 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶  
activation variable enables a coarse integration leading to 
values close to 1.0. For a stimulation period of 􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽, the 
𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶  activation variable reaches values in 𝑚𝑚 𝑚 􏿮􏿮􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼 􏺼􏺼􏺼􏺼􏺼􏿱􏿱 
which are enough to sustain the activity for a period of 
several hundred milliseconds (see Fig. 2). A consistent 
stimulation in a time window of 􏺽􏺽􏺽􏺽􏺽􏺽 􏺽 􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽 is compat-
ible with the “one-shot learning’’ paradigm.
 The synergy between 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶  and 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶 can be better 
appreciated in a phase graph (Fig. 3), where the axis are 
the neuron’s membrane potential, the 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶 ’s activation 
variable 𝑚𝑚 and the calcium’s intracellular concentration  
which is heavily modulated by 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶.
 It is important to emphasize that in order to con-
sistently excite one neuron, the variable 𝑚𝑚𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶 must rise 

Figure 1.—Membrane potential response (in blue) to 40ms 
constant current stimuli of different amplitudes (in black).

Figure 2.—Two electrode currents are injected in the neuron with 
amplitude of 0.02nA. The stimulus have a duration of 50ms (left) 
and 150ms (right). With a 150ms current injection the neuron 
sustain activity for a period of 900ms, after the end of the current 
injection.  When the current injection is shorter, this period of 
sustained activity is non existing.

Figure 3.—An electrode current is injected in the neuron with duration 150ms and amplitude 0.02nA. The upper panel 
contains the phase space with variables mICAN

 (activation variable of CAN current), cai (intracellular calcium concentration 
[mM]) and membrane potential [mV]. The middle panel contains the membrane potential time evolution and the lower 
trace corresponds to the electrode current injected. For every new action potential, the activation variable mICAN

 increases 
(red trace). After the end of the current injection, the ICAN activation variable slowly decreases to mICAN

≈ 0.7 (blue trace) 
and during a considerable amount of time, acting synergetically with the ICa,L current, it is sufficient to sustain activity in 
the neuron. After this period, the depolarization induced by ICAN is not sufficient to generate new action potentials and the 
membrane potential converges to the -65mV equilibrium potential (green trace).
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enough (above 0.7). This 𝐶𝐶𝐶𝐶𝐶𝐶  current is only activated 
by rising the internal concentration of calcium, which in 
turn depends on the existence of APs. Thus, the stimulus 
current must be sufficient to trigger a sequence of APs 
during a period between 100 and 􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾, depending on 
the achieved firing rate. Lower firing rates require long-
er periods of consistent stimulation. For example, with a 
􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽 and 􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼 amplitude current injection, the neu-
ron fires five times over a period of approximately 􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽 
(corresponding to an average firing rate of 􏺿􏺿􏺿􏺿􏺿􏺿) which 
is sufficient to sustain the activity for a few hundreds of 
milliseconds after the stimulation finishes. However, if 
a small residual current is provided after the stimulus 
ends, the neuron can retain its activity for much longer 
periods of time (Fig. 4). This property is of considerable 
importance as it sets the conditions in which a working 
memory system can work.

4.2 Network behavior
Unless otherwise stated, all presented network results 
refer to simulations with a population of 1000 neurons, 
with a recurrent connectivity rate of 25%. The stimula-
tion protocol consists of exciting 100 neurons (10% of 
the population), creating the so called memory pattern 
of activity. The stimulation lasts for 􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾 and generates 

5 spikes on each neuron (individual firing rate of 􏺾􏺾􏺾􏺾􏺾􏺾 ). 
All induced spikes are not completely synchronized: a 
uniform random jitter of ±􏺽􏺽􏺽􏺽􏺽􏺽 is introduced to em-
phasize the robustness of the system to small amounts 
of noise. This robustness comes mainly from the long-
lasting NMDA conductance profiles and from the fact 
that the passive properties of neuron membrane act as 
a low-pass filter with a time constant, in the case of this 
model’s parameters, of ≈ 􏺾􏺾􏺾􏺾􏺾􏺾 (obtained from 𝐶𝐶𝑚𝑚/𝑔𝑔𝐿𝐿). 
These two mechanisms significantly enlarge the integra-
tion time scale for the synaptic inputs.
 In addition to the spike jitter in the memory pat-
tern activation, noise is constantly provided to all neu-
rons, belonging or not to the memory pattern. Noise is 
introduced as stochastic activations following a Poisson 
process with an average interspike interval of 􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾  
(􏺼􏺼􏺼􏺼􏺼􏺼􏺼), in agreement with cortical neurons experimen-
tal data.
 In the connected population, the residual stimulation 
required to sustain the memory pattern is provided by 
the recurrent connections. The NMDA’s synaptic peak 
conductances are therefore of noteworthy importance. 
The calculated range of values which satisfy the two con-
straints mentioned in section 3, given all neuronal model 
parameters, is [􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁, 􏺾􏺾􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁]μS (see Fig. 5). These 

values correspond to the total NMDA synaptic conduct-
ance required to drive the target neuron in this safe zone 
and are therefore independent of the population size; in 
other words, they represent the target value for the sum 
of all synaptic conductances and are obtained consid-
ering a complete synchrony in the synaptic activations. 
This is a strong assumption but, again, the long-lasting 
NMDA conductance profiles and the long membrane’s 
time constant produces a synchronicity time window in 
the order of a few tenths of milliseconds. This interval 
encapsulates the variability in the memory pattern ac-
tivations and renders irrelevant the need for complete, 
sub-millisecond, synaptic synchronization. The calcu-
lated values for the total synaptic conductance under the 
synchrony assumption are then safely used as estimators 
for the total synaptic conductance under less stringent 
synchronicity constraints.
 While the required total synaptic conductance is a 
function of the neuron’s parameters and independent 
of the population size, the individual NMDA synaptic 
conductances depend on the number of synaptic inputs 
each neuron receives. This number follows a binomial 
distribution with parameters 𝑁𝑁 , the population size, and 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , the connectivity rate.
 The working memory behavior of the system can be 

visualized in a raster plot, where the spikes of all neurons 
are represented as dots (Fig. 6). The consistent but short 
activation of a constellation of neurons in the popula-
tion forms a memory activity pattern which sustains for 
several seconds due to the synergy between the 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 
𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶  currents, and the stabilizing current provided by 
the recurrent connections. Two relevant points worth-
while mentioning is that both the activity pattern firing 
frequency (in the range of 􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽􏺽) as well as the mag-
nitude of the inhibitory conductance necessary to reset 
the memory pattern (in the range of 􏺼􏺼􏺼􏺼􏺼􏺼􏺼 for a duration 
of 􏺾􏺾􏺾􏺾􏺾􏺾􏺾􏺾—compatible with 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) are in accordance 
with neurobiological data [2].

4.3 Model scaling
The simulation results shown use a population of 1000 
neurons. It is interesting to notice that as the number 
of neurons rises, our working memory model becomes 
more robust to variability in the NMDA’s peak con-
ductances. 
 Given the synaptic constraints (see Fig. 5), we can 
conclude that a neuron belonging to the activity pattern 
must receive a total synaptic conductance of, at least, 
􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁μS from the other neurons belonging to the pat-
tern. Therefore, if 𝑚𝑚 is the minimum number of connec-

Figure 6.—Working memory in action. A sub-population of 100 
neurons is activated and is capable of sustaining its activity for 
a long period of time without becoming corrupted (by loosing or 
adding elements).

Figure 5.—Parametrization of the NMDA peak conductances w. Two neurons connected through a single NMDA synapse are used to assess 
the proper synaptic conductance values. A synaptic value of w=4.0×10-5μS is insufficient to provide enough recurrent excitation to sustain 
activity after the short period of stimulation on a small fraction of the population; the membrane potential traces for the two neurons 
connected through such w are shown in panel (a). Above w=5.0×10-5μS, the recurrent connections are already sufficient to preserve the 
activity pattern; again the membrane potential traces for the neurons connected through the new w are shown in panel (b). This proper 
functional behavior is maintained up to w=20.0×10-5μS; the activity in the neuron belonging to the memory pattern does not propagate to 
other neuron even if they are subject to stochastic activations—panel (c). Higher synaptic conductance values, such as w=22.0×10-5μS, 
start to invoke spurious activations and instability on the activity pattern; the activity in the neuron belonging to the memory pattern is 
now capable of recruiting additional neurons, thus corrupting the working memory—panel (d).

Figure 4.— A residual current injection of 0.001nA only produces 
a small depolarization in the membranes potential and is 
incapable of eliciting APs (upper traces). On the other hand, if this 
residual current follows a 150ms, 0.01nA amplitude core stimulus, 
the other way vanishing activity now becomes persistent (lower 
traces).
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tions each neuron in the pattern receives from other neu-
rons in the pattern, the average synaptic efficacy must be 
≥ 􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁/𝑚𝑚. On the other hand, a neuron outside the ac-
tivity pattern must not be activated by the neurons in the 
pattern; i.e. it must not receive more than a total synaptic 
conductance of 􏺾􏺾􏺾􏺾 􏺾 􏺾􏺾􏺾􏺾−􏻁􏻁μS. If 𝑀𝑀 is the maximum num-
ber of connections each exterior neuron receives from 
neurons belonging the pattern, than the average synaptic 
efficacy must be ≤ 􏺾􏺾􏺾􏺾 􏺾 􏺾􏺾􏺾􏺾−􏻁􏻁/𝑀𝑀. Thus, the average synap-
tic efficacy must be between 􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁/𝑚𝑚 and 􏺾􏺾􏺾􏺾 􏺾 􏺾􏺾􏺾􏺾−􏻁􏻁/𝑀𝑀 
which is only possible if 􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁/𝑚𝑚 𝑚 𝑚𝑚􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁/𝑀𝑀. This 
means that 𝑀𝑀𝑀𝑀𝑀 𝑀 𝑀𝑀.
 As the population size grows, the fluctuations in 
the number of input synapses each neuron receives be-
comes less relevant (scales with 􏺽􏺽􏺽√𝑁𝑁) and the excitation 
reaching neurons inside the memory pattern, and outside, 
becomes more homogeneous. Less variability in the to-
tal synaptic conductances means that corruption of the 
memory activity pattern becomes less probable. A com-
parison of the population sizes required to obtain highly 
robust working memory systems, as a function of the 
pattern size and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , is shown in Fig. 7.

5. fInal reMarkS

We have shown how detailed biophysical models and 
their numerical analysis can be used to shed light to com-
plex problems in neurobiology. These type of models are 
not simply a mathematical challenge: their proximity to 
biology makes them ideal to construct new hypothesis, 
produce predictions, catalyze new experiments and ul-
timately improve our understanding of how our brains 
can process and store information.
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Figure 7.—Larger population sizes produce more robust working 
memory systems. Each graph represents the value of M/m obtained 
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Modeling and simulation of the human
cardiovascular system

by Alexandra Bugalho de Moura* and Adélia Sequeira**

abStract.—The use of mathematical modeling and 
numerical simulation to study blood circulation and 
related pathologies is an active interdiciplinary field of 
research. It has a great social and economical impact 
mainly due to cardiovascular diseases, that represent 
one of the leading causes of death and morbidity in 
industrialized countries.
 Due to the complexity of the human cardiovascular 
system, the use of computational models to study blood 
flow in healthy and pathological situations is a challenge 
to mathematicians and engineers. Nevertheless, it consti-
tutes nowadays a reliable tool which is increasingly used 
in clinical applications, such as the placement of stents in 
arteries with atherosclerotic plaques, or the understand-
ing of aneuerysm growth and rupture.
 In this article some of the fundamental aspects of 
mathematical modeling and numerical simulation of 
blood circulation will be described, highlighting in par-
ticular the pathological case of cerebral aneurysms. 

1. SIMulatIng blood cIrculatIon: 
 a challenge to MatheMatIcIanS

Over the last years, the development and application of 
mathematical models, seconded by the use of efficient 
and accurate numerical algorithms, has allowed for im-
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pressive progresses in the understanding of the human 
cardiovascular system, in both healthy and pathological 
situations [5,12,9]. The developments in scientific com-
putation techniques and computers capacity have also 
contributed to patient-specific studies, providing valu-
able clinical information in the perspective of diagnosis, 
treatment or surgical planning [5,15,12,9,13,14]. Indeed, 
the increasing demand from the medical community 
for scientifically rigorous investigations of cardiovas-
cular diseases has been a major impulse to the progress 
in this field. However, modeling and simulating the hu-
man circulation still remains a very difficult and chal-
lenging task. The geometrical structure of the vascular 
tree and the heterogeneous composition of blood, the 
mechanical and biochemical interactions between blood 
and the vessel walls, the pulsatile nature of blood flow, 
together with auto-regulation processes and the link be-
tween global and local circulation, are extremely complex 
physiological phenomena. Therefore, it is impossible to 
construct a three-dimensional (3D) mathematical model 
of the circulatory system including all those character-
istics, and therefore simplifications are mandatory. On 
the other hand, it is recognized that cardiovascular pa-
thologies, like atherosclerosis or aneurysms, are closely 
related with local hemodynamics, such as areas of flow 


