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tions each neuron in the pattern receives from other neu-
rons in the pattern, the average synaptic efficacy must be 
≥ 􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁/𝑚𝑚. On the other hand, a neuron outside the ac-
tivity pattern must not be activated by the neurons in the 
pattern; i.e. it must not receive more than a total synaptic 
conductance of 􏺾􏺾􏺾􏺾 􏺾 􏺾􏺾􏺾􏺾−􏻁􏻁μS. If 𝑀𝑀 is the maximum num-
ber of connections each exterior neuron receives from 
neurons belonging the pattern, than the average synaptic 
efficacy must be ≤ 􏺾􏺾􏺾􏺾 􏺾 􏺾􏺾􏺾􏺾−􏻁􏻁/𝑀𝑀. Thus, the average synap-
tic efficacy must be between 􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁/𝑚𝑚 and 􏺾􏺾􏺾􏺾 􏺾 􏺾􏺾􏺾􏺾−􏻁􏻁/𝑀𝑀 
which is only possible if 􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁/𝑚𝑚 𝑚 𝑚𝑚􏻁􏻁 􏻁 􏻁􏻁􏻁􏻁−􏻁􏻁/𝑀𝑀. This 
means that 𝑀𝑀𝑀𝑀𝑀 𝑀 𝑀𝑀.
 As the population size grows, the fluctuations in 
the number of input synapses each neuron receives be-
comes less relevant (scales with 􏺽􏺽􏺽√𝑁𝑁) and the excitation 
reaching neurons inside the memory pattern, and outside, 
becomes more homogeneous. Less variability in the to-
tal synaptic conductances means that corruption of the 
memory activity pattern becomes less probable. A com-
parison of the population sizes required to obtain highly 
robust working memory systems, as a function of the 
pattern size and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , is shown in Fig. 7.

5. fInal reMarkS

We have shown how detailed biophysical models and 
their numerical analysis can be used to shed light to com-
plex problems in neurobiology. These type of models are 
not simply a mathematical challenge: their proximity to 
biology makes them ideal to construct new hypothesis, 
produce predictions, catalyze new experiments and ul-
timately improve our understanding of how our brains 
can process and store information.
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Figure 7.—Larger population sizes produce more robust working 
memory systems. Each graph represents the value of M/m obtained 
for randomly generated connectivity matrices as a function of 
the total number of neurons in the population (between 500 and 
25000), the percentage neurons belonging the activity pattern (5% 
in (a) and (b), and 10% in (c) and (d)), and the connectivity rate 
(10% in (a) and (c), and 20% in (b) and (d)). For each population 
size, 500 samples are drawn. The dashed line marks the value
M/m=4 below which the variability in the synaptic conductances 
becomes better contained within the calculated bounds.

Modeling and simulation of the human
cardiovascular system

by Alexandra Bugalho de Moura* and Adélia Sequeira**

abStract.—The use of mathematical modeling and 
numerical simulation to study blood circulation and 
related pathologies is an active interdiciplinary field of 
research. It has a great social and economical impact 
mainly due to cardiovascular diseases, that represent 
one of the leading causes of death and morbidity in 
industrialized countries.
 Due to the complexity of the human cardiovascular 
system, the use of computational models to study blood 
flow in healthy and pathological situations is a challenge 
to mathematicians and engineers. Nevertheless, it consti-
tutes nowadays a reliable tool which is increasingly used 
in clinical applications, such as the placement of stents in 
arteries with atherosclerotic plaques, or the understand-
ing of aneuerysm growth and rupture.
 In this article some of the fundamental aspects of 
mathematical modeling and numerical simulation of 
blood circulation will be described, highlighting in par-
ticular the pathological case of cerebral aneurysms. 

1. SIMulatIng blood cIrculatIon: 
 a challenge to MatheMatIcIanS

Over the last years, the development and application of 
mathematical models, seconded by the use of efficient 
and accurate numerical algorithms, has allowed for im-
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pressive progresses in the understanding of the human 
cardiovascular system, in both healthy and pathological 
situations [5,12,9]. The developments in scientific com-
putation techniques and computers capacity have also 
contributed to patient-specific studies, providing valu-
able clinical information in the perspective of diagnosis, 
treatment or surgical planning [5,15,12,9,13,14]. Indeed, 
the increasing demand from the medical community 
for scientifically rigorous investigations of cardiovas-
cular diseases has been a major impulse to the progress 
in this field. However, modeling and simulating the hu-
man circulation still remains a very difficult and chal-
lenging task. The geometrical structure of the vascular 
tree and the heterogeneous composition of blood, the 
mechanical and biochemical interactions between blood 
and the vessel walls, the pulsatile nature of blood flow, 
together with auto-regulation processes and the link be-
tween global and local circulation, are extremely complex 
physiological phenomena. Therefore, it is impossible to 
construct a three-dimensional (3D) mathematical model 
of the circulatory system including all those character-
istics, and therefore simplifications are mandatory. On 
the other hand, it is recognized that cardiovascular pa-
thologies, like atherosclerosis or aneurysms, are closely 
related with local hemodynamics, such as areas of flow 
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reversal or low and oscillatory wall shear stress [5,7,2,12]. 
The progress in the power of modern computers along 
with the progress in imaging, visualization and geometry 
reconstruction techniques, as well as the improvement 
of sophisticated numerical algorithms, allow for the de-
velopment and analysis of highly complex models. The 
final goal is to set up patient-specific models and simula-
tions incorporating data and measurements taken from 
each single patient, that will be able to predict the results 
of medical diagnosis and therapeutic planning with rea-
sonable accuracy and using non-invasive means. This is 
a highly multidisciplinary field of research, requiring the 
collaboration between mathematicians, bio-engineers 
and medical doctors. 

2. MatheMatIcal ModelS for the   
 cardIovaScular SySteM

It is known that cardiovascular diseases are associated to 
local hemodynamics [7,5,2], that is, to local blood flow 
dynamics in specific regions of the cardiovascular tree. 
Strictly speaking, blood is not a fluid, but a suspension 
of particles in a fluid named plasma [8]. However, in 
medium to large sized vessels, blood can be considered 
as an incompressible continuum fluid described by the 
incompressible Navier-Stokes equations, accounting for 
the conservation of momentum and mass (1).

2.1. The fluid equations
Given Ω ⊂ ℝ􏺿􏺿 an open and bounded domain of interest, 
usually a portion of a vessel, and 𝐼𝐼 𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼 the time inter-
val, the continuity and momentum equations for incom-
pressible and isothermal fluids are given by:

⎧⎪
⎨⎪⎩

𝜌𝜌 􏿶􏿶
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜕𝜕 𝐮 𝐮𝜕𝜕􏿹􏿹 − div 𝝈𝝈𝝈𝜕𝜕𝝈 𝝈𝝈𝝈 𝝈 𝝈𝝈𝝈 in Ω𝝈∀𝜕𝜕 𝑡 𝑡𝑡𝝈

div 𝜕𝜕 𝝈 𝝈𝝈𝝈 in Ω𝝈∀𝜕𝜕 𝑡 𝑡𝑡𝝈

where 𝜌𝜌 is the density of blood, assumed constant since 
the fluid is considered incompressible, and 𝐮𝐮 and 𝑃𝑃 are 
the unknown velocity and pressure fields, respectively. 
The fluid flow is interily known if the velocity vector and 
the pressure at each spacial point and instant of time are 
known. 𝝈𝝈𝝈𝝈𝝈𝝈 𝝈𝝈𝝈 is the so called Cauchy stress tensor, de-
fining the internal forces of the fluid, hence its rheology 
[8]. Blood is often considered to be a Newtonian fluid in 
large to medium sized vessels, meaning that it flows like 
water: the internal tangential forces are proportional to 
the velocity gradient, with the constant of proportion-
ality being the fluid viscosity,

𝝈𝝈𝝈𝝈𝝈𝝈 𝝈𝝈𝝈 𝝈 𝝈𝝈𝝈𝝈𝝈 𝝈 𝝈𝝈𝝈𝝈𝝈𝝈𝝈𝝈𝝈𝝈,

where 𝜇𝜇 is the constant viscosity, and 𝐃𝐃 is the strain rate 

tensor given by 

𝐃𝐃𝐃𝐃𝐃𝐃 𝐃
􏺽􏺽
􏺾􏺾
􏿴􏿴∇𝐃𝐃 𝐮 ∇𝐃𝐃𝑇𝑇􏿷􏿷.

However, blood exhibits non-Newtonian properties, 
mainly due to the mechanical characteristics of red blood 
cells [8,9]. The shear-thinning behavior of blood is one 
of its main non-Newtonian properties, characterized by 
the decrease of the apparent viscosity with increasing 
shear rate. In this case, the viscosity is not constant and 
depends on the shear rate:

�̇�𝛾 𝛾
􏽰􏽰
􏺽􏺽
􏺾􏺾𝐃𝐃𝐃𝐃𝐃𝐃 𝐃 𝐃𝐃𝐃𝐃𝐃𝐃

.

To account for this property of blood, a generalized New-
tonian rheological model can be considered [8,9,13,14] 
with the Cauchy stress tensor given by:

𝝈𝝈𝝈𝝈𝝈𝝈 𝝈𝝈𝝈 𝝈 𝝈𝝈𝝈𝝈𝝈 𝝈 𝝈𝝈𝝈𝝈𝝈�̇�𝛾𝝈𝛾𝛾𝝈𝝈𝝈𝝈.

Different viscosity functions 𝜇𝜇𝜇�̇�𝛾𝛾 define different gener-
alized Newtonian models that can be of shear-thinning, 
shear-thickening, or yield stress type, according to the 
behavior of the apparent viscosity with respect to the 
shear rate. One of the most used shear-thinning general-
ized Newtonian models for blood is the Carreau model, 
for which the viscosity function is given by: 

𝜇𝜇𝜇�̇�𝛾𝛾 𝛾 𝜇𝜇∞ + 􏿴􏿴𝜇𝜇􏺼􏺼 − 𝜇𝜇∞􏿷􏿷𝜇􏺽􏺽 + 𝜇􏺽􏺽�̇�𝛾𝛾
􏺾􏺾𝛾

𝑛𝑛−􏺽􏺽
􏺾􏺾 ,

where 𝜆𝜆 𝜆 𝜆𝜆, and 𝑛𝑛 𝑛 𝑛  are constants, and the coeffi-
cients 𝜇𝜇􏺼􏺼 and 𝜇𝜇∞ are the asymptotic viscosity values at low 
and high shear rates, respectively. In this case, since the 
blood is shear-thinning, we have 𝜇𝜇􏺼􏺼 > 𝜇𝜇∞ > 􏺼􏺼. All these 
parameters should be obtained from curve fitting to ex-
perimental data. In particular, in several works [9,13,14] 
the parameter values of the viscosity function were es-
timated from experimental viscosity data obtained for 
normal human blood: 𝜇𝜇􏺼􏺼 = 􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼 􏺼􏺼􏺼, 𝜇𝜇∞ = 􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼􏺼 􏺼􏺼􏺼, 
𝜆𝜆 𝜆 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 𝜆, and 𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. Different experimental data 
will give rise to different parameter values.

2.2 Initial and boundary conditions
In order to be well-posed, i.e., to have a unique solution 
that depends continuously on the data, equations (1) and 
(3) must be endowed with initial and boundary condi-
tions. The initial condition is given by 𝐮𝐮 𝐮 𝐮𝐮􏺼􏺼 , for 𝑡𝑡 𝑡 𝑡𝑡, 
in Ω. Due to the lack of in vivo data usually 𝐮𝐮􏺼􏺼 = 0. This 
means that the simulation starts with a zero solution and 
it is necessary to compute the solution for several time 
instants in order to have clinically relevant solutions.
 Regarding the boundary conditions, two types of 
boundaries should be considered (see Fig. 1): the physi-
cal artery wall, and the artificial boundaries resulting 
from the truncation of the domain. Indeed, due to the 

geometrical complexity of the cardiovascular system, the 
computational cost of 3D simulations, and the fact that 
3D detailed information is usually needed only in spe-
cific regions of interest, the portion of the artery at study 
should be truncated.
 On the physical boundary, that we denote by Γ𝑤𝑤, 
boundary conditions are prescribed using physical ar-
guments. If the movements of the vessel wall due to the 
blood flow load are not considered, i.e., if the artery wall 
is assumed to be rigid, then at that boundary the velocity 
is zero 𝐮𝐮 𝐮 𝐮𝐮, describing the total adherence of the fluid 
to the wall (no-slip condition). This simplifying hypoth-
esis is assumed very often [2,9,12,13,14,15].

2.3 Compliance of the artery wall: fluid-structure 
interaction (FSI)
If the compliance of the wall is taken into account, the 
velocity of the fluid on the wall should be the same as the 
velocity of the moving wall: 𝐮𝐮 𝐮 𝐮𝐮, where 𝐠𝐠 is the wall 
velocity given by a mathematical model that describes its 
motion [10,4]. The vascular wall is a very complex soft 
tissue, composed of several different layers, and it is very 
difficult to devise appropriate and accurate models de-
scribing their dynamical behavior. This is still a subject 
of active research and, for that reason, the simplest 3D 
linear hyperelastic model is often applied (see [10,4,11] 
and references therein):

𝜌𝜌𝑤𝑤
𝜕𝜕􏺾􏺾𝜼𝜼
𝜕𝜕𝜕𝜕􏺾􏺾 − div􏺼􏺼 (𝐏𝐏) = 𝟎𝟎𝟎 on Ω􏺼􏺼

𝑠𝑠,

where Ω􏺼􏺼
𝑠𝑠  is the computational domain of the struc-

ture artery wall in the reference configuration{1}, 𝜼𝜼 is 
the displacement vector with respect to the reference 
configuration Γ􏺼􏺼𝑤𝑤, 𝜌𝜌𝑤𝑤 is the wall density, div􏺼􏺼 stands for 
the divergence operator with respect to the Lagrangian 
coordinates and 𝐏𝐏 𝐏 𝐏𝐏𝐏𝐏𝐏𝐏 𝐏 𝐏𝐏𝐏𝐏  is the first Piola-Kirch-
hoff tensor (see [10,4]), with 𝐒𝐒 𝐒 𝐒𝐒𝐒𝐒𝐒𝐒 the second Piola-
Kirchhoff tensor and 𝐅𝐅 𝐅 𝐅𝐅𝐅𝐅𝐅𝐅 𝐅 𝐅𝐅 𝐅 𝐅𝐅􏺼􏺼𝐅𝐅  the deforma-
tion gradient tensor.
 To have a description of the bood-vessel interaction 
problem, the fluid equations (1) and (3) are coupled with 
the structural equations (5). That is achieved by imposing 
the following matching conditions on Γ𝑡𝑡𝑤𝑤,{2} for all 𝑡𝑡 𝑡 𝑡𝑡:

⎧⎪
⎨⎪⎩

𝐮𝐮 𝐮 �̇�𝜼𝜼
−(𝝈𝝈(𝐮𝐮𝜼 𝝈𝝈𝝈 𝝈 𝝈𝝈𝑒𝑒𝑒𝑒𝑒𝑒𝐈𝐈𝝈 𝐈 𝐈𝐈 𝐮 𝐈𝐈 𝐈 𝐈𝐈

where 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒  is a given external pressure which, without 
loss of generality, is considered to be zero, 𝚽𝚽 is the stress 
exerted by the structure on the fluid and 𝐧𝐧 is the out-
ward unit vector to Γ𝑡𝑡𝑤𝑤. In (6) the first equality is the no-
slip condition that guarantees the total adherence of the 
fluid to the structure (�̇�𝜼 is the wall movement velocity), 
while the second equality establishes the continuity of 
the normal stresses.

Figure 1.—The 3D computational domain of interest (blood vessel with 
an aneurysm), showing the physical boundary formed by the artery wall 
and the inflow and outflow artificial sections due to the truncation of 
the domain.

{1}  As it is customary in solid mechanics, the structure equations are written in the reference configuration 
(Lagrangian frame), while the fluid equations are set up in the current configuration (Eulerian frame), see 
for instance [10].

{2}  Notice that now the fluid domain changes in time, due to the wall motion: Ω = Ω𝑡𝑡, and Γ𝑤𝑤 = Γ
𝑡𝑡
𝑤𝑤.

(1)

(2)

(3)

(4)

(5)

(6)
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 It is necessary to provide appropriate initial condi-
tions to the structure, compatible with the FSI problem. 
The dependence of the fluid domain on the structure 
equations solution makes it very difficult to guarantee 
the well-posedness of the FSI problem, which is still an 
open problem [10,4].

2.4 Artificial boundaries: the geometrical multiscale 
approach
The prescription of boundary conditions on the artificial 
sections constitutes a great challenge, since they cannot 
be deduced from physical arguments, and in vivo data 
on the flow rate or pressure are very difficult to obtain. 
The artificial sections can be divided into two types, the 
inflow sections, closer to the heart and also called up-
stream sections (usually the computational domain only 
has one inflow section), and the outflow sections, closer 
to the systemic circulation and also called downstream 
sections (it is common to have more than one in the 
computational domain). Very often standard boundary 
conditions, such as Neumann homogeneous conditions 
at outflow sections, are imposed: 𝜎𝜎𝜎𝜎𝜎𝜎 𝜎𝜎𝜎 𝜎 𝜎𝜎 𝜎 𝜎𝜎. How-
ever, these conditions do not account for the remaining 
parts of the cardiovascular system. The computational 
solution is highly dependent on the choice of the bound-
ary conditions on the artificial sections, so that such so-
lutions can become not reliable and their use in clinical 
applications are compromised. Indeed, the cardiovascu-
lar system is closed, and the local hemodynamics greatly 
depends on the systemic circulation (see e. g. [12]). For 
that reason, the global behavior of blood flow should 
be taken into account in local 3D simulations. In order 
to do that, models of different geometrical scales, with 
different levels of accuracy and computational cost are 
considered, according to the level of detail required. This 
approach leads to the so called Geometrical Multiscale 
Modeling of the cardiovascular system [6,10].
 In regions where detailed information is necessary, 
3D models are applied. These are the most computation-
ally costly and can only be applied to small regions of 
the vasculature.
 If the purpose is to simulate large arterial trees, 1D 
simplified models should be used [3,6,10,4,11,1]. These 
models are obtained from the 3D FSI problem by aver-
aging and assuming cylindrical geometry of the vessels. 
The 1D models are less accurate, providing only average 
quantities such as flow rate and mean pressure, yet they 

are much less expensive from the computational view 
point and describe very well the wave propagation na-
ture of blood flow in arteries [10,4,11]. Indeed, the 1D 
model for blood flowing in arteries is given by an hy-
perbolic system of equations, that in physiological situ-
ations is under a sub-critical flow regime.
 Simpler lumped parameter models can be derived 
from the 1D models by further averaging in space, re-
sulting in a system of ordinary differential equations 
(ODEs) [3,6,12]. Since lumped parameter models do not 
depend on space, they are also named 0D models. They 
describe the variation in time of the averaged pressure 
and flow rate in a specific region of the circulatory sys-
tem, such as the venous bed, the pulmonary circulation, 
or the heart. There is a strong analogy between lumped 
parameter models and electric networks. Indeed the flow 
rate can be seen as the electric current and the mean pres-
sure as the voltage. Furthermore, the lumped parameters 
are precisely the resistance, related with the blood vis-
cosity, the inductance, related with the blood inertia, and 
the capacitance, related with the wall compliance.
 Coupling together models of the three different lev-
els gives rise to the geometrical multiscale modeling of 
the cardiovascular system. The couplings are achieved 
by imposing the continuity of mean pressure and flow 
rate [6,10,4]. In this manner, reduced 1D or 0D models 
can be coupled to the artificial sections of the 3D mod-
el in order to provide proper boundary conditions, ac-

counting for the remaining parts of the cardiovascular 
system [10,4,11,12]. This procedure allows to perform 
reliable computational simulations of local blood flow 
with clinical impact. Fig. 2 illustrates the coupling of all 
the three hierarchical models. The region of interest is 
the carotid bifurcation, which often undergoes athero-
sclerotic plaques.
 In Fig. 3, the numerical solution of the coupling of a 
3D FSI model of the carotid bifurcation with a 1D model 
of the circle of Willis is represented (taken from [10,11]). 
The 1D description of the circle of Willis properly ac-
counts for the absortion and propagation of pressure 
waves, so that the 3D simulation on the carotid bifurca-
tion is reliable.
 Although they are less detailed, the reduced 1D and 
0D models provide very useful simulations at very low 
computational cost, and are often applied as stand alone 
models, not necessarily coupled with 3D models. For 
instance in [1], 1D models are used to study anatomic 
variations of the circle of Willis, and in [3], 1D models 
and a 0D model for the heart are applied to study the 
circulation effects of amputating one leg.
 In [13,14] the sensitivity of the numerical fluid so-
lution in cerebral aneurysms to changes on the outflow 
conditions is studied, including the use of reduced mod-
els. In [12] the geometrical multiscale approach is used to 
obtain reliable results with clinical applications in heart 
paediatric surgery.

3. nuMerIcal SIMulatIon of heModynaMIcS 
 In cerebral aneurySMS

Cerebral aneurysms are pathological dilations of the 
cerebral vascular wall, which induce modifications in 
the mechanical properties of the artery wall, including 
its weakning that may lead to rupture. The rupture of 
cerebral aneurysms causes sudden death in 50% of the 
patients, and provokes permanent disabilities in a great 
number of the remaining cases. It is a silent pathology, 
without any symptomatology until rupture, except for a 
very small number of cases. It is therefore a devastating 
disease that is believed to affect approximately 5% of the 
population. The causes for initiation, growth and rup-
ture of cerebral aneurysms are still unknown, although 
it is accepted that there is a correlation between aneu-
rysm progression or genetic and hemodynamic factors 
[2,5,15]. In what concerns the hemodynamic factors, the 
numerical simulations play a very important and unique 
role in the comprehension of this disease, allowing in 
particular to obtain patient-specific reliable results and 
their visualization in a non-invasive way [9,13,14,15]. 
Through computational simulations it is also possible 
to easily compute hemodynamic indicators, such as the 
wall shear stress (WSS), that are very difficult to meas-
ure in vivo or in vitro. Precisely, the WSS and other re-
lated quantities, such as the WSS gradient, are known 
to be determinant in the initiation, growth and rupture 
of aneurysms [2,15]. Thus, numerical simulations have 

Figure 2.—Schematic of the coupling of a 3D model of the 
carotid bifurcation with a 1D arterial network, and with 0D 
models at its extremities to take into account the capillaries 
resistance.

Figure 3.—Realistic 3D carotid bifurcation coupled to the circle of Willis. Left: scheme of the coupling between the 3D carotid 
bifurcation and 1D reduced models. The internal carotid downstream section is coupled to a 1D network of the circle of Willis, while 
the external carotid downstream section is coupled to a single 1D tube. Center: pressure [dyn/cm2] and velocity [cm/s] solution in the 
3D carotid bifurcation. Right: the values of the flow rate [cm3/s] in the circle of Willis [10,11].
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nowadays an increasing impact in the clinical practice of 
patients with cerebral aneurysms. They lead to a better 
understanding of the disease and try to predict its natu-
ral progression, namely its rupture and consequent po-
tential letal bleeding, contributing also to its treatment. 
Therefore, computer simulations constitute a tool to sup-
port medical and clinical decision, both in the analysis 
and diagnosis of anatomic and physiological results, as 
well as in the prediction of surgical outcomes and post 
surgical complications. The results may also contribute 
to improve treatment and surgical techniques, such as 
endovascular surgery.
 As already mentioned, the hemodynamics highly 
depends on the morphology of the blood vessels, that is, 
on its geometry, being thus specific of each patient. In 
particular, for the study of cerebral aneurysms, reliable 
simulations depend not only on the choice of appropriate 
mathematical models and accurate numerical algorithms, 

but also on their application in patient-specific compu-
tational geometries, obtained from medical acquisition, 
as for instance computational tomography (CT). In or-
der to have patient-specific computational domains, it is 
necessary to reconstruct the medical images, which con-
sists essentially in three steps [9,13,14]:

(1) Segmentation: identification of the region of 
interest in the grey scale medical image. In 
this case it is important to distinguish between 
lumen and artery wall;

(2) Surface reconstruction: mathematical definition 
of the 3D surface, usually performed by means 
of the marching tetrahedra algorithm (see 
[9,13,14] and references therein);

(3) Smoothing: the 3D reconstructed surface has 
non physiological irregularities related with 
the medical image quality, which has noise 

due to its acquision, that should be eliminated 
through a smoothing process usually carried 
out by a bi-Laplacian algorithm [9,13,14].

Once one has the reconstructed medical image (see Fig. 
4, left) [13], it is necessary to define the computational 
region of interest, where to perform the 3D numerical 
simulations (see Fig. 4, right) [9,13,14]. Afterwards, it 
is necessary to define a computational 3D mesh, by de-
composition into simpler geometrical figures, usually tet-
rahedra, in which the numerical algorithms are applied. 
In order to attain accurate solutions in patient-specific 
simulations, it is essential to have a large number of very 
small elements, usually in the order of millions.
 From the simulation results of the velocity and pres-
sure fields, it is possible to compute the hemodynamic 
indicators associated to aneurysm risk of growth and 
rupture, such as the WSS and its variations. In Fig. 5 are 
depicted the numerical results of the simulation per-

formed in the geometry of Fig. 4, taken from [13]. It is 
possible to observe that the region of higher WSS is the 
neck of the aneurysm, precisely where the flux of the 
main vessel occurs, as it can be seen by the pathlines, 
while the lower values of WSS are found within the an-
eurysm sac.
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